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Background
The Millionaires’ Problem is first proposed by Yao (1982). The problem is described as 
follows: Alice and Bob have their own wealth x and y million, respectively; they want 
to know who is richer without disclosing their wealth. The Millionaires’ Problem is 
abstracted as Greater Than or GT problem.

The GT problem has been developed into secure multiparty computation (SMC). The 
SMC studies the following problems: two or more parties want to jointly compute a 
function f. In these situations, the parties get correct results, but do not disclose their 
own inputs to others. Goldreich et al. (1987) proposed a general theoretical solution to 
all SMC problems using the circuit evaluation and defined the SMC security (Goldre-
ich 2004). However, using the general SMC solution to all problems is impractical for 
efficiency reason. So Golidreich further pointed that we should study specific solutions 
to different problems in practice. In addition, Goldwasser (1997) predicted that SMC, 
which was a powerful tool and had rich theoretical basis but whose real-life usage was 
only beginning, would become an integral part of our computing reality in the future.

Motivated by the prediction, researchers have studied many specific SMC solutions, 
including private sorting (Liu et  al. 2012), private determining the relationship of sets 
(Dachman-Soled et al. 2012), private computional geometry (Shundong et al. 2014), pri-
vate voting (Toft 2011), and private data mining (Bogdanov et al. 2012; Fu et al. 2015b) etc.

At present, SMC protocols are studied in either the semi-honest model or the mali-
cious model, and proposing a SMC protocol in the malicious model is more difficult than 
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in the semi-honest model. However, Goldreich designed an important compiler. Given a 
protocol π that privately computes a function f in the semi-honest model, his compiler 
can produce a new protocol π ′ that privately computes f in the malicious model. In addi-
tion, some SMC problems have not been efficiently solved and some SMC problems are 
not solved even in the semi-honest model (Gu et al. 2015; Xia et al. 2015; Pan et al. 2015; 
Ren et al. 2015). So we propose our protocols in the semi-honest model.

The GT problem is a building block of many SMC protocols (Shim 2012; Zhang et al. 
2011; Banu and Nagaveni 2013; Lin et  al. 2014; Fu et  al. 2015a; Hong and Sun 2016). 
Cryptographic researchers have proposed some GT protocols. Cachin (1999) proposed 
a GT protocol based on the φ-hiding assumption, but this protocol need a trusted third 
party. Ioannidis and Grama (2003) used the oblivious transfer (OT) scheme to construct 
a GT protocol, but the length of inputs was restricted by a secure parameter of the OT 
scheme. Fischlin (2001) used the Goldwasser–Micali encryption scheme to construct a 
two-round GT protocol, and its computation cost is (�dlogN + 6d�+ 3d) modular mul-
tiplications (d is the length of private inputs, � is set to 40–50).

Later, Li et al. (2005) constructed a function F to compare two function values instead 
of plaintexts, and used the OT 1

m scheme to compare any data. Schoenmakers et al. (2004) 
used a threshold homomorphic encryption scheme to solve the GT problem, in which 
inputs was shared among a group of parties. The communication cost was O(n). Blake 
and Kolesnikov (2004) used the Paillier encryption schemem to construct a two-round 
GT protocol whose computation cost was O(nlogN ) modular multiplications. Lin and 
Tzeng (2005) proposed a two-round GT protocol using the ElGamal multiplicatively 
homomorphic encryption scheme and a 0–1 encoding method, and the computation 
cost was O(nlog p) modular multiplications. Grigoriev and Shpilrain (2014) used a public 
encryption scheme to solve the Millionaires’ Problem with two-round communications 
and computation costs is (6logp+ 3d) modular multiplications. Maitra et al. (2015) pro-
posed a two-round protocol to solve the Millionaires’ Problem with computation costs 
of (2dlogp) modular multiplications.

However, some previous GT solutions just compare integers, some of them cannot 
determine x > y, x < y, or x = y in one execution, some of them need a trusted third 
party, and some of them are inefficient.

In this study, we propose new solutions to the GT problem. We introduce a 0–1-vec-
tor encoding method, and use the Goldwasser–Micali (abstracted as GM) encryption 
scheme to compare integers efficiently. Then we present a protocol to privately compare 
rational numbers in one execution by computing the area S△ of a triangle.

Our contribution:

1.	 We introduce a 0–1-vector encoding method which is used to encode a number into 
a vector. Using the encoding method, we can transform the comparison problem 
into a vector-element-selecting problem. This method is more efficient than directly 
comparing two numbers.

2.	 We propose a private comparison protocol for integers based on the XOR homo-
morphism of the GM encryption scheme and the vector encoding method. Its com-
putation cost for a vector of length L is (6L+ 4) modular multiplications and the 
communication cost is two rounds at most.
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3.	 Further, we use a geometric method to privately compare two rational num-
bers. By privately computing the sign of a triangle area S△, we determine whether 
x = y, x < y , or x > y in one execution. The protocol just needs five additions and 
eight multiplications, so its computation cost can be neglected and its communica-
tion cost is one round. The protocol is information-theoretical secure.

The rest of this paper is organized as follows:
“Related work” section introduces related definitions and methods, including the 

ideal SMC model, the semi-honest model, the simulation paradigm, the Goldwasser–
Micali encryption scheme, the 0–1-vector encoding method, and the secure computa-
tion method of the area of a triangle; “New protocols to privately solve a comparison 
problem” section proposes new protocols for comparing integers and rational numbers, 
shows the correctness and security analysis of our protocols, and proves their privacy-
preserving property using the simulation paradigm; “Complexity analysis” section com-
pares the computational and communication complexity of our protocols with previous 
solutions; “Conclusion” section concludes this work.

Related work
Ideal SMC model

The ideal SMC model is the simplest SMC model. It needs a trusted third party (TTP), 
who always tells the truth, never lies, and never discloses any input information. So the 
ideal SMC protocol is the most secure. If such a TTP exists, Alice (holding x ) and Bob 
(holding y ) can privately compute f(x, y) as follows:

1.	 Alice sends x to TTP;
2.	 Bob sends y to TTP;
3.	 TTP computes f (x, y) = (f1(x, y), f2(x, y));
4.	 TTP sends the result to Alice and Bob.

Theoretically, the above protocol can solve any SMC problems, but the TTP cannot be 
easily found in practice. So we need to study SMC protocols without TTP.

Semi‑honest model

We assume that all parties are semi-honest. A semi-honest party truthfully follows a 
protocol and sends correct inputs to others, except that he may record all intermediate 
computation and try to derive other parties’ private inputs from the record. Goldreich 
has proved that, a protocol which can privately compute a functionality f in the semi-
honest model can be complied, by introducing a bit commitment macro, into another 
protocol which can compute the functionality f in the malicious model. The semi-honest 
model is not only an important methodological tool but may also provide a good model 
in many settings. It suffices to prove that a protocol is secure in the semi-honest model.

If the information that a party efficiently computes from the execution of a protocol can 
also be efficiently computed on its input and output, the protocol is private. This intuition 
is formalized by the simulation paradigm. That is, a party’s view in a protocol execution 
can be simulated by its input and output. If so, the parties learn nothing from the proto-
col execution itself, and the protocol is private. Notations and definition are following:
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Notations: Alice holds x, and Bob holds y in a two-party SMC protocol.

1.	 Alice and Bob’s inputs are x, y, respectively;
2.	 They propose a protocol π to compute a function f, where f is a probabilistic polyno-

mial time functionality;
3.	 Alice and Bob obtain message sequences viewπ

1 (x, y) = (x, r1,m1
1, . . . ,m

1
t ) and 

viewπ
2 (x, y) = (x, r2,m2

1, . . . ,m
2
t ), respectively, where r1 or r2 is the result of her or his 

internal coin toss, and m1
i  or m2

i  is her or his received message;
4.	 Alice’s output is outputπ1 (x, y), and Bob’s output is outputπ2 (x, y).

Definition 1  For a function f ,π privately computes f if there exists a probabilistic pol-
ynomial time algorithm, denoted by simulators S1 and S2, such that:

where c≡ denotes computational indistinguishability.
To prove that a multiparty computation protocol is private, we must construct the 

simulators S1 and S2 such that (1) and (2) hold.

Goldwasser–Micali public key cryptosystem

A multiplicative group of Zn is Z∗
n = {x ∈ Zn|gcd(x, n) = 1}. Let a ∈ Z∗

n. a is called a 
quadratic residue modulo n if there exists an x ∈ Z∗

n such that x2 ≡ a(modn). If no such 
x exists, a is called a quadratic non-residue modulo n. For any r ∈ Z∗

n , r
2 mod n is always 

a quadratic residue modulo n. The Goldwasser–Micali (GM) public key cryptosystem 
(Goldwasser and Micali 1984) is the first probabilistic cryptosystem based on the fact 
that if t is quadratic nonresidue, then so is tr2 for any r ∈ Z∗

n, and which consists of fol-
lowing three algorithms:

Key generation: Takes a security parameter k as an input. The GM encryption scheme 
chooses two k-bit primes p and q, sets n = pq, and picks a t ∈ Z1

n (Z1
n is the subset of 

Z∗
n containing the elements with Jacobi symbol) such that t is a quadratic nonresidue 

modulo n. It then publishes (n, t) as public keys, and keeps the private keys (p, q) secret.
Encrypt: Takes a message m ∈ {0, 1} as input, the public key {n, t}, and a random num-

ber r. It encrypts mi as follows:

Decrypt: Based on the private key (p, q), it decrypts E(mi) as follows:

(1)
{

(S1(x, f1(x, y)), f2(x, y))
}

x,y

c
≡
{

(viewπ
1 (x, y), output

π
2 (x, y))

}

x,y

(2)
{

(f1(x, y), S2(y, f2(x, y))
}

x,y

c
≡
{

(outputπ1 (x, y), view
π
2 (x, y))

}

x,y

E(mi) = t
mi r

2
i mod n =

{

tr
2
i
mod n, mi = 1;

r
2
i
mod n, mi = 0

mi =















0,

�

E(mi)

p

�

=

�

E(mi)

q

�

= 1;

1,

�

E(mi)

p

�

=

�

E(mi)

q

�

= −1
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where ( ap ) is the Legendre symbol, which is defined as follows:

Homomorphism:
The GM encryption scheme has homomorphism, that is:

From the above observation, it shows that E(mi) · E(mj) = E(mi ⊕mj) and the plain-
texts mi ∈ {0, 1}, so the GM encryption has XOR homomorphism.

Vector encoding method

In this subsection, we introduce a vector encoding method. The vector encoding method 
can encode a natural number k into a vector v as follows:

The vector of a number k is encoded as follows:

where vi =
{

α, 1 ≤ i < k;
β , i ≥ k

, α �= β.

Privately computing the area of a triangle

Li et al. (2010) have proposed a SMC protocol of computing the area of a triangle, as 
follows.

Suppose that there is a triangle △P0P1P2 with three vertices 
P0(x0, y0),P1(x1, y1),P2(x2, y2), the area of △P0P1P2 is computed without security 
requirements as follows:

where the sign of S△P0P1P2 is positive if and only if (P0 → P1 → P2 → P0) form a coun-
terclockwise cycle, and negative if and only if (P0 → P1 → P2 → P0) form a clockwise 
cycle.

The Formula (4) can be rearranged as follows:

�

a

p

�

=







1, (p ∤ a, < a >p is quadratic residue modulo);

− 1, (p ∤ a, < a >p is quadratic non−residue modulo);

0, (p|a).

E(mi) · E(mj) =







































r2i r
2
j mod n, mi = 0,mj = 0;

tr2i r
2
j mod n, mi = 0,mj = 1;

t2r2i r
2
j mod n, mi = 1,mj = 1;

tr2i r
2
j mod n, mi = 1,mj = 0.

(3)v = {v1, v2, . . . , vn},

(4)S△P0P1P2
=

1

2

∣

∣

∣

∣

∣

∣

x0 y0 1

x1 y1 1

x2 y2 1

∣

∣

∣

∣

∣

∣

=
1

2
[x0(y1 − y2)− x1(y0 − y2)+ x2(y0 − y1)],

(5)S△P0P1P2 =
1

2
[x0(y1 − y2)+ y0(x2 − x1)+ (x1y2 − x2y1)].
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Let a = (y1 − y2), b = (x2 − x1), c = x1y2 − x2y1, so

By Formula (6), we can privately compute the sign of S△P0P1P2.

Protocol 1 Privately computing the sign of S�P0P1P2 .

Inputs: Alice has a vertice P0(x0, y0), and Bob has two vertices P1(x1, y1)

and P2(x2, y2).

Outputs: Sign(S�P0P1P2).

1. Bob selects a positive random number r and computes

a = r(y1 − y2), b = r(x2 − x1), c = r(x1y2 − x2y1)

and sends {a, b, c} to Alice.

2. Alice computes

λ = (ax0 + by0 + c).

3. Alice tells Bob the sign of λ, that is, Sign(S�P0P1P2).

Correctness and security:

1.	 In the protocol, Alice knows r(y1 − y2) = a and r(x2 − x1) = b. If 
r, (y1 − y2), (x2 − x1) are integers and gcd(x2 − x1, y1 − y2) = 1, Alice can compute 
r by r = gcd(a, b). To avoid this situation, r should be selected by the form l.2i5j 
(i, j, l ∈ Z), such as 5.425, 17.8125 or their multiple (Li et al. 2010).

2.	 In the protocol, Alice may get the slope k of a line LP1P2 by computing k = a
b
, but she 

cannot determine which line with the slope k and cannot obtain x1, x2, y1 and y2, 
because there are three equations with five unknown variables. For Bob, the protocol 
is secure.

3.	 By the result, Bob just obtains Sign(S△P0P1P2), and cannot compute x0 and y0. For 
Alice, the protocol is secure.

Theorem 1  Protocol 1 is private.

The conclusion is proved by showing two simulators S1 and S2 such that formulas (1) and 
(2) hold.

Proof  We first construct S1 to simulate Alice’s computation. In view of {a, b, c} and the 
slope k = a

b
, S1 selects two points P′

1(x
′
1, y

′
1),P

′
2(x

′
2, y

′
2) and a random number r′ that sat-

isfy a′ = r′(y′1 − y′2), b
′ = r′(x′2 − x′1), c

′ = r′(x′1y
′
2 − x′2y

′
1). S1 computes

Note that in this protocol

(6)S△P0P1P2 =
1

2
(ax0 + by0 + c)

�
′ = (a′x0 + b′y0 + c′).

viewπ
1 (P0, (P

′
1,P

′
2)) = {P0, a, b, c, Sign(�)}, Sign(�) = Sign(�′),
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f1(P0, (P1,P2)) = f2(P0, (P1,P2)) = outputπ1 (P0, (P1,P2)) = outputπ2 (P0, (P1,P2)).
Let

Since (x1, y1), (x2, y2) and (x′1, y
′
1), (x

′
2, y

′
2) are arbitrary points on a plane, they are compu-

tationally indistinguishable. The results obtained by applying deterministic computation 
to computationally indistinguishable objects are still computationally indistinguishable. 
Therefore, {a′, b′, c′} and {a, b, c} are computationally indistinguishable. Therefore,

Now, we construct S2. In view of P1,P2 and Sign(S△P0P1P2), S2 selects a point P′
0(x

′
0, x

′
1) 

and simulates as follows:
1. S2 computes

2. S2 computes

3. Bob knows the sign of △P′
0P1P2, that is, Sign(S△P′

0P1P2
).

Since P0(x0, y0) and P′
0(x

′
0, y

′
0) are two arbitrary points that satisfy

these two points are computationally indistinguishable. Note that in the protocol

Let

By the method we choose P′
0(x

′
0, y

′
0), and it must hold that Sign(S△P′

0P1P2
) = Sign(S△P0P1P2) , 

therefore viewπ
2 (P0, (P1,P2)) and S2((P1,P2), f2(P0, (P1,P2)) are computationally indistin-

guishable. It follows that

This completes the proof.

New protocols to privately solve a comparison problem
In this work, we propose new protocols to solve the private comparison problem for 
integers and rational numbers. For the integer comparison problem, we use a 0–1-vector 
encoding method and the GM encryption scheme. For the rational numbers comparison 

S1(P0, f1(P0, (P1,P2)) = {P0, a
′, b′, c′, Sign(�′)}.

{(S1(P0, f1(P0, (P1,P2))), f2(P0, (P1,P2)))}
c
≡{(viewπ

1 (P0, (P1,P2)), output
π
2 (P0, (P1,P2)))}.

a = r(y1 − y2), b = r(x2 − x1), c = r(x1y2 − x2y1).

�
′′ =

(

ax′0 + by′0 + c
)

.

Sign
(

S△P0P1P2

)

= Sign
(

S△P′
0P1P2

)

,

viewπ
2 (P0, (P2,P2)) =

{

(P1,P2), a, b, c, Sign
(

S△P0P1P2

)}

.

S2
(

(P1,P2), f2(P0, (P1,P2))
)

=

{

P1,P2, a, b, c, Sign
(

S△P′
0P1P2

)}

.

{(

f1(P0, (P1,P2)), S2(P0, f2(P0, (P1,P2)))
)}

c
≡
{

(outputπ1 (P0, (P1,P2)), view
π
2 (P0, (P1,P2)))

}

.
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problem, we use the method for computing the area of a triangle to determine the rela-
tionship of x and y in one execution privately. We analyze the correctness and secu-
rity of our protocols, and prove their privacy-preserving property using the simulation 
paradigm.

Privately solving a comparison problem for integers

Alice and Bob hold their own numbers x, y, and they do not want to disclose their num-
bers when they execute the protocol. Alice uses the 0–1-vector encoding method to map 
x into a vector X and encrypts X by the GM encryption scheme. Bob selects an element 
from the ciphertexts of the vector X and encrypts the element using the homomorphism 
of the GM encryption scheme. Alice decrypts the ciphertexts and knows x > y, x < y, or 
x = y.

We first present Protocol 2 to determine the relationship P(x, y)  :   x > y or x ≤ y. If 
we need to further determine x < y or x = y, we use Protocol 3 to solve the comparison 
problem.

Protocol 2 Secure computation of determining P (x, y) : x > y or x ≤ y.

Input: Alice holds x, and Bob holds y.

Output: P (x, y).

1. According to the GM encryption scheme, Alice generates the public

keys {n, t} and the private keys {p, q}, and selects random numbers

{r1, r2, · · · , rL}.

2. Using the 0-1-vector encoding method, Alice encodes x into a vector:

X = {m1, · · · ,mi, · · · ,mL},

where mi =







0, 1 ≤ i < x;

1, i ≥ x.

3. Alice encrypts the vector X using the GM encryption scheme as fol-

lows:

E(X) = {E(m1, r1), · · · , E(mi, ri), · · · , E(mL, rL)},

where E(mi, ri) =







tr2i mod n, mi = 1;

r2i mod n, mi = 0.

4. Alice sends E(X) to Bob.

5. According to his plaintext y, Bob selects the y-th element from E(X),

that is, E(my, ry). Using the XOR homomorphism of the GM encryp-

tion scheme, Bob selects a random number rb and computes:

E(my, ry)× E(0, rb) = E(my, ry)× r2b mod n → E′
y.

6. Bob sends E′
y to Alice.

7. Alice decrypts E′
y, as follows:

If (E
′
y

p ) = (E
′
y

q ) = 1, then D(E′
y) = 0, and x > y;

If (E
′
y

p ) = (E
′
y

q ) = −1, then D(E′
y) = 1, and x ≤ y.

8. Alice tells Bob the result P (x, y).
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If the result is x ≤ y, we can use Protocol 3 to determine x < y or x = y.

Protocol 3 Secure computation of comparing x = y or x �= y.

Input: Alice holds x, and Bob holds y.

Output: x �= y or x = y.

1. Alice generates the public keys {n, t} and the private keys {p, q} of the
GM encryption scheme, and selects random numbers {r1, r2, · · · , rL}
(L > max(x, y), n = pq).

2. The step is different to step 2 in Protocol 2. Alice encodes the plain-

text x into a vector:

X = {m1, · · · ,mi, · · · ,mL},

where mi =







0, i �= x;

1, i = x.

3. Alice encrypts the vector X as follows:

E(X) = {E(m1, r1), · · · , E(mi, ri), · · · , E(mL, rL)},

where E(mi, ri) =







tr2i mod n, mi = 1;

r2i mod n, mi = 0.

4. Alice sends E(X) to Bob.

5. According to his plaintext y, Bob selects the y-th element from E(X),

that is, E(my, ry). Using the XOR homomorphism of the GM encryp-

tion scheme, Bob selects a random number rb and computes:

E(my, ry)× E(0, rb) = E(my, ry)× r2b mod n → E′
y.

6. Bob sends E′
y to Alice.

7. Alice decrypts E′
y, as follows:

If (E
′
y

p ) = (E
′
y

q ) = 1, then D(E′
y) = 0, and x �= y;

If (E
′
y

p ) = (E
′
y

q ) = −1, then D(E′
y) = 1, and x = y.

8. Alice tells Bob x = y or not.

Correctness and security:

1.	 In Protocol 2 and Protocol 3, Step 5 is based on the XOR homomorphism of the GM 
encryption scheme, that is, 

 If my = 0,E(my, ry) = r2y mod n, then D(E(my, ry)× r2b mod n) = 0, so x > y 
in Protocol 2 or x �= y in Protocol 3; If my = 1,E(my, ry) = tr2y mod n, then 
D(E(my, ry)× r2b mod n) = 1, so x ≤ y in Protocol 2 or x = y in Protocol 3;

2.	 Because the GM encryption scheme is a probabilistic encryption scheme, the same 
plaintext mi can be encrypted to different ciphertexts E(mi, ri). Therefore, Bob does 
not discover the law of E(mi, ri);

3.	 Alice’s random numbers ri and Bob’s random number rb are private. Bob cannot 
compute E(mi, ri), and Alice cannot compute E(0, rb);

E(my, ry)× E(0, rb) = E(my, ry)× r2b mod n = E(my ⊕ 0);
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4.	 Bob selects the ciphertext E(my, ry), and encrypts E(my, ry), so Alice does not know 
which element Bob selects;

5.	 The prime numbers p and q are private, so Bob cannot decrypt E(X).

Theorem 2  Protocol 2 is private.

Proof  We will prove it by constructing S1 and S2 such that Formula(1) and (2) hold. S1 
works as follows:

1.	 The inputs are {x,P(x, y)}. S1 randomly selects a number y′ such that P(x, y) = P(x, y′) . 
S1 uses (x, y′) to simulate the process. S1 constructs the vector X = {m1,m2, . . . ,mL}.

2.	 By the GM encryption scheme, S1 encrypts X using different random numbers 
ri,E(X) = (E(m1, r1),E(m2, r2), . . . ,E(mL, rL));

3.	 S1 selects a random r′, and computes E(my′ , ry′)× r′2 mod n → E′(y′);
4.	 S1 decrypts D(E′(y′)) −→ P(x, y′).
In the protocol, viewπ

1 (x, y) = {X ,E(X),E′
y,P(x, y)}.

Let

Because P(x, y) = P(x, y′),E′
y

c
≡E′(y′), therefore,

Using the same method, we can construct S2, such that:

This completes the proof.

Theorem 3  Protocol 3 is private.

The proving process is similar to Theorem 2, so we omit the proof.

Privately solving a comparison problem for rational numbers

In practice, most numbers need to be compared are rational numbers. The above pro-
tocols cannot compare rational numbers, so we propose a solution to compare rational 
numbers.

By “Privately computing the area of a triangle” section, we use two rational numbers m 
and n to construct three vertices of a triangle, and privately compute the sign of the area S� 
to determine m = n,m > n, or m < n in one execution.

Alice and Bob agree on selecting a number x0 as their abscissa. Alice constructs a point 
P0(x0,m), and Bob constructs a point P1(x0, n). Bob selects another point P2(x2, y2). 
P0,P1 and P2 form a triangle. They invoke Protocol 1 to compute the sign of S�P0P1P2 , 

{S1(x,P(x, y))} = {X ,E(X),E′(y′),P(x, y′)}.

{(S1(x,P(x, y)),P(x, y))}x,y
c
≡{(viewπ

1 (x, y), output
π
2 (x, y))}x,y.

{(P(x, y), S2(y,P(x, y)))}x,y
c
≡{(outputπ1 (x, y), view

π
2 (x, y))}x,y.
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and judge whether P0 on the top of P1 or not. The result tells them m > n,m = n, or 
m < n, as follows in Fig. 1.

Protocol 4 Privately comparing rational numbers m = n,m < n, or

m > n.

Input: Alice holds m, and Bob holds n.

Output: P (m,n).

1. Alice and Bob agree on selecting a rational number x0 as their ab-

scissa, and they construct two vertices P0(x0,m) and P1(x0, n).

2. Bob selects a rational number x2 satisfying x2 < x0 and a random

number y2. He constructs a vertice P2(x2, y2).

3. Alice holds a points P0(x0,m), and Bob holds two points

P1(x0, n), P2(x2, y2), and P0, P1, P2 can form a triangle �P0P1P2

(Figure 1). They invoke Protocol 1 to obtain the sign of the area

S�P0P1P2 .

4. Bob selects a positive random number r and computes

a = r(n− y2), b = r(x2 − x0), c = r(x0y2 − x2n),

and sends {a, b, c} to Alice.

5. Alice computes λ = (ax0 + bm+ c).

6. Alice tells Bob the sign of λ, that is, Sign(�P0P1P2).

7. Bob knows the result P (m,n) by Sign(�P0P1P2):

If Sign(�P0P1P2) < 0, P0 → P1 → P2 form a clockwise cycle, thus

m > n;

If Sign(�P0P1P2) > 0, P0 → P1 → P2 form a counterclockwise

cycle,m < n;

If Sign(�P0P1P2) = 0, m = n.

8. Bob tells Alice the result.

Fig. 1 
�

P0P1P2
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Correctness and security:

1.	 In the protocol, Alice knows r(n− y2) = a and r(x2 − x0) = b. If r, (n− y2), (x2 − x0) 
are integers and gcd(x2 − x0, n− y2) = 1, Alice can compute r by r = gcd(a, b). But 
in Protocol 4, x0, x2, y2, n, a, b are rational numbers, thus Alice cannot compute r by 
r = gcd(a, b).

2.	 In the protocol, Alice can get {a, b, c}, but there are three equations with four 
unknown variants and Alice cannot obtain {n, r, x2, y2}.

3.	 In step 6, Alice just computes �, and she knows the sign of S�P0P1P2. Thus she knows 
P0 → P1 → P2 is clockwise or counterclockwise, but she does not know whether P2 
is on the left or right of P0, so she cannot know m > n or m < n (Fig. 2). Alice knows 
the sign of S�P0P1P2 is negative, and further knows P0 → P1 → P2 is clockwise. But 
she does not know m > n or m < n.

4.	 By the result, Bob just obtains Sign(△P0P1P2), but cannot compute x0 and m. For 
Alice, the protocol is secure.

5.	 The protocol does not use any public key encryption scheme, so it is information-
theoretical secure.

Theorem 4  Protocol 4 is private.

The conclusion is proved by showing two simulators S1 and S2 such that Formulas (1) 
and (2) hold.

Proof  In view of {a, b, c} and the slope k = a
b
, S1 selects two points P′

1(x0, y
′
1),P

′
2(x

′
2, y

′
2) 

from any line with the slope k (Fig.  3), a random number r′, and computes 
a′ = r′(y′1 − y′2), b

′ = r′(x′2 − x0), c
′ = r′(x0y

′
2 − x′2y

′
1), �

′ = (a′x0 + b′m+ c′).

Note that in the protocol

f1(P0, (P1P2)) = f2(P0, (P1,P2)) = outputπ1 (P0, (P1,P2)) = outputπ2 (P0, (P1,P2)).

viewπ
1 (P0, (P1,P2)) = {P0, a, b, c, �},

Fig. 2  Example (� < 0)
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Let S1(P0, f1(P0, (P1,P2)) = {P0, a
′, b′, c′, �′}. Since (x0, n), (x2, y2) and (x0, y′1), (x

′
2, y

′
2) 

are arbitrary points on the plane, they are computationally indistinguishable. The results 
obtained by applying deterministic computation to computationally indistinguishable 
objects are still computationally indistinguishable. Therefore, {a′, b′, c′} and {a, b, c} are 
computationally indistinguishable.

Now, we construct S2. In view of P1,P2 and Sign(△P0P1P2), S2 selects a point P′
0(x0,m

′) 
(Fig. 4) and simulates as follows:

1. S2 computes

2. S2 computes

3. Bob knows the sign of �′, that is, Sign(△P′
0P1P2).

Since P0(x0,m) and P′
0(x0,m

′) are two arbitrary points that satisfy

the two points are computationally indistinguishable.
Note that in the protocol

{(S1(P0, f1(P0, (P1,P2))), f2(P0, (P1,P2)))}
c
≡{(viewπ

1 (P0, (P1,P2)), output
π
2 (P0, (P1,P2)))}.

a = r(n− y2), b = r(x2 − x0), c = r(x0y2 − x2n).

�
′ = (ax0 + bm′ + c).

Sign(△P0P1P2) = Sign(△P′
0P1P2),

viewπ
2 (P0, (P1,P2)) = {(P1,P2), a, b, c, Sign(△P0P1P2)}.

Fig. 3  Selecting P′1, P
′
2

Fig. 4  Selecting P′0
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Let

By the way, we choose P′
0(x0,m

′), and it must hold that Sign(△P′
0P1P2) = Sign(△P0P1P2) . 

Therefore, viewπ
2 (P0, (P1,P2)) and S2((P1,P2), f2(P0, (P1,P2)) are computationally 

indistinguishable.
It follows that

This completes the proof.

Complexity analysis
In the work, we compare the computational and communication complexity with previ-
ous solutions for secure computation of the comparison problem.

Communication complexity

A protocol’s communication cost is usually measured in round. Yao’s protocol (Yao 
1982) solves the GT problem with two rounds, but cannot determine whether x = y or 
x �= y. Cachin (1999) proposes a GT protocol depending on a trusted third party, and its 
communication cost is three rounds. Fischlin (2001) uses the GM encryption scheme to 
solve x < y or x ≥ y with two-round communication cost. Ioannidis and Grama (2003) 
uses the OT 1

2 scheme to solve the GT problem, and its communication cost is d rounds, 
where d is the length of the private inputs. Blake and Kolesnikov (2004) uses the Pail-
lier encryption scheme to solve x > y, x < y or x = y, and its communication cost is two 
rounds. Lin’s protocol (Lin and Tzeng 2005) needs two-round communications based 
on the Elgamal encryption scheme. Grigoriev and Shpilrain (2014) propose a solution to 
Yao’s Millionaires’ problem based on a public encryption scheme and their communica-
tion cost is two rounds. Maitra et al. (2015) propose a unified approach to Millionaires 
Problem with rational players, and the solution needs two-round communications.

In our Protocol 2, we need one round to determine x > y or x ≤ y. If we further deter-
mine x < y or x = y, we also need one round communication by Protocol 3. Therefore, 
for the integer comparison problem, we need two-round communication cost at most.

In our Protocol 4, we determine x < y, x > y or x = y in one execution, so the commu-
nication cost is one round.

Computational complexity

We use the number of modular multiplication to measure the computation costs of a 
protocol. The computation cost of Yao’s protocol (Yao 1982) is exponential, and it is 
impractical if inputs are very long. Fischlin (2001) uses the GM encryption scheme to 
compare integers with (�dlogN + 6d�+ 3d) modular multiplications (d is the length 
of inputs, � is set to 40–50). Blake and Kolesnikov (2004) uses the Paillier encryption 
scheme to solve the GT problem, the computation cost is 4dlogN  modular multiplica-
tions. Lin and Tzeng (2005) uses (5dlogp+ 4d − 6) modular multiplications (p is the 
modulus in the ElGamal encryption scheme) to determine x > y or x ≤ y. Grigoriev and 
Shpilrain (2014) use a public encryption scheme to solve the Millionaires’ Problem and 

S2((P1,P2), f2(P0, (P1,P2))) = {P1,P2, a, b, c, Sign(△P′
0P1P2)}.

{(f1(P0, (P1,P2)), S2(P0, f2(P0, (P1,P2))))}
c
≡{(outputπ1 (P0, (P1,P2)), view

π
2 (P0, (P1,P2)))}.
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the computation cost is (6logp+ 3d) modular multiplications. Maitra et al. (2015) solve 
the Millionaires’ problem with (2dlogp) modular multiplications.

In Protocol 2 and Protocol 3, we use the GM encryption scheme to encrypt the 
0–1 encoding vector. The computation cost of the GM encryption scheme is three 
modular multiplications. So encrypting the vector needs 3L (L is the length of the 
0–1 encoding vector) modular multiplications and decrypting E′

y needs two modu-
lar multiplications. Therefore, the computation cost of Protocol 2 and Protocol 3 is 
(2× (3L+ 2)) = (6L+ 4 ) modular multiplications at most.

In Protocol 4, we do not use any public key encryption scheme, so we just needs five 
additions and eight multiplications. It is well known that simple operations can even be 
neglected compared with expensive public key encryption or decryption operations. In 
this sense, our new solution is much more efficient than the existing ones.

We compare our protocols with previous solutions in Table 1.
Table 1 shows that our protocols have the following advantages:

1.	 Our protocols can determine whether x > y, x < y or x = y, in one execution;
2.	 Our protocols can compare rational numbers in addition to integers;
3.	 Our protocols are more efficient than most of previous solutions in computational 

complexity.

Conclusion
Solving a comparison problem privately is fundamental to SMC protocols, so the com-
parison problem needs to be computed more efficiently. In this paper, we propose pro-
tocols to compare integers and rational numbers privately. In Protocol 2 and Protocol 3, 
we construct a 0–1-vector encoding method to encode an integer into a vector, and use 
the GM encryption scheme to complete the protocol. In Protocol 4, we use the method 
of computing the area of a triangle to privately compare rational numbers by computing 
the sign of the area of a triangle. In comparison with previous solutions, our protocols 
are more efficient and easy to implement.

The comparison problem is a building block of SMC problems. If we can solve the 
problem efficiently, we will solve sorting problems and voting problems efficiently. Next 
we will solve geometric intersection problems and other SMC problems.

Table 1  Performance comparison

d is the length of inputs, � is set to 40–50 in the Fischlin’s method (Fischlin 2001), p is the modulus in the ElGamal encryption 
scheme (ElGamal 1984), N is the modulo, L is the length of the 0–1 encoding vector in out work

Protocol Third party Result Data type Round Computation

Yao (1982) No >,≤ Integer 2 Exponential

Cachin (1999) Yes >,=,< Integer 3 –

Fischlin (2001) No >,≤ Integer 2 �dlogN + 6d�+ 3d

Ioannidis and Grama (2003) No ≥,< Integer d –

Blake and Kolesnikov (2004) No >,< Integer 2 4dlogN

Lin and Tzeng (2005) No >,≤ Integer 2 5dlogp+ 4d − 6

Grigoriev and Shpilrain (2014) No >,≤ Integer 2 6logp+ 3d

Maitra et al. (2015) No >,≤ Integer 2 2dlogp

Protocols 2, 3 No >,=,< Integer 2 6L+ 4

Protocol 4 No >,=,< Rational number 1 Negligible
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