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varying thermo-elastic moduli between dissimilar, homogeneous orthotropic half-
planes, which is assumed to vary exponentially in the direction perpendicular to the
crack surface. Using singular integral equation method, the mixed boundary value con-
ditions with respect to the temperature field and those with respect to the stress field
are reduced to a system of singular integral equations and solved numerically. Numeri-
cal results are obtained to show the influence of non-homogeneity parameters of the
material thermo-elastic properties, the orthotropy parameters and the dimensionless
thermal resistance on the temperature distribution and the thermal stress intensity
factors.
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Background

Functionally graded materials (FGMSs) are designed as the special materials which have
changed micro-structure and mechanical/thermal properties in the space to meet
the required functional performance (Niino et al. 1987; Suresh and Mortensen 1998).

e advantages of FGMs are that the magnitude of residual and thermal stresses can
be reduced, and the bonding strength and fracture toughness of such materials can be
improved. From both the phenomenological and mechanistic viewpoints, the tailor-
ing capability to produce gradual changes of thermo-physical properties in the spatial
domain is the key point for the impressive progress in the areas of functionally graded
materials (Miyamoto et al. 1999).

By introducing the concept of the FGMs, extensive research on all aspects of fracture
of isotropic and orthotropic FGMs under mechanical or thermal loads has been con-
sidered (Choi et al. 1998; Choi 2003; Wang et al. 2004; EI-Borgi and Hidri 2006; Han
and Wang 2006; Cheng et al. 2010; Ding and Li 2014; Kim and Paulino 2002; Dag 2006;
Zhou et al. 2007). By considering changes in both elastic and thermal properties, Jin and
Noda (1991) studied the transient thermo-elastic problems of functionally graded mate-
rial with a crack. Fujimoto and Noda (2001) investigated the thermal cracking under a
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transient-temperature field in a ceramic/metal functionally graded plate. In addition,
assuming the surfaces of the crack are insulated, thermal stresses around a crack in the
interfacial layer between two dissimilar elastic half-planes are studied by Itou (2004).
With the introduction of the thermal resistance concept, the thermal stress intensity
factors for the interface crack between functionally graded layered structures under the
thermal loading are investigated by Ding and Li (2015). Zhou and Lee (2011) studied the
thermal fracture problem of a functionally graded coating-substrate structure of finite
thickness with a partially insulated interface crack subjected to thermal—-mechanical
supply. Chen (2005) obtained the thermal stress intensity factors (TSIFS) of a graded
orthotropic coating-substrate structure with an interface crack. Zhou et al. (2010) con-
sidered the thermal response of an orthotropic functionally graded coating-substrate
structure with a partially insulated interface crack.

Using mesh-free model, Dai et al. (2005) studied the active shape control as well as the
dynamic response repression of the functionally graded material (FGM) plate containing
distributed piezoelectric sensors and actuators. Natarajan et al. (2011) considered the
linear free flexural vibration of cracked functionally graded material plates by using the
extended finite element method. Using extended finite element method, fatigue crack
growth simulations of bi-material interfacial cracks have been considered under thermo-
elastic loading (Pathak et al. 2013). Using element free Galerkin method, Pathak et al.
(2014) studied quasi-static fatigue crack growth simulations of homogeneous and bi-
material interfacial cracks under mechanical as well as thermo-elastic load.

Layered FGM structure are very import in practical engineering (Sofiyev and Avcar
2010; Sofiyev et al. 2012; Ding et al. 2014, Ding et al. 2015). e research of thermal
elastic crack problem in layered structure is helpful for the design and application of
functionally graded materials.  is paper explores the thermal—-mechanical response
of layered and graded structures using the integral equation approach. e analytical
results of the cracked layered material systems with the material properties in the graded
coating varying as an exponential function has been obtained by using the integral trans-
form technique. e surface of the crack is assumed to be part of the thermal insula-
tion. e temperature distributions along the crack line are presented. e TSIFS under
thermo-mechanical loadings are obtained, which is very important for the designing of
layered orthotropic media.

Problem formulation

As shown in Fig. 1, the problem under consideration consists of a functionally graded
orthotropic strip (FGOS) of thickness # bonded to two homogeneous semi-infinite
orthotropic media with a partially insulated interface crack of length 2¢ along the x-axis
is considered. e subscript j(j = 1, 2, 3) indicates the FGOS and two semi-infinite
orthotropic media respectively. e remaining thermo-mechanical properties depend
on the y-coordinate only and are modeled by an exponential function

(ky(cl),kj(,l)) = (k,(f),kye)) exp (6y/ c) (D

(K@) = (K2, k2 ) exp (35 ) 2)
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Fig. 1 Geometry of the layered orthotropic media under steady-state heat flows

(2)

where k,&z),ky are the thermal conductivities for the homogeneous orthotropic sub-

strate 11, and ¢ is an arbitrary nonzero constant.
e temperature satisfies

d H0T; d ) 0T;
() S (L) =0 (j=1-3)
ox ox ay ay

Substituting Egs. (1) and (2) into the Eqg. (3), the heat equation can be given by

2T AT, 0%T)

kxyo——— + 86—
xy0 9x2 + 3y + ay

=0 O<y<h

82T”+82T” =0 (j=23)
D002 T 92 V=2
where kyyo = k& /&y,
e heat flux components are written as

071 (x,

k3 13(y ) _ —Qo,y — 400, |x] < +00
Ty (x,

kZ%y) - _QO;J/ — —0Q, |x| < 400

We define the following dimensionless quantities

(Tc,yﬁ) = (x,y,h)/c,Tj = T}/ (—ro/ky@)), j=1-3

Tjn = Gj/d/ (—EoQodzc/ky(z)), (k,l =x,)

(@, 7)) = (uv)) / (-Qootzc2 / ky(z))
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where a, and Ej; are the typical values of the coe cient of linear thermal expansion and
the Young’s modulus of elasticity for the homogeneous orthotropic substrate, respec-
tively. But for simplicity, in what follows, the bar appearing with the dimensionless quan-
tities is omitted.

e Duhamel-Neumann constitutive equations for the plane thermo-elastic problem
are given by Nowinski (1978)

ou av ou av du  Jdv
=Cy—+4+C1p—-0,T, = C1p—+4+Cyp——06,T, =Ces| — + —
Oxx 11 8x+ 12 3y 1 Oyy 12 8x+ 22 3y p) Oxy 66 < 3y + 8x)
)
in which
0) = Crity, + Cpparyy, 0y = Cppary + Cpparyy, Cop = G, (10)

e elastic sti ness coe cients and the coe cients of the linear thermal expansion in
dimensionless form are modeled to take the following forms

1) ~1) ~1) ~(1) 2) ~2) ~2) ~(2)
(Cu »Cla'r Cay's Cog ) = (Cu 1 Cia5 Cys Cog ) exp(By)

(1)
(o:e7) = (o7 ) expir

where superscripts 1, 2 refer to the FGOS and the homogeneous orthotropic substrate
II, respectively, S and y are graded parameters. e properties of material 3 can be found
in Eq. (11) when y is taken as 4. In Eq. (11), elastic sti ness coe cients in dimensionless
form can be represented by the Young’s moduli and the Poisson’s ratios as

2
EY

2 _
TR p—
nyl)xy

Cyy = (12)

where v;; are the Poisson’s ratios and assumed to be constant. EZ and Ey(i) are Young’s

moduli for the homogeneous orthotropic substrate I, respectively.
Substituting Eq. (9) into the equations of equilibrium for the forces reduces these
equations to the forms

@)
Cll

2y (2) 8%u (2) 2)) 8%v (2) ( ou v 2) 9T,
a2+ Ce6 3 T (Cu + Ces ) away T BCes (Tyl + Txl) =07

2) 92 2) 92 2 2)\ 9% 2) 9 2) 9 2 AT,
) T Ces - + (sz) + Cés)) iy T8 (C{Z)% + C52>Tvyl> =6,"er [(ﬁ +T+ %5

13)

C(Z) 82142
1 Hx2

9%y 92y aT
(2 97Uz ) @ 2 _ ,@20912
e (¢ +c@) s =

(14)

92y 9%y 9%y aT
297 V2 2 97v2 ) @ 2 _ @912
sz 8y2 C66 0x2 (Cu + C66 ) 0xdy - 02 37)/
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9%y 9%y 9%y aT.
Ci T + G ay23 (e + <) axa; =
92y 9%y 9%y aT.
2073 2073 @ , ~© 3 _ @ 1973 (15)
Cy 272 + Cos 902 (CIZ + Ces ) oxdy 0, e’ By

Boundary conditions
e temperature filed can be provided using the following boundary condition

Tr(x,y) = T3(x,y) x| < +o00,y=h (16)

—Bi(T1(x,y) — To(x,9)) x| <c, y=0

T (x,
0Ty | TH” x| < +00, y=0
dy o x| < 400, y=h (17)
—Qo/ky(g) y = +oo, |x| <400

where Bi = l/ky(”(O)/Rc is dimensionless thermal resistance through the crack region.
R, is the thermal resistance through the crack region.
e boundary conditions of the stress and displacement field can be given by

0 y=0 lx| <c 0 y=0, x| <c
Ny@)) =\ osy(ny)  y=ho WD =\ o ey = (18)
Ml(xrh_) = u?)(xx h+) V1 (xr h_) = V3(xr h+) |x| < (19)

Heat conduction problem

By using Fourier transform, the solutions of Egs. (4) and (5) are given by
T1(x,y) = [:r:oo (M (@) exp(s1y)+Ma(w) exp(s2)) exp(—iwx)dw + %, O<y<h
To,y) = [12 (M3(w) exp(p1y)+Ma(w) exp(p2)) exp(—iox)do + y, y=0

T3(x,y) = fj:; (Ms5(w) exp(01y)+Me(w) exp(02y)) exp(—iwx)dw + e"Shy +1/8— #e’“, y>h
(20)

where M (w)(k = 1 — 6) can be found in “Appendix 1" s, pr and oy are the roots of the
characteristic polynomials, which can be given by

1
s12 = 5 (—5 + \/W), P12 = Ey/kyolol, 012 = £y /kyolol  (21)
Introducing the unknown density function
3 . _
¢ = —[T1(x0") — Ta(x,07)] (22)
From (17), we obtain

—21

+1 1
/ 1 (u o+ HG, u>>¢><u>du - = 23)

where the kernel H (x, u) can be found in “Appendix 1"
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Thermal stress analysis
By using the standard Fourier transforms to Egs. (13)—(15), following results for the dis-
placement fields for the FGOS and two homogeneous orthotropic media are obtained

4 X X 2 4 X
w1 (%) = f:r:j (Z Cj(w)em/)’> e~ x4+ ]j:: ( 2((‘:))) e(V+S/)J’> e~
— =1

iy = [12 <Z C,(a))q,(w)e’"/y> e ode + [T ( E”i(“;) W“/”) e dw + y1€7Y + x2e¥ 7Y
j=1

(24
ur(x,y) = [*F (Cs(w)e”” + Co(w)e" + %e(yﬂ’l)y) )
@y = [13 (Cs(w)%(w)e”” + Co(w)gs(w)e™ + 7 56(“’) e(}’ﬂ’l)y) Tl de + C(E)y
(25)

u3(5,3) = [13 (Cr(@)e™” + Cyl@)em + F vt )iy
@9 = [T (Cr@)ar @™ + Cy@)gs(@)e + §B e+ )emionde 4 gyl + ety D
(26)
where Cj(w)(j = 1 — 8) are unknown function. &, 4;(j =1 —8),d;(j =1 —4), x;(j = 1,2)
are given in “Appendix 1" »;(j = 1 — 4) and »;(j = 1 — 4) are the roots of the character-
istic polynomials, which can be given by

1
mp =g (—,3 - \//32 —2A1 £2v/(A1)? — 4A2> 27

1
ms = o <—,3 + \//32 —2A1£2v/(A1)? — 4A2) (28)

1 1
nip = —E\/—2A3 + 24/ (Ag)z — 4 Ay, n34 = E\/_ZAS + 2+ (A3)2 —4Ay

(29)

where

2 2 2
Ay =0’ C(2>C<2> @ 2@
22 “~66 66 22

(2) (2) . C121
Ay = (,L) (2) + w /3 (2); As3=A1, Apg=w CT
22 22 22

Solution procedure and near-tip eld intensity factors
Introducing the density functions

ad ad
P1) = o [u(x,07) — u(x,07)], P2(x) = o [v(x,07) — v(x,07)] (30)
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Substituting Egs. (24)—(26) into Egs. (18)—(19), we obtain

21 - a)lT(x)

1
/ { {1 + Ki1(x, u)} @1 (u) + Kio(x, u)q>2(u)}du =
-1 u—x kxyo

moofw

1
/ {1(21(x, u)®1(u) + [1 + Koo (x, M)] 4’2(M)}d” = N

-1 u—x

where Kjj(x, u)(i,j = 1,2), o1(x)T, wa(x)T are given in “Appendix 2”
e singular integral Eq. (31) are solved numerically with the unknown density func-
tions Ry (1) and Ry (u) having the following form

N
1) = A Ri@w) = 3 buTu(u)
n=1

(32)

N
Do) = 2 Ro(u) = 3 cnT(u)
n=1

Once R (1) and Ry (1) have been determined, the thermal stress intensity factors ahead
of the crack tip can be defined and calculated as follows

Ki(1) = lirrll+ V2x — Doyy(x,0) = —@Rz(l),

X

Ki(=1) = lim_/2(=x = 1)y, (x,0) = VRt gy (1),

K1) = lin11+ V2 — Doyy(x,0) = —@Rl(l),
Ki(~1) = lim /2% = Doy (5,0) = Y22 Ry (1),

(33)

Numerical results and discussion
In this paper, the orthotropy and non-homogeneity parameters of Tyrannohex can be
found in Ootao and Tanigawa (2005). e material properties can be given by

Eu = 135GPa, E,, =87GPa, vy =015 vy, =0.09667, o =0.32x 107°/°C,
ayy =032 x 107°/°C, k =2.81 W/m°C, k,=3.08 W/m°C

In the presented results the values of the thermal stress intensity factors are normal-
ized by ko = Eonazﬁ//(y(z). e crack is located along the interval -1 <x < 1.

Figure 2a, b show the e ects of the thermal conductivity parameter § on the crack
surface temperature when Bi = 0.1 and Bi = 0.5, respectively. From Fig. 2a, b, it can be
found that the temperature jump across the crack surfaces increases with an decrease of
the absolute values of 8. At the other hand, for smaller value of Bi, the temperature will
become more pronounced. As expected, the temperature jump across the crack becomes
more pronounced as the crack surfaces become more insulated, that is, as Bi decreases.
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Fig. 2 Influences of thermal conductivity parameter § on the normalized crack surfaces and crack extend line
y = Otemperatures T(x, 07)/Toand T (x, 07)/ToJo = Qoc/k\”,h = 1.0,kyo = 2.0,aBi = 0.1, b Bi = 05

Figure 3a, b show the e ects of the thermal conductivity parameter § and ko on the
mode 7 and kxyo = 0.5/1 thermal stress intensity factors. It can be found that the mode
I thermal stress intensity factors increases with an increase of the thermal conduc-
tivity parameter § for either or ky, = 2.0; while increases with an increase of ko for
both § = —1.0 and § = 1.0. And the values of mode II thermal stress intensity factors
decreases with the increasing of the thermal conductivity parameter § regardless of the
value of k,,0. Meanwhile, the values of mode /I thermal stress intensity factors decreases
with the increasing of an increase of ko regardless of the value o a,ﬁ,z) fs.

Figure 4a, b illustrate the e ects of the sti ness parameter gand E2 on the mode I and
II thermal stress intensity factors. It can be seen that the mode I thermal stress inten-
sity factors increases with a decrease of the sti ness parameter g for both E® = 05and
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Fig. 3 Influences of the thermal conductivity parameter § and k,,o on the normalized thermal stress intensity
factors,h = 1.0.amode /. b mode //

E,(C,zc) = 2.0; while increases with an increase of Efcﬁ) regardless of the value of the sti ness
parameter 8. For the mode II thermal stress intensity factors, the contrary is the case.

Figure 5a, b show the II e ects of the thermal expansion parameter y and on the mode
I and II thermal stress intensity factors. It may be obtained that the absolute values of
both mode I and mode II thermal stress intensity factors increases with an increase of
the thermal expansion parameter y for either ky,0 = 0.5 or ky,0 = 2.0; and the absolute
values of both mode I and mode II thermal stress intensity factors increases with an
increase of o2,
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Fig. 4 Influences of the sti ness parameter g and £ on the normalized mode thermal stress intensity fac-
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Figure 6a, b illustrate the e ects of di erent thickness of functionally graded ortho-
tropic strip on the mode I and II thermal stress intensity factors when § = —1.0 and
3 = 1.0, respectively. We can see that the mode I and thermal stress intensity factors
increase or decrease with the increasing of 4, and then reach a steady value.

Conclusions

In this paper, thermo-mechanical stress and displacement fields for an interface crack
between an orthotropic functionally graded interlayer and two homogeneous ortho-
tropic media are obtained. In addition to the mechanical fields, temperature fields are
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also developed for exponentially varying thermal properties along the gradation direc-
tion. TSIFS are numerically calculated based on a singular integral equation derived
from the dislocation density along the crack faces. e variations in temperature distri-
bution and the thermal stress intensity factors due to the change in non-homogeneity
parameters of the material thermo-elastic properties, the orthotropy parameters and the
dimensionless thermal resistance are investigated.
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[, px)erdx

o [, pxerdx

Appendix 1
e expressions of M;(w)(j = 1 — 6) are given by
. soh
Mi(w) = — e
2 w((s1—02)(p1—s2)e’L"+(02—s2) (p1—s1)€’2")
. s1h
Mo(w) = ip1(s1=09)€’1
20 = 1o G1—s)E (0= 1 —s)e
; Soh s1h
M — i[s1(02=5p)e2 457 (s1—09)€ 1]
3(«) 27w ((s1—02) (p1—52) €1 +(02—52) (p1 —s51)€2")

My(w) = Ms(w) =0

—o0)h

f_11 O (x)e!* dx

i —sy)els1+s2
ip1(s1—sp)e
Me((t)) — ip1(s1—52)

e kernel function H (x, u) is

27 ((51—02) (p1—52)€ 1 +(02—52) (p1 —s1)e%2")

[, px)erdx

H(x,u) =
0 kxyOw

e expressions of &, 4;(j = 1 — 8),d;(j = 1 — 4), x;(j = 1,2) are given by

§ = ioM;| (v +5)(y +5+ B) (63Ch - 67Ch )|

+C& [a)2912 +(v+s+ ﬁ)Zezz}, j=12

& = wZM;‘—z{ {(V +si-2+B) (912C122 - Q%Cfl)}

+(y + 57-2)Cés [aﬂef + (y +si—2+ ,8)2922} } j=34

65 — ioMa |3 (63C, — 63C3,) | + C24 0?67 + i3]

£6 = 0*Ms

—

& = oM 03 (03C — 02C3, )| + C&[w?6} + 0363

g = ©*Ms |02 (63C, — 03CH )| + 02CE 0?6} + 0363

iw[m;(CF, + Cg) + BCh)
mj(m; + /3)C222 - a)2C626

gj(w) = j=1

L 2 2

ionj—4(Ch, + C)
2 2 _ 202 )
”j—4C22 w*Cgg

qj(w) = j=5-—38

dj(w) = CgsCHICHO" + (¥ + )% + (v +57+ )’ 1 + (v +5))°

teo 3 519102 — $2)€" + 53p1(s1 — 02)e
(51— 02)(p1 — 52)es" + (02 — $2) (p1 — 51)€%2"

p1(62C% — 3C3)] + piCE w07 + i3]

—4

(34)

+ Bi — 1} sin[w(u—x)]dw

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(v +5+ B)2Chl + * (v +5)(y + 55+ PICEH)* — CHChl, j=1-2

2
) = Co[Cho? + 20203CH, + 9] + 04t () - Gy

(44)

(45)

Page 13 of 16



Ding and Li SpringerPlus (2016)5:1490

2
ds(@) = C% [Chio? + 20%03CY, + o3 Chy | + 0?0} {(cﬁ) —cy cgz} (46)
62 62
3Cs5yy 8C5(y —90) (G
Appendix 2

e expressions of Kj;(x, u)(i,j = 1,2),01(x) T, wa(x)T are given by

+o0 A A
Ky (% u) = lim 2 < 2D16 ny 21D15e”1y> — 1 sin[o(u—x)ldo
y—>0-Jo ®+/Kxy0 D D

(43)

Kia(x,u) = lim
y=>0"Jo w kxyO

+00 ;
2i (A22D26 oy Azfzs oy

5 ) cos[w(u — x)]dw (49)

Ky (x,u) = lim

+00 ;
2i (A24D16 oy _ A23D15 4y
y=>0"Jo w kxyO

D D ) cos[w(u — x)]dw (50)

oo 2 AouD As3D
Ky (x,u) = lim < < 207716 gy _ 2‘;) 1> e”1y> - 1) sin[w (u—x)]dw
0 w

—0~ k. D
¥ xy0 (51)
+ 8 ;
of @) = [735 | X Ly — Baze ™" | dx
oy (52)
wl (x) = fjoooo > 1iJ2j — By — Bzz) e '"“dx
j=1
with
2 2
L =&/d3 — Zé’j/dj I =&g/d3 — Z§j+2/dj (53)
j=1 j=1

2 2
I =gy jdy = VTV g jdy Iy = eV gy dy = eV /d
j=1 j=1
(54)
2 2
Is=By—Y Fj Is=Byn+Byn—)Y By

j=1 j=1 (35)

2 2
I = e()/+02)h331 + eoth32 _ Ze(VJrSj)hBlj Is = e()/+02)h333 _ Z e()’+sj)hl:'1j
j=1 j=1

(56)
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. A22D'6 A21D‘5 ; A24D‘6 A23D5

= (1Y =2l e G NA B N it/ il
Jij = (1) < 5 ) Joj = (—1) 5 5 (57)
Ajj = (—iw)C, + Chmygy j=1—4 (58)

By = |(—iw)Chg + Ch(y +5)| /dy — 07 M;  Eyj = Cloom; —iwg)  (59)

Fij = C[(y +5)& — iwgjya] /dj j=1—14 (60)
) . 2 =) . 2

A21 = C22n1q5 — la)ClZ A22 = C22W2q6 - la)ClZ (61)
Boy = [Ch(y +p1)és — iwCh] /ds B = —63M3 (62)
Azz = Cd(m — iwgs) Asa = Cig(nz — iwge) (63)
Baz = Cgsl(y + p1)és — iwke)/ds A1 = Ciynzqy — iwCh, (64)
Az = Chmags — iwC2, B —[C2 — iwC}

32 = (oon4qs w1y 31 = 22(3/ + 02)58 le1257 /d4 (65)
Bzy = —03Mee?"  Asz = C(n3 — ivg) (66)
Ass = Clo(na — iwgg) Bss = Cx[(y + 02)&7 — iwks]/da (67)

Here D is the determinant of the D;(i,j = 1 — 8). D;; is the sub-determinant of the
linear system of Egs. (24)—(26) corresponding to the elimination of the itk row and jth
column.
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