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Background
Graph theory have applications in many areas of computer science including data min-
ing, image segmentation, clustering, image capturing, networking. A graph structure, 
introduced by Sampathkumar (2006), is a generalization of undirected graph which 
is quite useful in studying some structures including graphs, signed graphs, graphs in 
which every edge is labeled or colored. A graph structure helps to study the various rela-
tions and the corresponding edges simultaneously.

A fuzzy set (Zadeh 1965) is an important mathematical structure to represent a collection 
of objects whose boundary is vague. Fuzzy models are becoming useful because of their aim 
in reducing the differences between the traditional models used in engineering and science. 
Nowadays fuzzy sets are playing a substantial role in chemistry, economics, computer sci-
ence, engineering, medicine and decision making problems. In 1998, Zhang (1998) general-
ized the idea of a fuzzy set and gave the concept of bipolar fuzzy set on a given set X as a map 
which associates each element of X to a real number in the interval [−1, 1]. In 2014, Chen 
et al. (2014) introduced the idea of m-polar fuzzy sets as an extension of bipolar fuzzy sets 
and showed that bipolar fuzzy sets and 2-polar fuzzy sets are cryptomorphic mathemati-
cal notions and that we can obtain concisely one from the corresponding one in Chen et al. 
(2014). The idea behind this is that “multipolar information” (not just bipolar information 
which corresponds to two-valued logic) exists because data for a real world problem are 
sometimes from n agents (n ≥ 2) . For example, the exact degree of telecommunication safety 
of mankind is a point in [0, 1]n(n ≈ 7× 109) because different person has been monitored 
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different times. There are many examples such as truth degrees of a logic formula which are 
based on n logic implication operators (n ≥ 2), similarity degrees of two logic formula which 
are based on n logic implication operators (n ≥ 2), ordering results of a magazine, ordering 
results of a university and inclusion degrees (accuracy measures, rough measures, approxi-
mation qualities, fuzziness measures, and decision preformation evaluations) of a rough set.

Kauffman (1973) gave the definition of a fuzzy graph in 1973 on the basis of Zadeh’s 
fuzzy relations (Zadeh 1971). Rosenfeld (1975) discussed the idea of fuzzy graph in 1975. 
Further remarks on fuzzy graphs were given by Bhattacharya (1987). Several concepts on 
fuzzy graphs were introduced by Mordeson and Nair (2001). Akram et al. has discussed 
and introduced bipolar fuzzy graphs, regular bipolar fuzzy graphs, properties of bipolar 
fuzzy hypergraphs, bipolar fuzzy graph structures and bipolar fuzzy competition graphs 
in Akram (2011, (2013), Akram and Dudek (2012), Akram et al. (2013), Akram and Akmal 
(2016) and Al-Shehrie and Akram (2015). In 2015, Akram and Younas studied certain 
types of irregular m-polar fuzzy graphs in Akram and Younas (2016). Akram and Adeel 
studied m-polar fuzzy line graphs in Akram and Adeel (2016). Akram and Waseem intro-
duced certain metrics in m-polar fuzzy graphs in Akram and Waseem (2016). Dinesh 
(2014) introduced the notion of a fuzzy graph structure and discussed some related prop-
erties. Akram and Akmal (2016) introduced the concept of bipolar fuzzy graph structures. 
In this research article, we introduce the notion of m-polar fuzzy graph structure and 
present various operations, including Cartesian product, strong product, cross product, 
lexicographic product, composition, union and join of m-polar fuzzy graph structures. We 
illustrate these operations by several examples. We also investigate some of their related 
properties. We have used standard definitions and terminologies in this paper. For other 
notations, terminologies and applications not mentioned in the paper, the readers are 
referred to Dinesh and Ramakrishnan (2011), Lee (2000) and Zhang (1994).

Preliminaries
In this section, we review some basic concepts that are necessary for fully benefit of this 
paper.

In 1965,  Zadeh (1965) introduced the notion of a fuzzy set as follows.

Definition 1  (Zadeh 1965, 1971) A fuzzy set µ in a universe X is a mapping 
µ : X → [0, 1]. A fuzzy relation on X is a fuzzy set ν in X × X. Let µ be a fuzzy 
set in X and ν fuzzy relation on X. We call ν is a fuzzy relation on µ if ν(x, y) ≤ 
min{µ(x),µ(y)} ∀x, y ∈ X.

Recently, Akram and Akmal (2016) applied the concept of bipolar fuzzy sets to graph 
structures.

Definition 2  (Akram and Akmal 2016) Ǧb = (M,N1,N2, . . . ,Nn) is called a bipo-
lar fuzzy graph structure(BFGS) of a graph structure (GS) G∗ = (U ,E1,E2, . . . ,En) if 
M = (µP

M ,µN
M) is a bipolar fuzzy set on U and for each i = 1, 2, . . . , n, Ni = (µP

Ni
,µN

Ni
) is 

a bipolar fuzzy set on Ei such that

µP
Ni
(xy) ≤ µP

M(x) ∧ µP
M(y), µN

Ni
(xy) ≥ µN

M(x) ∨ µN
M(y) ∀ xy ∈ Ei ⊂ U ×U .
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Note that µP
Ni
(xy) = 0 = µN

Ni
(xy) for all xy ∈ U ×U − Ei and 0 < µP

Ni
(xy) ≤ 1, 

−1 ≤ µN
Ni
(xy) < 0 ∀ xy ∈ Ei, where U and Ei (i = 1, 2, . . . , n) are called underlying vertex 

set and underlying  i-edge sets of Ǧb, respectively.

Definition 3  (Akram and Akmal 2016) Let Ǧb = (M,N1,N2, . . . ,Nn) be a BFGS of 
a GS G∗ = (U ,E1,E2, . . . ,En). Let φ be any permutation on the set {E1,E2, . . . ,En} 
and the corresponding permutation on {N1,N2, . . . ,Nn}, i.e., φ(Ni) = Nj if and only if 
φ(Ei) = Ej ∀i.

If xy ∈ Nr for some r and

then xy ∈ B
φ
m, while m is chosen such that µP

N
φ
m
(xy) ≥ µP

N
φ
i

(xy) and µN

N
φ
m
(xy) ≤ µN

N
φ
i

(xy) ∀i.

And BFGS (M,N
φ
1 ,N

φ
2 , . . . ,N

φ
n ) denoted by Ǧφc

b , is called the φ-complement of BFGS 
Ǧb.

Chen et al. (2014) introduced the notion of m-polar fuzzy set as a generalization of a 
bipolar fuzzy set.

Definition 4  (Chen et al. 2014) An m-polar fuzzy set (or a [0, 1]m-set) on X is exactly a 
mapping A : X → [0, 1]m.

Note that [0, 1]m (mth-power of [0, 1]) is considered as a poset with the point-
wise order ≤, where m is an arbitrary ordinal number (we make an appointment 
that m = {n|n < m} when m > 0), ≤ is defined by x ≤ y ⇔ pi(x) ≤ pi(y) for each 
i ∈ m ( x, y ∈ [0, 1]m), and pi : [0, 1]m → [0, 1] is the ith projection mapping (i ∈ m). 
0 = (0, 0, . . . , 0) is the smallest element in [0, 1]m and 1 = (1, 1, . . . , 1) is the largest ele-
ment in [0, 1]m. Akram and Waseem (2016) defined m-polar fuzzy relation as follows.

Definition 5  (Akram and Waseem 2016) Let C be an m-polar fuzzy subset 
of a non-empty set V. An m-polar fuzzy relation on C is an m-polar fuzzy sub-
set D of V × V  defined by the mapping D : V × V → [0, 1]m such that for all 
x, y ∈ V , pi ◦ D(xy) ≤ inf{pi ◦ C(x), pi ◦ C(y)}, i = 1, 2, . . . ,m, where pi ◦ C(x) denotes 
the ith degree of membership of the vertex x and pi ◦ D(xy) denotes the ith degree of 
membership of the edge xy.

An m-polar fuzzy graph was introduced by Chen et al. (2014) and modified by Akram 
and Waseem (2016).

Definition 6  (Akram and Waseem 2016), Chen et  al. (2014) An m-polar fuzzy 
graph is a pair G = (C ,D), where C : V → [0, 1]m is an m-polar fuzzy set in V and 
D : V × V → [0, 1]m is an m-polar fuzzy relation on V such that

µP

N
φ
i

(xy) = µP
M(x) ∧ µP

M(y)−
∨

j �=i

µP
φNj

(xy),

µN

N
φ
i

(xy) = µN
M(x) ∨ µN

M(y)−
∧

j �=i

µN
φNj

(xy), i = 1, 2, . . . , n,
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for all x, y ∈ V .

We note that pi ◦ D(xy) = 0 for all xy ∈ V × V − E for all i = 1, 2, 3, . . . ,m. C is called 
the m-polar fuzzy vertex set of G and D is called the m-polar fuzzy edge set of G,  respec-
tively. An m-polar fuzzy relation D on V is called symmetric if pi ◦ D(xy) = pi ◦ D(yx) 
for all x, y ∈ V .

m‑Polar fuzzy graph structures
We first define the concept of an m-polar fuzzy graph structure.

Definition 7  Let G∗ = (U ,E1,E2, . . . ,En) be a graph structure (GS). Let C be an 
m-polar fuzzy set on U and Di an m-polar fuzzy set on Ei such that

for all x, y ∈ U , i ∈ n, j ∈ m and pj ◦ Di(xy) = 0 for xy ∈ U ×U\Ei, ∀j. Then 
G(m) = (C ,D1,D2, . . . ,Dn) is called an m-polar fuzzy graph structure (m-PFGS) on G∗ 
where C is the m-polar fuzzy vertex set of G(m) and Di is the m-polar fuzzy i-edge set of 
G(m).

We illustrate the concept of an m-polar fuzzy graph structure with an example.

Example 8  Consider a graph structure G∗ = (U ,E1,E2) such that U = {a1, a2, a3, a4}, 
E1 = {a1a2} and E2 = {a3a2, a2a4}. Let C, D1 and D2 be 4-polar fuzzy sets on U , E1 and 
E2, respectively, defined by the following tables:

C a1 a2 a3 a4

p1 ◦ C 0.1 0.3 0.4 0.2

p2 ◦ C 0.0 0.6 0.0 0.0

p3 ◦ C 0.0 0.2 0.4 0.3

p4 ◦ C 0.1 0.0 0.4 0.4

Di (a1a2)1 (a3a2)2 (a2a4)2

p1 ◦ Di 0.1 0.2 0.2

p2 ◦ Di 0.0 0.0 0.0

p3 ◦ Di 0.0 0.2 0.2

p4 ◦ Di 0.0 0.0 0.0

By simple calculations, it is easy to check that G(m) = (C ,D1,D2) is a 4-polar 
fuzzy graph structure of G∗ as shown in Fig.  1. Note that we represent xy ∈ Di as 
(xy)i = (p1 ◦ Di(xy), . . . , pm ◦ Di(xy))i in all tables and the figures.

Note that operations on m-polar fuzzy sets are generalization of operations on bipo-
lar fuzzy sets. We apply the concept of m-polar fuzzy sets on some operations of graph 
structures.

pi ◦ D(xy) ≤ inf{pi ◦ C(x), pi ◦ C(y)}

pj ◦ Di(xy) ≤ inf{pj ◦ C(x), pj ◦ C(y)}
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Definition 9  Let G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n) be 
two m-PFGSs. Then the Cartesian product of G1

(m) and G2
(m) is given by

where the mappings C1 × C2 : U1 ×U2 → [0, 1]m and D1i × D2i : E1i × E2i → [0, 1]m 
(for i ∈ n) are respectively defined by

and

where j varies from 1 to m.
We illustrate Cartesian product of G1

(m) and G2
(m) with an example.

Example 10  Let G1
(m) = (C ′,D′

1,D
′
2) be a 4-PFGS of graph structure G∗

1 = (U ′,E′
1,E

′
2) 

where U ′ = {b1, b2, b3}, E
′
1 = {b1b2} and E′

2 = {b2b3}. G1
(m) is drawn and shown in the 

Fig. 2.

The Cartesian product of G(m) (Fig.  1) and G1
(m), given by G(m) × G

1

(m) =

(C × C
′
,D1 × D

′
1
,D2 × D

′
2
), is as shown in Fig. 3. In the figure, a Di × D′

i-edge can be 
identified by the subscript “i” with the corresponding degrees of memberships of edge.

We now formulate Cartesian product of G1
(m) and G2

(m) as a proposition.

G1
(m) × G2

(m) = (C1 × C2,D11 × D21,D12 × D22, . . . ,D1n × D2n)

pj ◦ (C1 × C2)(x1x2) = pj ◦ C1(x1) ∧ pj ◦ C2(x2), ∀ x1x2 ∈ U1 ×U2

pj ◦ (D1i×D2i)((xx2)(xy2)) = pj ◦ C1(x) ∧ pj ◦ D2i(x2y2), ∀x ∈ U1, x2y2 ∈ E2i,

pj ◦ (D1i×D2i)((x1y)(y1y)) = pj ◦ C2(y) ∧ pj ◦ D1i(x1y1), ∀y ∈ U2, x1y1 ∈ E1i,

a1(.1, 0, 0, .1)

a
2(
.3
,.
6,
.2
,0
)

a3(.4, 0, .4, .4)

(.1,
0, 0

, 0)1

(.2, 0, .2, 0)2

a4(.2, 0, .3, .4)

(.2, 0, .2, 0)2

Fig. 1  4-Polar fuzzy graph structure

b1(.5, .6, .5, .6)

b 2
(.
6,
.6
,.
6,
.6
)

b3(.4, .4, .4, .4)

(.5,
.5, .

5, .5
)1

(.4, .4, .4, .4)2

Fig. 2  4-Polar fuzzy graph structure
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Proposition 11  Cartesian product of two m-polar fuzzy graph structures is an m-polar 
fuzzy graph structure.

Proof  Let GS G∗ = (U1 ×U2,E11 × E21,E12 × E22, . . . ,E1n × E2n) be the Carte-
sian product of GSs G∗

1 = (U1,E11,E12, . . . ,E1n) and G∗
2 = (U2,E21,E22, . . . ,E2n). 

Let G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n) be respective 
m-PFGSs of G∗

1 and G∗
2 . Then (C1 × C2,D11 × D21,D12 × D22, . . . ,D1n × D2n) is an 

m-PFGS of G∗.By the Definition 9 of Cartesian product, C1 × C2 is an m-polar fuzzy set 
of U1 ×U2 and D1i × D2i is an m-polar fuzzy set of E1i × E2i for all i. So the remaining 
task is to prove that D1i × D2i is an m-polar fuzzy relation on C1 × C2 for all i. For this, 
some cases are discussed, as follows:

Case 1. When x ∈ U1 and x2y2 ∈ E2i

pj ◦ (D1i × D2i)((xx2)(xy2))

= pj ◦ C1(x) ∧ pj ◦ D2i(x2y2)

≤ pj ◦ C1(x) ∧ [inf{pj ◦ C2(x2), pj ◦ C2(y2)}]

= inf{pj ◦ C1(x) ∧ pj ◦ C2(x2), pj ◦ C1(x) ∧ pj ◦ C2(y2)}

= inf{pj ◦ (C1 × C2)(xx2), pj ◦ (C1 × C2)(xy2)}, ∀j ∈ m.

a 1
b 3(
.1,
0, 0

, .1
)

a3b3(.4, 0, .4, .4)
a
1 b2 (.1,0,0,.1)a

3b
2(
.4
,0
,.
4,
.4
)

a1b1(.1, 0, 0, .1)

a3 b1 (.4, 0, .4, .4)

a2b1(.3, .6, .2, 0) a2b2(.3, .6, .2, 0)

a4b1
(.2,

0, .3
, .4)

a2b3
(.3, .4

, .2, 0
)

(.1,0,0,.1)1

a4b2(.2, 0, .3, .4)

(.3, .5, .2, 0)1

(.
4,
0,
.4
,.
4)

1

a4b3 (.2, 0, .3, .4)

(.1,0,0,.1)2

(.3, .4, .2, 0)2

(.
4,
0,
.4
,.
4)

2

(.1
, 0,

0, 0
) 1

(.2,0,.2,0)2
(.1
, 0,

0, 0
)1

(.2, 0, .3, .4)1

(.1,
0, 0

, 0)1
(.2, 0, .2, 0)2

(.2, 0, .2, 0)2

(.2, 0, .2, 0)2

(.2, 0, .3, .4)2

(.
2,
0,
.2
,0
) 2

(.
2,
0,
.2
,0
) 2

Fig. 3  Cartesian product of two 4-PFGSs
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Case 2. When y ∈ U2, x1y1 ∈ E1i

Both cases hold for every i ∈ n. This completes the proof.� □

We define cross product of G1
(m) and G2

(m) by an example.

Definition 12  Let G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n) 
be two m-PFGSs. Then the cross product of G1

(m) and G2
(m) is given by

where the mappings C1 ∗ C2 : U1 ∗ U2 → [0, 1]m and D1i ∗ D2i : E1i ∗ E2i → [0, 1]m (for 
i ∈ n) are respectively defined by

and

where j varies from 1 to m.
We explain the concept of cross product of two m-polar fuzzy graph structures with 

an example.

Example 13  Consider the 4-PFGSs G(m) and G1
(m) shown in the Figs. 1 and 2, respectively. 

The cross product of G(m) and G1
(m), given by G(m) ∗ G

1
(m) = (C ∗ C ′,D1 ∗ D

′
1,D2 ∗ D

′
2), is 

as shown in Fig. 4. In the figure, a Di ∗ D
′
i-edge can be identified by the subscript “i” with 

the corresponding degrees of memberships of edge.

We formulate cross product of two m-polar fuzzy graph structures as a proposition.

Proposition 14  Cross product of two m-polar fuzzy graph structures is an m-polar 
fuzzy graph structure.

Proof  Let GS G∗ = (U1 ∗U2,E11 ∗ E21,E12 ∗ E22, . . . ,E1n ∗ E2n) be the cross 
product of GSs G∗

1 = (U1,E11,E12, . . . ,E1n) and G∗
2 = (U2,E21,E22, . . . ,E2n). If 

G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n) are respective 
m-PFGSs of G∗

1 and G∗
2 then (C1 ∗ C2,D11 ∗ D21,D12 ∗ D22, . . . ,D1n ∗ D2n) is an m-PFGS 

of G∗. By the Definition 12 of cross product, C1 ∗ C2 and D1i ∗ D2i are m-polar fuzzy sets 
of U1 ∗U2 and E1i ∗ E2i, respectively, for all i. So remaining task is to prove that D1i ∗ D2i 
is an m-polar fuzzy relation on C1 ∗ C2 for all i. For this, proceed as follows:

pj ◦ (D1i × D2i)((x1y)(y1y))

= pj ◦ C2(y) ∧ pj ◦ D1i(x1y1)

≤ pj ◦ C2(y) ∧ [inf{pj ◦ C1(x1), pj ◦ C1(y1)}]

= inf{pj ◦ C2(y) ∧ pj ◦ C1(x1), pj ◦ C2(y) ∧ pj ◦ C1(y1)}

= inf{pj ◦ C1(x1) ∧ pj ◦ C2(y), pj ◦ C1(y1) ∧ pj ◦ C2(y)}

= inf{pj ◦ (C1 × C2)(x1y), pj ◦ (C1 × C2)(y1y)}, ∀j ∈ m.

G1
(m) ∗ G

2
(m) = (C1 ∗ C2,D11 ∗ D21,D12 ∗ D22, . . . ,D1n ∗ D2n)

pj ◦ (C1 ∗ C2)(x1x2) = pj ◦ C1(x1) ∧ pj ◦ C2(x2), ∀ x1x2 ∈ U1 ∗U2 = U1 ×U2

pj ◦ (D1i ∗ D2i)((x1x2)(y1y2)) = pj ◦ D1i(x1y1) ∧ pj ◦ D2i(x2y2), ∀x1y1 ∈ E1i, x2y2 ∈ E2i,
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If x1y1 ∈ E1i and x2y2 ∈ E2i, then

This holds for every i ∈ n. Hence D1i ∗ D2i is an m-polar fuzzy relation on C1 ∗ C2, for all 
i, which completes the proof. � �

We now define lexicographic product of m-polar fuzzy graph structures.

Definition 15  Let G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n) 
be two m-PFGSs. Then the lexicographic product of G1

(m) and G2
(m) is given by

where the mappings C1 • C2 : U1 •U2 → [0, 1]m and D1i • D2i : E1i • E2i → [0, 1]m (for 
i ∈ n) are respectively defined by

and

where j varies from 1 to m.

We explain the concept of lexicographic product of m-polar fuzzy graph structures by 
the following example.

pj ◦ (D1i ∗ D2i)((x1x2)(y1y2))

= pj ◦ D1i(x1y1) ∧ pj ◦ D2i(x2y2)

≤ [inf{pj ◦ C1(x1), pj ◦ C1(y1)}] ∧ [inf{pj ◦ C2(x2), pj ◦ C2(y2)}]

= inf{pj ◦ C1(x1) ∧ pj ◦ C2(x2), pj ◦ C1(y1) ∧ pj ◦ C2(y2)}

= inf{pj ◦ (C1 ∗ C2)(x1x2), pj ◦ (C1 ∗ C2)(y1y2)}, ∀j ∈ m.

G1
(m) • G

2
(m) = (C1 • C2,D11 • D21,D12 • D22, . . . ,D1n • D2n)

pj ◦ (C1 • C2)(x1x2) = pj ◦ C1(x1) ∧ pj ◦ C2(x2), ∀ x1x2 ∈ U1 •U2 = U1 ×U2

pj ◦ (D1i • D2i)((xx2)(xy2)) = pj ◦ C1(x) ∧ pj ◦ D2i(x2y2), ∀x ∈ U1, x2y2 ∈ E2i,

pj ◦ (D1i • D2i)((x1x2)(y1y2)) = pj ◦ D1i(x1y1) ∧ pj ◦ D2i(x2y2), ∀x1y1 ∈ E1i, x2y2 ∈ E2i,

a1b3(.1, 0, 0, .1)

a3b3(.4, 0, .4, .4)

a1b2(.1, 0, 0, .1)

a1b1(.1, 0, 0, .1)

a3b2(.4, 0, .4, .4)

a3b1(.4, 0, .4, .4)

a4b1(.2, 0, .3, .4)

a2b1(.3, .6, .2, 0)

a4b2(.2, 0, .3, .4)

a2b2(.3, .6, .2, 0)

a4b3(.2, 0, .3, .4)

a2b3(.3, .4, .2, 0)

(.1
, 0
, 0
, 0
) 1

(.1,
0, 0

, 0) 1
(.2, 0, .2, 0)2

(.2, 0, .2, 0)2

(.2
, 0
, .
2,
0)

2

(.2, 0, .2, 0)2

Fig. 4  Cross product of two 4-PFGSs
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Example 16  Consider the 4-PFGSs G(m) and G1
(m) shown in the Figs. 1 and 2, respectively. The 

lexicographic product of G(m) and G1
(m), given by G(m) • G

1
(m) = (C • C ′,D1 • D

′
1,D2 • D

′
2), 

is as shown in Fig. 5. In the figure, a Di • D
′
i-edge can be identified by the subscript “i” with the 

corresponding degrees of memberships of edge.

We formulate Lexicographic product of two m-polar fuzzy graph structures as a 
proposition.

Proposition 17  Lexicographic product of two m-polar fuzzy graph structures is an 
m-polar fuzzy graph structure.

Proof  Let GS G∗ = (U1 •U2,E11 • E21,E12 • E22, . . . ,E1n • E2n) be the lexico-
graphic product of GSs G∗

1 = (U1,E11,E12, . . . ,E1n) and G∗
2 = (U2,E21,E22, . . . ,E2n). 

If G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n) are respective 
m-PFGSs of G∗

1 and G∗
2 then (C1 • C2,D11 • D21,D12 • D22, . . . ,D1n • D2n) is an m-PFGS 

of G∗. By the Definition 15 of lexicographic product, C1 • C2 and D1i • D2i are m-polar 
fuzzy sets of U1 •U2 and E1i • E2i, respectively, for all i. Now, remaining task is to prove 
that D1i • D2i is an m-polar fuzzy relation on C1 • C2 for all i. For this, we discuss two 
cases as follows:

Case 1. When x ∈ U1 and x2y2 ∈ E2i

pj ◦ (D1i • D2i)((xx2)(xy2))

= pj ◦ C1(x) ∧ pj ◦ D2i(x2y2)

≤ pj ◦ C1(x) ∧ [inf{pj ◦ C2(x2), pj ◦ C2(y2)}]

= inf{pj ◦ C1(x) ∧ pj ◦ C2(x2), pj ◦ C1(x) ∧ pj ◦ C2(y2)}

= inf{pj ◦ (C1 • C2)(xx2), pj ◦ (C1 • C2)(xy2)}, ∀j ∈ m.
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Fig. 5  Lexicographic product of two 4-PFGSs



Page 10 of 19Akram et al. SpringerPlus  (2016) 5:1448 

Case 2. When x1y1 ∈ E1i and x2y2 ∈ E2i,

This holds for every i ∈ n. Hence D1i • D2i is an m-polar fuzzy relation on C1 • C2, for all 
i, which completes the proof. � �

We now give definition of strong product of m-polar fuzzy graph structures.

Definition 18  Let G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n) 
be two m-PFGSs. Then the strong product of G1

(m) and G2
(m) is given by

where the mappings C1 ⊠ C2 : U1 ⊠U2 → [0, 1]m and D1i ⊠ D2i : E1i ⊠ E2i → [0, 1]m 
(for i ∈ n) are respectively defined by

and

where j varies from 1 to m.
We illustrate the idea of strong product of m-polar fuzzy graph structures by the fol-

lowing example.

Example 19  Consider the 4-PFGSs G(m) and G1
(m) shown in the Figs. 1 and 2, respectively. 

The strong product of G(m) and G1
(m), given by G(m) ⊠ G1

(m) = (C ⊠ C ′,D1 ⊠ D′
1,D2 ⊠ D′

2), 
is as shown in Fig. 6. In the figure, a Di ⊠ D′

i-edge can be identified by the subscript “i” 
with the corresponding degrees of memberships of edge.

We formulate strong product of G1
(m) and G2

(m) as a proposition.

Proposition 20  Strong product of two m-polar fuzzy graph structures is an m-polar 
fuzzy graph structure.

Proof  Let GS G∗ = (U1 ⊠U2,E11 ⊠ E21,E12 ⊠ E22, . . . ,E1n ⊠ E2n) be the strong 
product of GSs G∗

1 = (U1,E11,E12, . . . ,E1n) and G∗
2 = (U2,E21,E22, . . . ,E2n). Let 

G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n) be respective 
m-PFGSs of G∗

1 and G∗
2 . Then (C1 ⊠ C2,D11 ⊠ D21,D12 ⊠ D22, . . . ,D1n ⊠ D2n) is an 

m-PFGS of G∗. By Definition 18 of strong product, C1 ⊠ C2 is an m-polar fuzzy set of 
U1 ⊠U2 and D1i ⊠ D2i is an m-polar fuzzy set of E1i ⊠ E2i for all i. So the remaining task 

pj ◦ (D1i • D2i)((x1x2)(y1y2))

= pj ◦ D1i(x1y1) ∧ pj ◦ D2i(x2y2)

≤ [inf{pj ◦ C1(x1), pj ◦ C1(y1)}] ∧ [inf{pj ◦ C2(x2), pj ◦ C2(y2)}]

= inf{pj ◦ C1(x1) ∧ pj ◦ C2(x2), pj ◦ C1(y1) ∧ pj ◦ C2(y2)}

= inf{pj ◦ (C1 • C2)(x1x2), pj ◦ (C1 • C2)(y1y2)}, ∀j ∈ m.

G1
(m) ⊠ G2

(m) = (C1 ⊠ C2,D11 ⊠ D21,D12 ⊠ D22, . . . ,D1n ⊠ D2n)

pj ◦ (C1 ⊠ C2)(x1x2) = pj ◦ C1(x1) ∧ pj ◦ C2(x2), ∀ x1x2 ∈ U1 ⊠U2 = U1 ×U2

pj ◦ (D1i ⊠ D2i)((xx2)(xy2)) = pj ◦ C1(x) ∧ pj ◦ D2i(x2y2), ∀x ∈ U1, x2y2 ∈ E2i,

pj ◦ (D1i ⊠ D2i)((x1y)(y1y)) = pj ◦ C2(y) ∧ pj ◦ D1i(x1y1), ∀y ∈ U2, x1y1 ∈ E1i,

pj ◦ (D1i ⊠ D2i)((x1x2)(y1y2)) = pj ◦ D1i(x1y1) ∧ pj ◦ D2i(x2y2), ∀x1y1 ∈ E1i, x2y2 ∈ E2i,
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is to prove that D1i ⊠ D2i is an m-polar fuzzy relation on C1 ⊠ C2 for all i. For this, some 
cases are discussed, as follows:

Case 1. When x ∈ U1 and x2y2 ∈ E2i

Case 2. When y ∈ U2, x1y1 ∈ E1i

Case 3. When x1y1 ∈ E1i and x2y2 ∈ E2i,

All three cases hold for every i ∈ n. This completes the proof. � �

pj ◦ (D1i ⊠ D2i)((xx2)(xy2))

= pj ◦ C1(x) ∧ pj ◦ D2i(x2y2)

≤ pj ◦ C1(x) ∧ [inf{pj ◦ C2(x2), pj ◦ C2(y2)}]

= inf{pj ◦ C1(x) ∧ pj ◦ C2(x2), pj ◦ C1(x) ∧ pj ◦ C2(y2)}

= inf{pj ◦ (C1 ⊠ C2)(xx2), pj ◦ (C1 ⊠ C2)(xy2)}, ∀j ∈ m.

pj ◦ (D1i ⊠ D2i)((x1y)(y1y))

= pj ◦ C2(y) ∧ pj ◦ D1i(x1y1)

≤ pj ◦ C2(y) ∧ [inf{pj ◦ C1(x1), pj ◦ C1(y1)}]

= inf{pj ◦ C2(y) ∧ pj ◦ C1(x1), pj ◦ C2(y) ∧ pj ◦ C1(y1)}

= inf{pj ◦ C1(x1) ∧ pj ◦ C2(y), pj ◦ C1(y1) ∧ pj ◦ C2(y)}

= inf{pj ◦ (C1 ⊠ C2)(x1y), pj ◦ (C1 ⊠ C2)(y1y)}, ∀j ∈ m.

pj ◦ (D1i ⊠ D2i)((x1x2)(y1y2))

= pj ◦ D1i(x1y1) ∧ pj ◦ D2i(x2y2)

≤ [inf{pj ◦ C1(x1), pj ◦ C1(y1)}] ∧ [inf{pj ◦ C2(x2), pj ◦ C2(y2)}]

= inf{pj ◦ C1(x1) ∧ pj ◦ C2(x2), pj ◦ C1(y1) ∧ pj ◦ C2(y2)}

= inf{pj ◦ (C1 ⊠ C2)(x1x2), pj ◦ (C1 ⊠ C2)(y1y2)}, ∀j ∈ m.
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Fig. 6  Strong product of two 4-PFGSs
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We define the notion of composition of two m-polar fuzzy graph structures.

Definition 21  Let G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n) 
be two m-PFGSs. Then composition of G1

(m) and G2
(m) is given by

where the mappings C1 ◦ C2 : U1 ◦U2 → [0, 1]m and D1i ◦ D2i : E1i ◦ E2i → [0, 1]m (for 
i ∈ n) are respectively defined by

and

where j varies from 1 to m.

We discuss the notion of composition of two m-polar fuzzy graph structures by the 
following example.

Example 22  Consider the 4-PFGSs G(m) and G1
(m) shown in the Fig. 1 and The composi-

tion of G(m) and G1
(m), given by G(m) ◦ G

1
(m) = (C ◦ C ′,D1 ◦ D

′
1,D2 ◦ D

′
2), is as shown in 

Fig. 7. In the figure, a Di ◦ D
′
i-edge can be identified by the subscript “i” with the corre-

sponding degrees of memberships of edge.

G1
(m) ◦ G

2
(m) = (C1 ◦ C2,D11 ◦ D21,D12 ◦ D22, . . . ,D1n ◦ D2n)

pj ◦ (C1 ◦ C2)(x1x2) = pj ◦ C1(x1) ∧ pj ◦ C2(x2), ∀ x1x2 ∈ U1 ◦U2 = U1 ×U2

pj ◦ (D1i ◦ D2i)((xx2)(xy2)) = pj ◦ C1(x) ∧ pj ◦ D2i(x2y2), ∀x ∈ U1, x2y2 ∈ E2i,

pj ◦ (D1i ◦ D2i)((x1y)(y1y)) = pj ◦ C2(y) ∧ pj ◦ D1i(x1y1), ∀y ∈ U2, x1y1 ∈ E1i,

pj ◦ (D1i ◦ D2i)((x1x2)(y1y2)) = pj ◦ D1i(x1y1) ∧ pj ◦ C2(x2) ∧ pj ◦ C2(y2),

∀x1y1 ∈ E1i, x2, y2 ∈ U2, such that x2 �= y2,
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Fig. 7  Composition of two 4-PFGSs
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We present composition of two m-polar fuzzy graph structures as a propostion.

Proposition 23  Composition of two m-polar fuzzy graph structures is an m-polar fuzzy 
graph structure.

Proof  Let GS G∗ = (U1 ◦U2,E11 ◦ E21,E12 ◦ E22, . . . ,E1n ◦ E2n) be the compo-
sition of GSs G∗

1 = (U1,E11,E12, . . . ,E1n) and G∗
2 = (U2,E21,E22, . . . ,E2n). Let 

G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n) be respective 
m-PFGSs of G∗

1 and G∗
2 . Then (C1 ◦ C2,D11 ◦ D21,D12 ◦ D22, . . . ,D1n ◦ D2n) is an m-PFGS 

of G∗. By Definition 21 of composition, C1 ◦ C2 is an m-polar fuzzy set of U1 ◦U2 and 
D1i ◦ D2i is an m-polar fuzzy set of E1i ◦ E2i for all i. Therefore the remaining task is to 
show that D1i ◦ D2i is an m-polar fuzzy relation on C1 ◦ C2 for all i. For this, consider the 
following cases:

Case 1. When x ∈ U1 and x2y2 ∈ E2i

Case 2. When y ∈ U2, x1y1 ∈ E1i

Case 3. When x1y1 ∈ E1i and x2, y2 ∈ U2, such that x2 �= y2,

All three cases hold for every i ∈ n. This completes the proof.� □

We now introduce the concept of union of two m-polar fuzzy graph structures.

Definition 24  Let G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n) 
be two m-PFGSs. Then union of G1

(m) and G2
(m) is given by

pj ◦ (D1i ◦ D2i)((xx2)(xy2))

= pj ◦ C1(x) ∧ pj ◦ D2i(x2y2)

≤ pj ◦ C1(x) ∧ [inf{pj ◦ C2(x2), pj ◦ C2(y2)}]

= inf{pj ◦ C1(x) ∧ pj ◦ C2(x2), pj ◦ C1(x) ∧ pj ◦ C2(y2)}

= inf{pj ◦ (C1 ◦ C2)(xx2), pj ◦ (C1 ◦ C2)(xy2)}, ∀j ∈ m.

pj ◦ (D1i ◦ D2i)((x1y)(y1y))

= pj ◦ C2(y) ∧ pj ◦ D1i(x1y1)

≤ pj ◦ C2(y) ∧ [inf{pj ◦ C1(x1), pj ◦ C1(y1)}]

= inf{pj ◦ C2(y) ∧ pj ◦ C1(x1), pj ◦ C2(y) ∧ pj ◦ C1(y1)}

= inf{pj ◦ C1(x1) ∧ pj ◦ C2(y), pj ◦ C1(y1) ∧ pj ◦ C2(y)}

= inf{pj ◦ (C1 ◦ C2)(x1y), pj ◦ (C1 ◦ C2)(y1y)}, ∀j ∈ m.

pj ◦ (D1i ◦ D2i)((x1x2)(y1y2))

= pj ◦ D1i(x1y1) ∧ pj ◦ C2(x2) ∧ pj ◦ C2(y2)

≤ [inf{pj ◦ C1(x1), pj ◦ C1(y1)}] ∧ pj ◦ C2(x2) ∧ pj ◦ C2(y2)

= inf{[pj ◦ C1(x1) ∧ pj ◦ C2(x2) ∧ pj ◦ C2(y2)],

[pj ◦ C1(y1) ∧ pj ◦ C2(x2) ∧ pj ◦ C2(y2)]}

≤ inf{[pj ◦ C1(x1) ∧ pj ◦ C2(x2)], [pj ◦ C1(y1) ∧ pj ◦ C2(y2)]}

= inf{pj ◦ (C1 ◦ C2)(x1x2), pj ◦ (C1 ◦ C2)(y1y2)}, ∀j ∈ m.

G1
(m) ∪ G2

(m) = (C1 ∪ C2,D11 ∪ D21,D12 ∪ D22, . . . ,D1n ∪ D2n)
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where the mappings C1 ∪ C2 : U1 ∪ U2 → [0, 1]m and D1i ∪ D2i : E1i ∪ E2i → [0, 1]m 
(for i ∈ n) are respectively defined by

and

where j varies from 1 to m.

We describe the concept of union of two m-polar fuzzy graph structures with an 
example.

Example 25  Consider the 4-PFGSs G(m) and G1
(m) shown in the Figs. 1 and 2, respec-

tively. The union of G(m) and G1
(m), given by G(m) ∪ G1

(m) = (C ∪ C ′,D1 ∪ D′
1,D2 ∪ D′

2), is 
as shown in Fig. 8. In the figure, a Di ∪ D′

i-edge can be identified by the subscript “i” with 
the corresponding degrees of memberships of edge.

Proposition 26  Union of two m-polar fuzzy graph structures is an m-polar fuzzy graph 
structure.

Proof  Let GS G∗ = (U1 ∪U2,E11 ∪ E21,E12 ∪ E22, . . . ,E1n ∪ E2n) be the union  
of GSs G∗

1 = (U1,E11,E12, . . . ,E1n) and G∗
2 = (U2,E21,E22, . . . ,E2n). Let 

G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n) be respective 
m-PFGSs of G∗

1 and G∗
2 . Then (C1 ∪ C2,D11 ∪ D21,D12 ∪ D22, . . . ,D1n ∪ D2n) is an 

m-PFGS of G∗. From the Definition 24 of union, C1 ∪ C2 is an m-polar fuzzy set of 
U1 ∪ U2 and D1i ∪ D2i is an m-polar fuzzy set of E1i ∪ E2i for all i. So the remaining task 

pj ◦ (C1 ∪ C2)(x) =







pj ◦ C1(x), ∀x ∈ U1\U2

pj ◦ C2(x), ∀x ∈ U2\U1

pj ◦ C1(x) ∨ pj ◦ C2(x), ∀x ∈ U1 ∩ U2

pj ◦ (D1i ∪ D2i)(x1x2) =







pj ◦ D1i(x1x2), ∀x1x2 ∈ E1i\E2i
pj ◦ D2i(x1x2), ∀x1x2 ∈ E2i\E1i
pj ◦ D1i(x1x2) ∨ pj ◦ D2i(x1x2), ∀x1x2 ∈ E1i ∩ E2i
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Fig. 8  Union of two m-PFGSs
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is to show that D1i ∪ D2i is an m-polar fuzzy relation on C1 ∪ C2 for all i. For this, con-
sider following cases:

Case 1. When x1x2 ∈ E1i\E2i, then there are three possibilities (i) x1, x2 ∈ U1 (ii) 
x1 ∈ U1, x2 ∈ U1 ∩U2 (ii) x2 ∈ U1, x1 ∈ U1 ∩U2. So for all j ∈ m

Case 2. When x1x2 ∈ E2i\E1i, then there are three possibilities (i) x1, x2 ∈ U2 (ii) 
x1 ∈ U2, x2 ∈ U1 ∩U2 (ii) x2 ∈ U2, x1 ∈ U1 ∩U2. So for all j ∈ m

Case 3. When x1x2 ∈ E2i ∩ E1i, then x1, x2 ∈ U1 ∩ U2. So

All three cases hold for every i ∈ n. Hence D1i ∪ D2i is an m-polar fuzzy relation on 
C1 ∪ C2 for all i. This completes the proof. � �

Theorem  27  If GS G∗ = (U1 ∪U2,E11 ∪ E21,E12 ∪ E22, . . . ,E1n ∪ E2n) is the union of 
GSs G∗

1 = (U1,E11,E12, . . . ,E1n) and G∗
2 = (U2,E21,E22, . . . ,E2n). Then every m-PFGS 

(C ,D1,D2, . . . ,Dn) of G∗ is the union of an m-PFGS G1
(m) of G∗

1 and an m-PFGS G2
(m) of G∗

2 .

pj ◦ (D1i ∪ D2i)(x1x2)

= pj ◦ D1i(x1x2)

≤ inf{pj ◦ C1(x1), pj ◦ C1(x2)}

= inf{pj ◦ (C1 ∪ C2)(x1), pj ◦ (C1 ∪ C2)(x2)}, if x1, x2 ∈ U1.

≤ inf [pj ◦ C1(x1), max{pj ◦ C1(x2), pj ◦ C2(x2)}]

= inf{pj ◦ (C1 ∪ C2)(x1), pj ◦ (C1 ∪ C2)(x2)}, if x1 ∈ U1, x2 ∈ U1 ∩U2.

≤ inf [max{pj ◦ C1(x1), pj ◦ C2(x1)}, pj ◦ C1(x2)]

= inf{pj ◦ (C1 ∪ C2)(x1), pj ◦ (C1 ∪ C2)(x2)}, if x2 ∈ U1, x1 ∈ U1 ∩U2.

pj ◦ (D1i ∪ D2i)(x1x2)

= pj ◦ D2i(x1x2)

≤ inf{pj ◦ C2(x1), pj ◦ C2(x2)}

= inf{pj ◦ (C1 ∪ C2)(x1), pj ◦ (C1 ∪ C2)(x2)}, if x1, x2 ∈ U2.

≤ inf [pj ◦ C2(x1), max{pj ◦ C1(x2), pj ◦ C2(x2)}]

= inf{pj ◦ (C1 ∪ C2)(x1), pj ◦ (C1 ∪ C2)(x2)}, if x1 ∈ U2, x2 ∈ U1 ∩U2.

≤ inf [max{pj ◦ C1(x1), pj ◦ C2(x1)}, pj ◦ C2(x2)]

= inf{pj ◦ (C1 ∪ C2)(x1), pj ◦ (C1 ∪ C2)(x2)}, if x2 ∈ U2, x1 ∈ U1 ∩U2.

pj ◦ (D1i ∪ D2i)(x1x2)

= [pj ◦ D1i(x1x2)] ∨ [pj ◦ D2i(x1x2)]

≤ [inf{pj ◦ C1(x1), pj ◦ C1(x2)}] ∨ [inf{pj ◦ C2(x1), pj ◦ C2(x2)}]

= inf [inf{pj ◦ C1(x1), pj ◦ C1(x2)} ∨ {pj ◦ C2(x1)},

inf{pj ◦ C1(x1), pj ◦ C1(x2)} ∨ {pj ◦ C2(x2)}]

≤ inf [{pj ◦ C1(x1)} ∨ {pj ◦ C2(x1)}, {pj ◦ C1(x2)} ∨ {pj ◦ C2(x2)}]

= inf [pj ◦ (C1 ∪ C2)(x1), pj ◦ (C1 ∪ C2)(x2)], ∀j ∈ m.
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Proof  Observe that C = C1 ∪ C2, Di = D1i ∪ D2i and C1, C2, D1i and D2i are m-polar 
fuzzy sets on U1, U2, E1i and E2i, respectively, for i ∈ n if for every j, we define C1, C2, D1i 
and D2i as:

For k = 1, 2, Dki is an m-polar fuzzy relation on Ck, since

Therefore, Gk
(m) = (Ck ,Dk1, . . . ,Dkn) is a m-PFGS of G∗

k for k = 1, 2 and m-PFGS 
(C ,D1, . . . ,Dn) is union of m-PFGS G1

(m) = (C1,D11,D12, . . . ,D1n) and m-PFGS 
G2
(m) = (C2,D21,D22, . . . ,D2n). Hence every m-PFGS of G∗ =

⋃

k G
∗
k , is the union of 

some m-PFGSs of G∗
k for k = 1, 2.� □

Finally, we study the concept of join of two m-polar fuzzy graph structures.

Definition 28  Let G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n)  
be two m-PFGSs such that U1 ∩ U2 = ∅ . Let U1i = {x ∈ U1 : All the edges incident with

x are E1i − edges} and U2i = {x ∈ U2 : All the edges incident with x are E2i − edges}. Then 
join of G1

(m) and G2
(m) is given by

where the mappings C1 + C2 : U1 + U2 → [0, 1]m and D1i + D2i : E1i + E2i → [0, 1]m 
(for i ∈ n) are respectively defined by

and

where j varies from 1 to m.

Example 29  Consider the 4-PFGSs G(m) and G1
(m) shown in the Figs. 1 and 2, respec-

tively. The join of G(m) and G1
(m), given by G(m) + G1

(m) = (C + C ′,D1 + D′
1,D2 + D′

2), is 
as shown in Fig. 9. In the figure, a Di + D′

i-edge can be identified by the subscript “i” 
with the corresponding degrees of memberships of edge.

pj ◦ C1(x) = pj ◦ C(x), if u ∈ U1\U2.

pj ◦ C2(x) = pj ◦ C(x), if u ∈ U2\U1.

pj ◦ C1(x) = pj ◦ C2(x) = pj ◦ C(x), if u ∈ U2 ∩ U1.

pj ◦ D1i(x1x2) = pj ◦ Di(x1x2), if (x1x2) ∈ E1i\E2i.

pj ◦ D2i(x1x2) = pj ◦ Di(x1x2), if (x1x2) ∈ E2i\E1i.

pj ◦ D1i(x1x2) = pj ◦ D2i(x1x2) = pj ◦ Di(x1x2), if (x1x2) ∈ E1i ∩ E2i.

pj ◦ Dki(x1x2) = pj ◦ Di(x1x2) ≤ inf{pj ◦ C(x1), pj ◦ C(x2)} = inf{pj ◦ Ck(x1), pj ◦ Ck(x2)}.

G1
(m) + G2

(m) = (C1 + C2,D11 + D21,D12 + D22, . . . ,D1n + D2n)

pj ◦ (C1 + C2)(x) =

{

pj ◦ C1(x), ∀x ∈ U1

pj ◦ C2(x), ∀x ∈ U2

pj ◦ (D1i + D2i)(x1x2) =







pj ◦ D1i(x1x2), ∀x1x2 ∈ E1i
pj ◦ D2i(x1x2), ∀x1x2 ∈ E2i
inf{pj ◦ C1(x1), pj ◦ C2(x2)}, ∀x1 ∈ U1i, x2 ∈ U2i
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Proposition 30  Let GS G∗ = (U1 +U2,E11 + E21,E12 + E22, . . . ,E1n + E2n) be 
the join of GSs G∗

1 = (U1,E11,E12, . . . ,E1n) and G∗
2 = (U2,E21,E22, . . . ,E2n). Let 

G1
(m) = (C1,D11,D12, . . . ,D1n) and G2

(m) = (C2,D21,D22, . . . ,D2n) be respective m-PFGSs 
of G∗

1 and G∗
2 . Then (C1 + C2,D11 + D21,D12 + D22, . . . ,D1n + D2n) is an m-PFGS of G∗.

Proof  From the Definition 28 of Join, C1 + C2 is an m-polar fuzzy set of U1 + U2 and 
D1i + D2i is an m-polar fuzzy set of E1i + E2i for all i. So the remaining task is to show 
that D1i + D2i is an m-polar fuzzy relation on C1 + C2 for all i. For this, consider follow-
ing cases:

Case 1. When x1x2 ∈ E1i, then x1, x2 ∈ U1. So

Case 2. When x1x2 ∈ E2i, then x1, x2 ∈ U2. So

Case 3. When x1 ∈ U1i, x2 ∈ U2i, then x1 ∈ U1, x2 ∈ U2. So

pj ◦ (D1i + D2i)(x1x2)

= pj ◦ D1i(x1x2)

≤ inf{pj ◦ C1(x1), pj ◦ C1(x2)}

= inf{pj ◦ (C1 + C2)(x1), pj ◦ (C1 + C2)(x2)}, ∀j ∈ m.

pj ◦ (D1i + D2i)(x1x2)

= pj ◦ D2i(x1x2)

≤ inf{pj ◦ C2(x1), pj ◦ C2(x2)}

= inf{pj ◦ (C1 + C2)(x1), pj ◦ (C1 + C2)(x2)}, ∀j ∈ m.

pj ◦ (D1i + D2i)(x1x2)

= [pj ◦ C1(x1)] ∧ [pj ◦ C2(x2)]

= [pj ◦ (C1 + C2)(x1)] ∧ [pj ◦ (C1 + C2)(x2)]

= inf [pj ◦ (C1 + C2)(x1), pj ◦ (C1 + C2)(x2)], ∀j ∈ m.
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Fig. 9  Join of two m-PFGSs
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Hence D1i + D2i is an m-polar fuzzy relation on C1 + C2 in all three cases. All cases hold 
for every i ∈ n. This completes the proof. � �

Theorem  31  If GS G∗ = (U1 +U2,E11 + E21,E12 + E22, . . . ,E1n + E2n) is the join 
of GSs G∗

1 = (U1,E11,E12, . . . ,E1n) and G∗
2 = (U2,E21,E22, . . . ,E2n). Then every strong 

m-PFGS (C ,D1,D2, . . . ,Dn) of G∗ is the join of a strong m-PFGS of G∗
1 and a strong 

m-PFGS of G∗
2 .□

Proof  Let (C ,D1,D2, . . . ,Dn) be a strong m-PFGS of G∗. Define C1, C2, D1i and D2i for 
every j,  as follows:

Observe that C1, C2, D1i and D2i are m-polar fuzzy sets on U1, U2, E1i and E2i, respectively, 
for i ∈ n. For k = 1, 2, Dki is an m-polar fuzzy relation on Ck, so Gk

(m) = (Ck ,Dk1, . . . ,Dkn) 
is a strong m-PFGS of G∗

k , since

for all x1x2 ∈ Eki. Moreover, C = C1 + C2 and Di = D1i + D2i , since pj ◦ Di(x1x2) = 
pj ◦ (D1i + D2i)(x1x2) for all x1x2 ∈ E1i ∪ E2i and pj ◦ Di(x1x2) = inf{pj ◦ C(x1),

pj ◦ C(x2)} = inf{pj ◦ C1(x1), pj ◦ C2)(x2)} = pj ◦ (D1i + D2i)(x1x2) for all x1 ∈ U1i, x2 ∈ U2i.  
Therefore m-PFGS (C ,D1, . . . ,Dn) is join of m-PFGS G1

(m) = (C1,D11,D12, . . . ,D1n) and 
m-PFGS G2

(m) = (C2,D21,D22, . . . ,D2n). Hence a strong m-PFGS of G∗ = G∗
1 + G∗

2 is the 
join of a strong m-PFGSs of G∗

1 and a strong m-PFGSs of G∗
2. Which completes the proof. ��

Conclusions
A graph structure is a useful tool in solving the combinatorial problems in different areas 
of computer science and computational intelligence systems. It helps to study various 
relations and the corresponding edges simultaneously. We have introduced the notion 
of m-polar fuzzy graph structure, and presented various methods of their construction. 
We are extending our work to (1) domination in bipolar fuzzy graph structure, (2) bipo-
lar fuzzy soft graph structures, (3) roughness in graph structures, (4) intuitionistic fuzzy 
soft graph structures, and (5) multiple-attribute decision making methods based on 
m-polar fuzzy graph structures.
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