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Introduction and preliminaries
Fixed point theory takes a large amount of literature, since it provides useful tools to 
solve many problems that have applications in different fields like engineering, econom-
ics, chemistry and game theory etc. However, once the existence of a fixed point of some 
mapping is established, then to find the value of that fixed point is not an easy task that 
is why we use iteration processes for computing them. By time, many iteration processes 
have been developed and it is impossible to cover them all. The well-known Banach con-
traction theorem use Picard iteration process for approximation of fixed point. Some 
of the other well-known iteration processes are Mann (Mann 1953), Ishikawa (Ishikawa 
1974), Agarwal (Agarwal et al. 2007), Noor (Noor 2000), Abbas (Abbas and Nazir 2014), 
SP (Phuengrattana and Suantai 2011), S∗ (Karahan and Ozdemir 2013), CR (Chugh et al. 
2012), Normal-S (Sahu and Petrusel 2011), Picard Mann (Khan 2013), Picard-S (Gursoy 
and Karakaya 2014), Thakur New (Thakur et  al. 2016) and Vatan Two-step (Karakaya 
et al. 2015).

Fastness and stability play important role for an iteration process to be preferred on 
another iteration process. In 1991 , Rhoades mentioned that the Mann iteration pro-
cess for decreasing function converge faster than the Ishikawa iteration process and for 
increasing function the Ishikawa iteration process is better than the Mann iteration pro-
cess. Also the Mann iteration process appears to be independent of the initial guess (see 
also Rhoades 1977). In Agarwal et  al. (2007), the authors claimed that Agarwal itera-
tion process converges at a rate same as that of the Picard iteration process and faster 
than the Mann iteration process for contraction mappings. In Abbas and Nazir (2014), 
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the authors claimed that Abbas iteration process converge faster than Agarwal iteration 
process. In Chugh et al. (2012), the authors claimed that CR iteration process is equiv-
alent to and faster than Picard, Mann, Ishikawa, Agarwal, Noor and SP iteration pro-
cesses for quasi-contractive operators in Banach spaces. Also in Karakaya et al. (2014) 
the authors proved that CR iteration process converge faster than the S∗ iterative process 
for the class of contraction mappings. In Gursoy and Karakaya (2014), authors claimed 
that Picard-S iteration process converge faster than all Picard, Mann, Ishikawa, Noor, 
SP, CR, Agarwal, S∗, Abbas and Normal-S iteration processes for contraction mappings. 
In Thakur et  al. (2016), the authors proved with the help of numerical example that 
Thakur New iteration process converge faster than Picard, Mann, Ishikawa, Agarwal, 
Noor and Abbas iteration processes for the class of Suzuki generalized nonexpansive 
mappings. Similarly, in Karakaya et al. (2015), the authors proved that Vatan Two-step 
iteration process is faster than Picard-S, CR, SP and Picard-Mann iteration processes for 
weak contraction mappings. For fragmentation models and processes see Goufo (2014), 
Goufo and Noutchie (2013). Similarly, for local convergence of Chebyshev–Halley meth-
ods with six and eight order of convergence to approximate a locally unique solution of a 
nonlinear equation see Magrenan and Argyros (2016).

Motivated by above, in this paper, we introduce a new iteration process known as AK 
iteration process and prove analytically that our process is stable. Then we prove that 
AK iteration process converges faster than Vatan Two-step iteration process which is 
faster than all Picard, Mann, Ishikawa, Noor, SP, CR, S, S∗, Abbas, Normal-S and Two-
step Mann iteration processes for contraction mappings. Numerically we compare the 
convergence of the AK iteration process with the three most leading iteration processes 
in the existing literature for contraction mappings. The data dependence result for fixed 
point of contraction mappings by employing AK iteration process is also proved.

We now recall some definitions, propositions and lemmas to be used in the next two 
sections.

A point p is called fixed point of a mapping T if T (p) = p, and F(T) represents the 
set of all fixed points of a mapping T. Let C be a nonempty subset of a Banach space 
X. A mapping T : C → C is called contraction if there exists θ ∈ (0, 1) such that 
∥

∥Tx − Ty
∥

∥ ≤ θ
∥

∥x − y
∥

∥, for all x, y ∈ C .

Definition 1  (Berinde 2007) Let {an}∞n=0 and {bn}∞n=0 are two real convergent sequences 
with limits a and b, respectively. Then we say that {an}∞n=0 converge faster than {bn}∞n=0 if

Definition 2  (Berinde 2007) Let {un}∞n=0 and {vn}∞n=0 be two fixed point iteration 
procedure sequences that converge to the same fixed point p. If �un − p� ≤ an and 
�vn − p� ≤ bn, for all n ≥ 0, where {an}∞n=0 and {bn}∞n=0 are two sequences of positive 
numbers (converging to zero). Then we say that {un}∞n=0 converge faster than {vn}∞n=0 to p 
if {an}∞n=0 converge faster than {bn}∞n=0.

lim
n→∞

�an − a�
∥

∥bn − b
∥

∥

= 0.
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Definition 3  (Harder 1987) Let {tn}∞n=0 be an arbitrary sequence in C. Then, an itera-
tion procedure xn+1 = f (T , xn), converging to fixed point p,   is said to be T-stable or 
stable with respect to T, if for ǫn =

∥

∥tn+1 − f (T , tn)
∥

∥, n = 0, 1, 2, 3, . . . , we have

Definition 4  (Berinde 2007) Let T ,
∼

T : C → C be two operators. We say that ∼T  is an 
approximate operator for T if, for some ε > 0, we have

for all x ∈ C.

Lemma 1  (Weng 1991) Let {ψn}
∞
n=0 and {ϕn}∞n=0 be nonnegative real sequences satisfy-

ing the following inequality:

where φn ∈ (0, 1) for all n ∈ N, 
∑∞

n=0 φn = ∞ and ϕn
φn

→ 0 as n → ∞, then 
limn→∞ ψn = 0.

Lemma 2  (Soltuz and Grosan 2008) Let {ψn}
∞
n=0 be nonnegative real sequence for which 

one assumes there exists n0 ∈ N such that for all n ≥ n0, the following inequality satisfies:

where φn ∈ (0, 1) for all n ∈ N,
∑∞

n=0 φn = ∞ and ϕn ≥ 0 for all n ∈ N, then

AK iteration process and its convergence analysis
Throughout this section we have n ≥ 0, {αn} and {βn} are real sequences in [0, 1], C is any 
subset of Banach space X and T : C → C is any mapping.

 Gursoy and Karakaya (2014) introduced new iteration process called Picard-S itera-
tion process, as follow:

They proved that the Picard-S iteration process can be used to approximate the fixed 
point of contraction mappings. Also, by providing a numerical example, it is shown that 
the Picard-S iteration process converge faster than all Picard, Mann, Ishikawa, Noor, SP, 
CR, S, S∗, Abbas, Normal-S and Two-step Mann iteration process.

lim
n→∞

ǫn = 0 ⇐⇒ lim
n→∞

tn = p.

∥

∥

∥

∥

Tx −
∼

Tx

∥

∥

∥

∥

≤ ε,

ψn+1 ≤ (1− φn)ψn + ϕn,

ψn+1 ≤ (1− φn)ψn + φnϕn,

0 ≤ lim sup
n→∞

ψn ≤ lim supϕn.
n→∞

(1)











u0 ∈ C
wn = (1− βn)un + βnTun
vn = (1− αn)Tun + αnTwn

un+1 = Tvn.
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After this Karakaya et al. (2015) introduced a new two step iteration process, we will 
call it Vatan Two-step iteration process, with the claim that it is even faster than Picard-S 
iteration process, as follow:

Recently Thakur et  al. (2016) used a new iteration process for approximation of fixed 
points, defined by:

With the help of numerical example, they proved that their new iteration process is 
faster than Picard, Mann, Ishikawa, Agarwal, Noor and Abbas iteration processes for 
some class of mappings. we will call it Thakur New iteration process.

Problem  1  Is it possible to develop an iteration process whose rate of convergence is 
even faster than the iteration processes (1), (2) and (3)?

To answer this, we introduce the following new iteration process (4), known as AK 
Iteration Process:

We have to prove that our new iteration process (4) is stable and have a good speed of 
convergence comparatively to other iteration processes.

Theorem  1  Let C be a nonempty closed convex subset of a Banach space X and 
T : C → C be a contraction mapping. Let {xn}∞n=0 be an iterative sequence generated 
by (4) with real sequences {αn}∞n=0 and {βn}∞n=0 in [0,  1] satisfying 

∑∞
n=0 αn = ∞. Then 

{xn}
∞
n=0 converge strongly to a unique fixed point of T.

Proof  The well-known Banach theorem guarantees the existence and uniqueness of 
fixed point p. We will show that xn → p for n → ∞. From (4) we have

(2)







u0 ∈ C
vn = T ((1− βn)un + βnTun)
un+1 = T ((1− αn)vn + αnTvn).

(3)











u0 ∈ C
wn = (1− βn)un + βnTun
vn = T ((1− αn)un + αnwn)

un+1 = Tvn.

(4)











x0 ∈ C
zn = T ((1− βn)xn + βnTxn)
yn = T ((1− αn)zn + αnTzn)
xn+1 = Tyn.

(5)

�zn − p� = �T ((1− βn)xn + βnTxn)− p�

≤ θ�(1− βn)xn + βnTxn − (1− βn + βn)p�

≤ θ((1− βn)�xn − p� + βn�Txn − Tp�)

≤ θ((1− βn)�xn − p� + βnθ�xn − p�)

= θ(1− βn(1− θ))�xn − p�.
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Similarly,

Hence

by using the fact that (1− βn(1− θ)) < 1, for θ ∈ (0, 1) and {βn}∞n=0 in [0, 1].
From (7) we have the following inequalities:

From (8) we can easily derive

where 1− αk(1− θ) ∈ (0, 1) because θ ∈ (0, 1) and αn ∈ [0,  1], for all n ∈ N. Since we 
know that 1− x ≤ e−x for all x ∈ [0, 1] ,  so from (9) we get

Taking the limit of both sides of inequality (10) yields limn→∞ �xn − p� = 0, i.e. xn → p 
for n → ∞, as required.�  �

Theorem  2  Let C be a nonempty closed convex subset of a Banach space X and 
T : C → C be a contraction mapping. Let {xn}∞n=0 be an iterative sequence generated by 
(4) with real sequences {αn}∞n=0 and {βn}∞n=0 in [0, 1] satisfying 

∑∞
n=0 αn = ∞. Then the 

iteration process (4) is T-stable.

Proof  Let {tn}∞n=0 ⊂ X be any arbitrary sequence in C. Let the sequence gener-
ated by (4) is xn+1 = f (T , xn) converging to unique fixed point p (by Theorem  1) and 
ǫn =

∥

∥tn+1 − f (T , tn)
∥

∥. We will prove that limn→∞ ǫn = 0 ⇐⇒ limn→∞ tn = p.

Let limn→∞ ǫn = 0. By using (7) we get

(6)

∥

∥yn − p
∥

∥ = �T ((1− αn)zn + αnTzn)− Tp�

≤ θ�(1− αn)zn + αnTzn − p�

≤ θ [(1− αn)�zn − p� + αn�Tzn − p�]

≤ θ [(1− αn)�zn − p� + αnθ�zn − p�]

≤ θ(1− αn(1− θ))�zn − p�

≤ θ2(1− αn(1− θ))(1− βn(1− θ))�xn − p�.

(7)

�xn+1 − p� =
∥

∥Tyn − p
∥

∥

≤ θ
∥

∥yn − p
∥

∥

≤ θ3(1− αn(1− θ))(1− βn(1− θ))�xn − p�

≤ θ3(1− αn(1− θ))�xn − p�,

(8)



























�xn+1 − p� ≤ θ3(1− αn(1− θ))�xn − p�;

�xn − p� ≤ θ3(1− αn−1(1− θ))�xn−1 − p�;

�xn−1 − p� ≤ θ3(1− αn−2(1− θ))�xn−2 − p�;
:

:

�x1 − p� ≤ θ3(1− α0(1− θ))�x0 − p�.

(9)�xn+1 − p� ≤ �x0 − p�θ3(n+1)
n
∏

k=0

(1− αk(1− θ)),

(10)�xn+1 − p� ≤
�x0 − p�θ3(n+1)

e(1−θ)
∑n

k=0 αk
.
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Define ψn = �tn − p�, φn = αn(1− θ) ∈ (0, 1) and ϕn = ǫn. Since limn→∞ ǫn = 0, which 
implies that ϕn

φn
→ 0 as n → ∞. Thus all conditions of Lemma 1 are fulfilled by above 

inequality. Hence by Lemma 1 we get limn→∞ tn = p.

Conversely let limn→∞ tn = p, we have

This implies that limn→∞ ǫn = 0.

Hence (4) is stable with respect to T. � �

Theorem  3  Let C be a nonempty closed convex subset of a Banach space X and 
T : C → C be a contraction mapping with fixed point p. Let {un}∞n=0 and {xn}∞n=0 be an 
iterative sequences generated by (2) and (4) respectively, with real sequences {αn}∞n=0 and 
{βn}

∞
n=0 in [0, 1] satisfying 

∑∞
n=0 αn = ∞. Then the following are equivalent:

(i)	  the AK iteration process (4) converges to the fixed point p of T;
(ii)	  the Vatan two-step iteration process (2) converges to the fixed point p of T.

Proof  First we prove (i) =⇒ (ii). Let the iteration method (4) converges to the fixed 
point p of T i.e. limn→∞ �xn − p� = 0. Now using (2) and (4) we have

Similarly, using (2) and (4) together with (11) we have

�tn+1 − p� ≤
∥

∥tn+1 − f (T , tn)
∥

∥+
∥

∥f (T , tn)− p
∥

∥

= ǫn +

∥

∥

∥

∥

T (T ((1− αn)T ((1− βn)tn + βnTtn)
+αnT (T ((1− βn)tn + βnTtn))))− p

∥

∥

∥

∥

≤ θ3(1− αn(1− θ))�tn − p� + ǫn.

ǫn =
∥

∥tn+1 − f (T , tn)
∥

∥

≤ �tn+1 − p� +
∥

∥f (T , tn)− p
∥

∥

≤ �tn+1 − p� + θ3(1− αn(1− θ))�tn − p�.

(11)

�zn − vn� = �T ((1− βn)xn + βnTxn)− T ((1− βn)un + βnTun)�

≤ θ{�(1− βn)xn + βnTxn − (1− βn)un − βnTun�}

≤ θ{(1− βn)�xn − un� + βn�Txn − Tun�}

≤ θ{(1− βn)�xn − un� + θβn�xn − un�}

= θ(1− βn(1− θ))�xn − un�.

(12)

�xn+1 − un+1� =
∥

∥Tyn − un+1

∥

∥

≤
∥

∥Tyn − yn
∥

∥+
∥

∥yn − un+1

∥

∥

= �T ((1− αn)zn + αnTzn)− T ((1− αn)vn + αnTvn)�

+
∥

∥Tyn − yn
∥

∥

≤ θ�(1− αn)zn + αnTzn − (1− αn)vn − αnTvn�

+
∥

∥Tyn − yn
∥

∥

≤ θ{(1− αn)�zn − vn� + αn�Tzn − Tvn�} +
∥

∥Tyn − yn
∥

∥

≤ θ{(1− αn)�zn − vn� + θαn�zn − vn�} +
∥

∥Tyn − yn
∥

∥

≤ θ(1− αn(1− θ))�zn − vn� +
∥

∥Tyn − yn
∥

∥

≤ θ2(1− αn(1− θ))(1− βn(1− θ))�xn − un�

+
∥

∥Tyn − yn
∥

∥.
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For {βn}∞n=0 in [0, 1] and θ ∈ (0, 1), we have

By using (13) together with (12) we get

Define ψn = �xn − un�, φn = αn(1− θ) ∈ (0, 1) and ϕn =
∥

∥Tyn − yn
∥

∥.

Since limn→∞ �xn − p� = 0 and Tp = p so

which implies that ϕn
φn

→ 0 as n → ∞. Thus all conditions of Lemma 1 are fulfilled by (14), 
so we get

Using (15) we get �un − p� ≤ �xn − un� + �xn − p� → 0 as n → ∞. Hence 
limn→∞ �un − p� = 0 i.e. the Vatan two-step iteration process (2) converges to the fixed 
point p of T.

Next we will prove (ii) =⇒ (i). Let limn→∞ �un − p� = 0.

By using (2) and (4) we have

Similarly, using (2) and (4) together with (16) we have

(13)(1− βn(1− θ) < 1.

(14)�xn+1 − un+1� ≤ (1− αn(1− θ))�xn − un� +
∥

∥Tyn − yn
∥

∥.

lim
n→∞

∥

∥Tyn − yn
∥

∥ = lim
n→∞

∥

∥Tyn − Tp+ p− yn
∥

∥

≤ (1+ θ) lim
n→∞

∥

∥yn − p
∥

∥

= 0,

(15)lim
n→∞

ψn = lim
n→∞

�xn − un� = 0.

(16)

�vn − zn� = �T ((1− βn)un + βnTun)− T ((1− βn)xn + βnTxn)�

≤ θ{�(1− βn)un + βnTun − (1− βn)xn − βnTxn�}

≤ θ{(1− βn)�un − xn� + βn�Tun − Txn�}

≤ θ{(1− βn)�un − xn� + θβn�un − xn�}

= θ(1− βn(1− θ))�un − xn�.

(17)

�un+1 − xn+1� =
∥

∥T ((1− αn)vn + αnTvn)− Tyn
∥

∥

≤ θ
∥

∥(1− αn)vn + αnTvn − yn
∥

∥

= θ
∥

∥(1− αn)vn + αnTvn − (1− αn + αn)yn
∥

∥

≤ θ(1− αn)
∥

∥vn − yn
∥

∥+ θαn
∥

∥Tvn − yn
∥

∥

≤ θ(1− αn)�vn − Tvn� + θ(1− αn)
∥

∥Tvn − yn
∥

∥

+ θαn
∥

∥Tvn − yn
∥

∥

= θ
∥

∥Tvn − yn
∥

∥+ θ(1− αn)�vn − Tvn�

= θ�Tvn − T ((1− αn)zn + αnTzn)� + θ(1− αn)�vn − Tvn�

≤ θ2{(1− αn)�vn − zn� + αn�vn − Tzn�}

+ θ(1− αn)�vn − Tvn�

≤ θ2{(1− αn)�vn − zn� + αn�vn − Tvn� + αn�Tvn − Tzn�}

+ θ(1− αn)�vn − Tvn�

≤ θ2{(1− αn)�vn − zn� + θαn�vn − zn�}

+ θ2αn�vn − Tvn� + θ(1− αn)�vn − Tvn�

= θ2(1− αn(1− θ))�vn − zn� + θ(1− αn(1− θ))�vn − Tvn�

≤ θ3(1− αn(1− θ))(1− βn(1− θ))�un − xn�

+ θ(1− αn(1− θ))�vn − Tvn�.
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By using (12) together with (17) we get

Define ψn = �un − xn�, φn = αn(1− θ) ∈ (0, 1) and ϕn = (1− αn(1− θ))�vn − Tvn�.

Since limn→∞ �un − p� = 0 and Tp = p, so

From (19) we have ϕn
φn

→ 0 as n → ∞. Thus all conditions of Lemma 1 are fulfilled by 
(18), and so

Using (20) we get �xn − p� ≤ �un − xn� + �un − p� → 0 as n → ∞. Hence 
limn→∞ �xn − p� = 0 i.e. the AK iteration process (4) converges to the fixed point p of 
T. � �

Theorem  4  Let C be a nonempty closed convex subset of a Banach space X and 
T : C → C be a contraction mapping with fixed point p. For given u0 = x0 ∈ C , let 
{un}

∞
n=0 and {xn}∞n=0 be an iterative sequences generated by (2) and (4) respectively, with 

real sequences {αn}∞n=0 and {βn}∞n=0 in [0, 1] such that α ≤ αn < 1, for some α > 0 and for 
all n ∈ N. Then {xn}∞n=0 converge to p faster than {un}∞n=0 does.

Proof  From (9) we have

From iteration process (2), also converging to unique fixed point p (Karakaya et  al. 
2015, Theorem 2) , we have

Repeating this process n times, we get

Since α ≤ αn < 1 for some α > 0 and for all n ∈ N, so (21) implies that

(18)�un+1 − xn+1� ≤ (1− αn(1− θ))�un − xn� + (1− αn(1− θ))�vn − Tvn�.

(19)

lim
n→∞

�Tvn − vn� = lim
n→∞

�Tvn − Tp+ p− vn�

≤ (1+ θ) lim
n→∞

�vn − p�

= 0.

(20)lim
n→∞

ψn = lim
n→∞

�un − xn� = 0.

(21)�xn+1 − p� ≤ �x0 − p�θ3(n+1)
n
∏

k=0

(1− αk(1− θ)).

�un+1 − p� = �T ((1− αn)vn + αnTvn)− p�

≤ θ(1− αn(1− θ))�vn − p�

= θ(1− αn(1− θ))�T ((1− βn)un + βnTun)− p�

≤ θ2(1− αn(1− θ))(1− βn(1− θ))�un − p�

≤ θ2(1− αn(1− θ))�un − p�.

(22)�un+1 − p� ≤ �u0 − p�θ2(n+1)
n
∏

k=0

(1− αk(1− θ)).

(23)

�xn+1 − p� ≤ �x0 − p�θ3(n+1)
n
∏

k=0

(1− α(1− θ))

= �x0 − p�θ3(n+1)(1− α(1− θ))n+1.
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Similarly, (22) together with assumption α ≤ αn < 1, for some α > 0 and for all n ∈ N, 
leads to

Define

and

then

Since limn→∞
�n+1

�n
= limn→∞

θn+2

θn+1 = θ < 1, so by ratio test 
∑∞

n=0�n < ∞. Hence from 
(25) we have,

which implies that {xn}∞n=0 is faster than {un}∞n=0. � �

Following are some numerical examples to support analytical proof of Theorem 4 and 
to illustrate the efficiency of AK iteration process (4).

Example 1  Let T : [0, 1] → [0, 1] defined by T (x) = x
2 , be any mapping. It is easy to see 

that T is a contraction mapping. Hence T has a unique fixed point 0.

In Table 1, iterative values generated by our new AK, Vatan Two-step, Thakur New and 
Picard-S iteration processes are given, where x0 = u0 = 0.9, αn = βn = 1

4 for all n and 
n = 0, 9. Graphic representation is given in Fig. 1, where sequence of each iteration pro-
cess for graph is represented by xn. We can easily see that the new AK iterations are the 
first converging one than the Vatan Two-step, the Thakur New and the Picard-S iterations.

Example 2  Define a mapping T : [0, 4] → [0, 4] by T (x) = (x + 2)
1
3 . Clearly T is a con-

traction mapping. Hence T has a unique fixed point. In Table 2, iterative values gener-
ated by our new AK, Vatan Two-step, Thakur New and Picard-S iteration processes are 
given, where x0 = u0 = 1.99, αn = βn = 1

4 for all n and n = 0, 10.

(24)

�un+1 − p� ≤ �u0 − p�θ2(n+1)
n
∏

k=0

(1− α(1− θ))

= �u0 − p�θ2(n+1)(1− α(1− θ))n+1.

an = �x0 − p�θ3(n+1)(1− α(1− θ))n+1,

bn = �u0 − p�θ2(n+1)(1− α(1− θ))n+1,

(25)

�n =
an

bn

=
�x0 − p�θ3(n+1)(1− α(1− θ))n+1

�u0 − p�θ2(n+1)(1− α(1− θ))n+1

= θn+1.

lim
n→∞

�xn+1 − p�

�un+1 − p�
= lim

n→∞

an

bn
= lim

n→∞
�n = 0,
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We can easily see thatour new AK iterations are the first converging one than the 
Vatan Two-step, the Thakur New and the Picard-S iterations.

Graphic representation is given in Fig. 2, where sequence of each iteration process is 
represented by xn.

Data dependence result
Fixed point theory is concerned with investigating a wide variety of issues such as the 
existence (and uniqueness) of fixed points, the construction of fixed points, etc. One of 
these themes is data dependency of fixed points. Data dependency of fixed points has 
been the subject of research in fixed point theory for some time now, and data depend-
ence research is an important theme in its own right. Some work in this direction are 
Rus and Muresan (1998), Rus et al. (2001, 2003), Berinde (2003), Espínola and Petrusel 
(2005), Markin (1973), Chifu and Petrusel (2007), Olatinwo (2009, 2010), Soltuz (2001, 

Fig. 1  Convergence of AK, Vatan Two-step, Thakur New and Picard-S iterations to the fixed point 0 of map-
ping T (x) = x

2

Table 1  Iterative values of  AK, Vatan Two-step, Thakur New and  Picard-S iteration pro-
cesses for mapping T(x) = x

2
, where αn = βn =

1
4
, for all n

AK Vatan Two-step Thakur New Picard-S

x0 0.9 0.9 0.9 0.9

x1 8.6133× 10
−2 1.7227× 10

−1
2.1797× 10

−1
2.1797× 10

−1

x2 8.2432× 10
−3

3.2973× 10
−2

5.2789× 10
−2

5.2789× 10
−2

x3 7.889× 10
−4

6.3112× 10
−3

1.2785× 10
−2

1.2785× 10
−2

x4 7.55× 10
−5

1.208× 10
−3

3.0963× 10
−3

3.0963× 10
−3

x5 7.2256× 10
−6 2.3122× 10

−4
7.499× 10

−4
7.499× 10

−4

x6 6.9151× 10
−7

4.4257× 10
−5

1.8162× 10
−4

1.8162× 10
−4

x7 6.618× 10
−8

8.471× 10
−6 4.3985× 10

−5
4.3985× 10

−5

x8 6.3336× 10
−9

1.6214× 10
−6 1.0653× 10

−5
1.0653× 10

−5

x9 6.0615× 10
−10 3.1035× 10

−7
2.5799× 10

−6
2.5799× 10

−6

x10 5.801× 10
−11

5.9402× 10
−8 6.2483× 10

−7
6.2483× 10

−7
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2004), Soltuz and Grosan (2008), Chugh and Kumar (2011) and the references therein. 
In this section, we establish the following data dependence result.

Theorem 5  Let ∼T  be an approximate operator of a contraction mapping T. Let {xn}∞n=0 
be an iterative sequence generated by (4) for T and define an iterative sequence {

∼
xn}

∞
n=0 as 

follows

(26)























∼
x0 ∈ C
∼
zn =

∼

T ((1− βn)
∼
xn + βn

∼

T
∼
xn)

∼
yn =

∼

T ((1− αn)
∼
zn + αn

∼

T
∼
zn)

∼
xn+1 =

∼

T
∼
yn,

Fig. 2  Convergence of AK, Vatan Two-step, Thakur New and Picard-S iterations to the fixed point 
1.521379706804568 of mapping T (x) = (x + 2)

1

3

Table 2  Iterative values of  AK, Vatan Two-step, Thakur New and  Picard-S iteration pro-
cesses for αn = βn =

1
4
, for all n and mapping T(x) = (x + 2)

1
3

AK Vatan Two-step Thakur New Picard-S

x0 1.99 1.99 1.99 1.99

x1 1.522210596157901 1.527152378405542 1.530163443560674 1.530160376515624

x2 1.521381239904628 1.521453635507796 1.521551978236029 1.521551916843118

x3 1.521379709633547 1.521380654057891 1.521383088492668 1.521383087287047

x4 1.521379706809788 1.521379718941864 1.521379773188262 1.521379773164595

x5 1.521379706804577 1.521379706960085 1.521379708107703 1.521379708107238

x6 1.521379706804568 1.521379706806560 1.521379706830149 1.521379706830139

x7 1.521379706804568 1.521379706804593 1.521379706805070 1.521379706805069

x8 1.521379706804568 1.521379706804568 1.521379706804577 1.521379706804577

x9 1.521379706804568 1.521379706804568 1.521379706804568 1.521379706804568

x10 1.521379706804568 1.521379706804568 1.521379706804568 1.521379706804568

x11 1.521379706804568 1.521379706804568 1.521379706804568 1.521379706804568
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with real sequences {αn}∞n=0 and {βn}∞n=0 in [0, 1] satisfying (i). 12 ≤ αn, for all n ∈ N, and 
(ii). 

∑∞
n=0 αn = ∞. If Tp = p and 

∼

T
∼
p =

∼
p such that limn→∞

∼
xn =

∼
p, then we have

where ε > 0 is a fixed number.

Proof  It follows from (4) and (26) that

Using (27), we have

∥

∥

∥p−
∼
p
∥

∥

∥ ≤
9ε

1− θ
,

(27)

∥

∥

∥zn −
∼
zn

∥

∥

∥
=

∥

∥

∥

∥

T ((1− βn)xn + βnTxn)−
∼

T ((1− βn)
∼
xn + βn

∼

T
∼
xn)

∥

∥

∥

∥

≤

∥

∥

∥

∥

T ((1− βn)xn + βnTxn)− T ((1− βn)
∼
xn + βn

∼

T
∼
xn)

∥

∥

∥

∥

+

∥

∥

∥

∥

T ((1− βn)
∼
xn + βn

∼

T
∼
xn)−

∼

T ((1− βn)
∼
xn + βn

∼

T
∼
xn)

∥

∥

∥

∥

≤ θ

(

(1− βn)

∥

∥

∥xn −
∼
xn

∥

∥

∥+ βn

∥

∥

∥

∥

Txn −
∼

T
∼
xn

∥

∥

∥

∥

)

+ ε

≤ θ

(

(1− βn)

∥

∥

∥xn −
∼
xn

∥

∥

∥+ βn

(

∥

∥

∥Txn − T
∼
xn

∥

∥

∥+

∥

∥

∥

∥

T
∼
xn −

∼

T
∼
xn

∥

∥

∥

∥

))

+ ε

≤ θ(1− βn(1− θ))

∥

∥

∥xn −
∼
xn

∥

∥

∥+ θβnε + ε.

(28)

�

�

�yn −
∼
yn

�

�

� =

�

�

�

�

T ((1− αn)zn + αnTzn)−
∼

T ((1− αn)
∼
zn + αn

∼

T
∼
zn)

�

�

�

�

≤

�

�

�

�

T ((1− αn)zn + αnTzn)− T ((1− αn)
∼
zn + αn

∼

T
∼
zn)

�

�

�

�

+

�

�

�

�

T ((1− αn)
∼
zn + αn

∼

T
∼
zn)−

∼

T ((1− αn)
∼
zn + αn

∼

T
∼
zn)

�

�

�

�

≤ θ

��

�

�

�

(1− αn)zn + αnTzn − (1− αn)
∼
zn − αn

∼

T
∼
zn

�

�

�

�

�

+ ε

≤ θ

�

(1− αn)

�

�

�zn −
∼
zn

�

�

�+ αn

�

�

�

�

Tzn −
∼

T
∼
zn

�

�

�

�

�

+ ε

≤ θ






(1− αn)

�

�

�
zn −

∼
zn

�

�

�
+ αn







�

�

�Tzn − T
∼
zn

�

�

�

+

�

�

�

�

T
∼
zn −

∼

T
∼
zn

�

�

�

�












+ ε

≤ θ

�

(1− αn)

�

�

�zn −
∼
zn

�

�

�+ αn

�

θ

�

�

�zn −
∼
zn

�

�

�+ ε

��

+ ε

= θ

�

(1− αn(1− θ))

�

�

�zn −
∼
zn

�

�

�+ αnε

�

+ ε

≤ θ

�

(1− αn(1− θ))

�

θ(1− βn(1− θ))

�

�

�xn −
∼
xn

�

�

�

+θβnε + ε

�

+ αnε

�

+ ε

= θ2(1− αn(1− θ))(1− βn(1− θ))

�

�

�xn −
∼
xn

�

�

�+ θ2βnε

− θ2αnβnε + θ3αnβnε + θε − θαnε + θ2αnε + θαnε + ε

= θ2(1− αn(1− θ))(1− βn(1− θ))

�

�

�xn −
∼
xn

�

�

�

+ θ2βnε + θ2αnβnε(θ − 1)+ θε + θ2αnε + ε
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Similarly, using (28), we have

For {αn}∞n=0 and {βn}∞n=0 in [0, 1] and θ ∈ (0, 1), we have

and it follows from assumption (i) that

Using (30) and (31) together with (29), we get

Let ψn =

∥

∥

∥xn −
∼
xn

∥

∥

∥, φn = αn(1− θ), ϕn = 9ε
1−θ

, then from Lemma 2 together with (32), 
we get

Since by Theorem 1 we have limn→∞ xn = p and by assumption we have limn→∞

∼
xn =

∼
p. 

Using these together with (33), we get

as required.�  �

Conclusions
New iteration process (4) namely AK iteration process is introduced for approximating 
fixed points of contraction mappings. Theorem 1 shows that our new iteration process 
is also converging to fixed point like other existing iteration processes for contraction 
mappings. In Theorem 4 we show that our new iteration process is moving faster than 
the leading Vatan two-step iteration process (2), which was developed by Karakaya et al. 
(2015). Examples 1 and 2 are given to verify our claim. Our new iteration process is now 
available for the engineers, computer scientists, physicists as well as mathematicians to 
solve different problems more efficiently.

(29)

∥

∥

∥xn+1 −
∼
xn+1

∥

∥

∥
=

∥

∥

∥

∥

Tyn −
∼

T
∼
yn

∥

∥

∥

∥

≤ θ

∥

∥

∥
yn −

∼
yn

∥

∥

∥
+ ε

≤ θ3(1− αn(1− θ))(1− βn(1− θ))

∥

∥

∥xn −
∼
xn

∥

∥

∥+ θ3βnε

+ θ3αnβnε(θ − 1)+ θ2ε + θ3αnε + θε + ε.

(30)











(1− βn(1− θ) < 1

θ2, θ3 < 1
θ − 1 < 0

θ3βn < 1,

(31)1− αn < αn

(32)

∥

∥

∥xn+1 −
∼
xn+1

∥

∥

∥ ≤ (1− αn(1− θ))

∥

∥

∥xn −
∼
xn

∥

∥

∥+ αnε + 4ε

= (1− αn(1− θ))

∥

∥

∥xn −
∼
xn

∥

∥

∥+ αnε + 4(1− αn + αn)ε

≤ (1− αn(1− θ))

∥

∥

∥xn −
∼
xn

∥

∥

∥+ αn(1− θ)
9ε

1− θ
.

(33)0 ≤ lim sup
n→∞

∥

∥

∥xn −
∼
xn

∥

∥

∥ ≤ lim sup
n→∞

9ε

1− θ
.

∥

∥

∥p−
∼
p
∥

∥

∥ ≤
9ε

1− θ
,
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