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Background
Record values introduced by Chandler (1952) arise in many real-world situations involv-
ing weather, sports, economics, life-tests and stock markets, among others. Let {X1, X2, . . .} 
be a sequence of independent and identically distributed (iid) random variables (RVs) with 
a cumulative distribution function (CDF) and a probability density function (PDF). Lower 
records are values in the sequence lower than all preceding ones, and the observation X1 is 
the first record value. Indices for which lower record values occur are given by record times 
{L(k), k ≥ 1}, where L(k) = min{j|j > L(k − 1), Xj < XL(k−1)}, k > 1, with L(1) = 1. 
Therefore, a sequence of lower record values is denoted by {XL(k), k = 1, 2, . . .} from the 
original sequence {X1, X2, . . .}. However, because record occurrences are rare in practice, 
the maximum likelihood method can entail a substantial bias for inferences based on record 
values. Alternately, a method based on a pivotal quantity can be considered. Some authors 
studied estimation methods based on pivotal quantities when censored samples or record 
values are observed. Wang and Jones (2010) proposed an estimation method based on a 
pivotal quantity if progressively Type-II censored samples are observed from a certain fam-
ily of two-parameter lifetime distributions. Yu et al. (2013) provided new estimation equa-
tions using a pivotal quantity and showed that those equations to be particularly effective 
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for skewed distributions with small sample sizes and censored samples. Wang et al. (2015) 
constructed confidence and predictive intervals by using some pivotal quantities for a fam-
ily of proportional reversed hazard distributions based on lower record values. Seo and 
Kang (2015) provided an estimation equation more efficient than the maximum likelihood 
equation for the half-logistic distribution (HLD) based on progressively Type-II censored 
samples. As another alternative, the Bayesian approach can be effective if sufficient prior 
information can be obtained. Madi and Raqab (2007) assumed that unknown parameters 
of the two-parameter exponentiated exponential distribution (EED) have independently 
distributed gamma priors and predicted the subsequent record values based on observed 
record values. Asgharzadeh et al. (2016) developed estimation methods for obtaining the 
maximum likelihood estimators (MLEs) and the Bayes estimators of the unknown param-
eters in the logistic distribution based on the upper record values, and suggested the 
use of the Bayesian method if there is reliable prior information. However, because their 
approach is based on a subjective prior, it can lead to incorrect estimation results if there 
is no sufficient prior information. In this case, two alternatives can be considered: estima-
tion based on noninformative or objective priors and that, based on a hierarchical prior 
obtained by mixing hyperparameters of a natural conjugate prior. In this regard, Jeffreys 
(1961) and Bernardo (1979) introduced the Jeffreys prior and a reference prior, respectively. 
Xu and Tang (2010) derived a reference prior for unknown parameters of the Birnbaum-
Saunders distribution. Fu et al. (2012) developed an objective Bayesian analysis method to 
estimate unknown parameters of the Pareto distribution based on progressively Type-II 
censored samples. Kang et al. (2014) developed noninformative priors for the generalized 
half-normal distribution when scale and shape parameters are of interest, respectively. Seo 
et al. (2014) provided a hierarchical model of a two-parameter distribution with a bathtub 
shape based on progressively Type-II censoring, which leads to robust Bayes estimators of 
unknown parameters of this distribution. Seo and Kim (2015) developed Bayesian proce-
dures to approximate a posterior distribution of a parameter of interest in models with nui-
sance parameters and examined the sensitivity of the posterior distribution of interest in 
terms of an information measure for the Kullback–Leibler divergence.

This paper proposes more efficient methods for estimating unknown parameters of 
the exponentiated HLD (EHLD) based on lower record values by employing these alter-
natives from Bayesian and non-Bayesian perspectives. In the frequentist approach, the 
proposed estimation methods require no complex computation unlike the maximum 
likelihood method. In the Bayesian approach, a robust estimation method is developed 
by constructing a hierarchical structure of the parameter of interest. In addition, two 
approaches address how the nuisance parameter can be dealt with. The efficiency is 
proved through Monte Carlo simulations and analyses based on real data in “Applica-
tion” section. The CDF and PDF of the EHLD are respectively given by

and
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where θ is the reciprocal of a scale parameter and � is the shape parameter. Recently, 
this distribution has received considerable attention as a generalized distribution of the 
HLD. Seo and Kang (2014) derived the entropy of the another generalized version of the 
HLD for Type-II censored samples observed from the distribution. Seo and Kang (2014) 
provided Bayesian estimation and prediction methods for the EHLD based on record 
values. Seo and Kang (2015) proved that the EHLD can be an alternative to the gamma 
distribution or the EED with two parameters (scale and shape). In addition, they showed 
that the PDF of the EHLD is a decreasing function for � ≤ 1 and a right-skewed uni-
modal function for � > 1. These findings indicate that the EHLD based on record values 
is a skewed distribution with small samples for � > 1. In this case, the maximum likeli-
hood method may not appropriate because it is useful for large samples. Therefore, this 
paper provides estimation methods more efficient than the maximum likelihood method 
in terms of the mean squared error (MSE) and bias as well as the computational cost in 
estimating a parameter of interest in a presence of the nuisance parameter and proposes 
a robust Bayesian estimation method using the hierarchical structure of a prior distribu-
tion. Here the paper focuses on estimating the shape parameter � because the EHLD has 
various shapes depending on its shape parameter and the scale parameter is a nuisance 
parameter.

The rest of this paper is organized as follows: “Frequentist estimation” section pro-
poses estimation methods based on pivotal quantities that require no complex computa-
tion and are more efficient than the maximum likelihood method in terms of the MSE 
and bias if lower record values arise from the EHLD. “Bayesian Estimation” derives a 
reference prior for unknown parameters, and then proposes a robust Bayesian estima-
tion method by constructing a hierarchical structure of the parameter of interest of the 
EHLD based on lower record values. “Application” compares numerical results for the 
MSE and bias and analyzes real data, and “Conclusion” concludes the paper.

Frequentist estimation
This section estimates the parameter of interest � in the presence of a nuisance param-
eter θ. MLEs and corresponding approximate confidence intervals (CIs) are derived, 
and then estimation methods are proposed based on pivotal quantities that not only are 
more convenient to compute but also can provide better results in terms of the MSE and 
bias.

Maximum likelihood estimation

Let XL(1), . . . ,XL(k) be the first k lower record values from the EHLD. Then by the defini-
tion of Arnold et al. (1998), the likelihood function based on these lower record values is 
given by

(1)

L(�, θ) = f (xL(k))

k−1
∏

i=1

f (xL(i))

F(xL(i))

= θk�k
(

1− e−θxL(k)

1+ e−θxL(k)

)� k
∏

i=1

2e−θxL(i)

1− e−2θxL(i)
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The log-likelihood function is given by

From (2), the likelihood equations for � and θ are given respectively by

and

Then the MLE of � can be easily obtained for known θ, by solving the likelihood equa-
tion (3) for � as follows:

where

If both � and θ are unknown, then MLEs θ̂ and �̂ can be obtained simultaneously by solv-
ing Eqs.  (3) and  (4) through the Newton–Raphson method. An asymptotic variance-
covariance matrix of MLEs can be obtained by inverting the Fisher information matrix 
for (�, θ) given by

The negative second derivatives of the log-likelihood function in (5) are given by
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Then, with the marginal density function of XL(i),

and the series expansions (see Jeffrey and Zwillinger 2007)

the Fisher information matrix (5) can be obtained as

where

Therefore, under the suitable regularity conditions (Lehmann and Casella 1998), by the 
asymptotic normality of the MLE, the approximate 100(1− α)% CIs based on the MLEs 
can be constructed as

fXL(i) (x) =
2θ�i
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where zα/2 denotes the upper α/2 point of the standard normal distribution and the vari-
ances Var

(

�̂

)

 and Var
(

θ̂

)

 are the diagonal elements of the asymptotic variance-covar-
iance matrix I−1

(

�̂, θ̂
)

. However these CIs can yield negative lower bounds although 
both � and θ are supported by (0,∞). The next subsection provides estimation methods 
based on pivotal quantities that can address the disadvantage of approximate CIs (7) and 
are much easier to calculate than the maximum likelihood method.

Estimation based on pivotal quantities

Wang et  al. (2015) provided some lemmas to construct exact confidence intervals for 
the family of proportional reversed hazard distributions based on lower record values. 
Based on their results, this subsection develops estimation methods based on pivotal 
quantities.

Let

Then, by Lemma 1 in Wang et al. (2015), iid RVs with the standard exponential distribu-
tion can be obtained as

From the spacing, a pivotal quantity for a gamma distribution with parameters (k, 1) is 
given by

Then, because h1(θ) has a gamma distribution with parameters (k , �), an unbiased esti-
mator of � is given by

which has an inverse gamma distribution with parameters (k , �(k − 1)) and its MSE is 
given by

Note that since the MLE �̂(θ) has an inverse gamma distribution with parameters (k , �k) 
from the fact that h1(θ) has a gamma distribution with parameters (k , �), its bias and 
MSE are given respectively by
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and

In addition, since 2Tk has a χ2 distribution with 2k degrees of freedom, for 0 < α < 1, 
we have

where χ2
α, k is the upper α percentile of a χ2 distribution with k degrees of freedom. 

Therefore, an exact 100(1− α)% CI for � is given by

Note that the unbiased estimator  (9) and the exact 100(1− α)% CI  (10) depend on 
the nuisance parameter θ. Now the method for addressing the nuisance parameter θ is 
discussed.

For the pivotal quantity (8), the pivotal quantities

can be obtained such that they are independent RVs having a gamma distribution with 
parameters (j, 1). Then, since 2Tj are independent RVs having a χ2 distribution with 2j 
degree of freedom, the transforms

are iid RVs with a uniform distribution on (0, 1). Therefore, the pivotal quantity
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can be obtained such that it has a χ2 distribution with 2k − 2 degrees of freedom. Here 
an estimator of θ, θ̂p, can be found by solving the equation W (θ)/(2k − 4) = 1 for θ 
because W (θ)/(2k − 4) converges in probability to 1 as k → ∞. Note that the estimator 
θ̂p is unique because W (θ) is a strictly increasing function of θ (see “Appendix”). Then, by 
substituting the estimator θ̂p for θ in the unbiased estimator (9), the estimator (9) is writ-
ten as

which is no longer an unbiased estimator. In addition, an exact 100(1− α)% CI for � can 
be obtained by using the pivotal quantity W (θ) when θ is unknown. The following theo-
rem provides an exact 100(1− α)% CI for � when θ is unknown.

Theorem 1  Let θ∗ be the unique solution of W (θ) = W , where W has a χ2 distribution 
with 2(k − 1) degree of freedom. Then, an exact 100(1− α)% CI for � based on a general-
ized pivotal quantity W (θ∗) is

where W (θ∗)α is the upper α  percentile of the generalized pivotal quantity 
W (θ∗) = Tk/h1(θ

∗) obtained using (8) and θ∗.

The percentiles of the generalized pivotal quantity W (θ∗) are obtained based on the 
following algorithm: 

Step 1.	� Generate W from a χ2 distribution with 2(k − 1) degree of freedom and solve 
the equation W (θ) = W  for θ to obtain θ∗.

Step 2.	� Generate 2Tk from the χ2 distribution with 2k degree of freedom.
Step 3.	� Compute W (θ∗).
Step 4.	� Repeat N (≥ 10, 000) times.

As mentioned before, the Bayesian approach is a good alternative for small sample 
sizes. The next section provides the Bayesian estimation methods.

Bayesian estimation
Seo and Kang (2014) assumed independently distributed gamma priors to draw infer-
ences for the EHLD based on lower record values. If there is sufficient information on 
the prior, then these subjective priors are appropriate. However, it is not easy to obtain 
such information in practice. Therefore, this section derives a reference prior for (�, θ) 
when � is the parameter of interest. In addition, a robust estimation method is developed 
by constructing a hierarchical model of the subjective marginal prior π(�). The proce-
dure is as follows: a subjective marginal prior for � is supposed to estimate the parameter 
of interest �, and then derive a conditional reference prior for θ for � by considering the 
scenario proposed in Sun and Berger (1998). Then the joint prior for (�, θ) is derived. 
Based on this prior, a robust estimation method is developed.

(11)�̂p

(

θ̂p

)

=
k − 1

h1

(

θ̂p

) ,

(12)
(

W
(

θ∗
)

1−α/2
,W

(

θ∗
)

α/2

)

,
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Noninformative prior

The Jeffrey and reference priors can be derived based on the Fisher information 
matrix (6). By definition of Jeffreys (1961), the Jeffrey prior for (�, θ) is given by

To derive the reference prior for (�, θ) when � is the parameter of interest, the algorithm 
of Beger and Bernardo (1989) is applied as follows.

Let

and by choosing a sequence of compact sets �i = (d1i, d2i)× (d3i, d4i) for (�, θ) such 
that d1i, d3i → 0, d2i, d4i → ∞ as i → ∞, it follows that

and

where 1� denotes the indicator function on �. In addition, the marginal reference prior 
for � is given by

where |I| denotes the determinant of matrix I. Then the reference prior is obtained as

where �0 is any fixed point.
Note that because the Jeffreys prior (13) and the reference prior (14) have constraints 

on the parameter � to obtain positive square roots, these noninformative priors are inef-
fective in objective Bayesian analysis. Therefore, the next subsection develops a robust 
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Ki(�0)πi(�0)

]

π(θ |�)
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θ
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2

Q1(�)
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estimation method by constructing a hierarchical structure of the parameter of interest 
�.

Robust estimation

Suppose that the marginal prior is a gamma prior with the PDF

which is a conjugate prior when the nuisance parameter θ is known. In addition, based 
on Theorem 2 of Sun and Berger (1998), a conditional reference prior π(θ |�) is given by

Then the joint prior density function for (�, θ) is given by

From the likelihood function (1) and the joint prior density function (16), the joint pos-
terior density function for (�, θ) is given by

The marginal posterior density function for θ is obtained by integrating the joint poste-
rior density function (17) as

Here the nuisance parameter θ can be simply estimated by maximizing the marginal 
posterior density function  (18), which is denoted by θ̂MAP. Then because the marginal 
posterior density function for � is given by

where π(�|α,β , θ , x) is the conditional posterior density function for �, with θ substituted 
by θ̂MAP in π(�|α,β , θ , x), the marginal posterior density function (19) can be approxi-
mated as

(15)π(�|α,β) =
βα

Ŵ(α)
�
α−1e−β�, α,β > 0,
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θ
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θ
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i=1

e−θxL(i)

1− e−2θxL(i)

]

θk−1
�
k+α−1e−�(β+h1(θ)).

(18)

π(θ |α,β , x) =

∫

�

π(�, θ |α,β , x)d�

∝
θk−1

[β + h1(θ)]
k+α

k
∏

i=1

e−θxL(i)

1− e−2θxL(i)
.

(19)π(�|α,β , x) =

∫

θ

π(�|α,β , θ , x)π(θ |α,β , x)dθ ,
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which is the PDF of the gamma distribution with parameters 
(

k + α,β + h1

(

θ̂MAP

))

.
Note that if α → 0 and β → 0, then the posterior mean �̂B(θ) is the same as the MLE 

�̂(θ) and the posterior mode �̂MAP(θ) is the same as the unbiased estimator �̂p(θ) when 
the nuisance parameter θ is known. However since the marginal distributions for � and 
θ depend on hyperparameters α and β, if there is no sufficient information on the prior, 
then values of the hyperparameters cannot be determined. Now, a method for address-
ing these hyperparameters for robust estimation results is developed.

Let π(α,β) be a joint prior for the hyperparameters α and β. Then

Based on Han (1997), values of α and β should be determined such that the marginal 
prior π(�|α,β) is a decreasing function of �. For 0 < α ≤ 1 and β > 0, the condition is 
satisfied. However, β is restricted to the support (0, c) because prior distributions with 
very thin tails may sensitive. In addition, only the case of α = 1 is considered for simplic-
ity. Then the marginal prior π(�|α,β) can be written as

For robust inferences, assign a uniform distribution on (0, c) as a prior distribution of β. 
Then the hierarchical prior is given by

Therefore, the joint posterior density function for (�, θ) under the hierarchical prior (21) 
is given by

The marginal posterior density function for θ is obtained by integrating the joint poste-
rior density function (22) as

π(�|α,β , x) ≈

[

β + h1

(

θ̂MAP

)]k+α

Ŵ(k + α)
�
k+α−1e

−�

[

β+h1

(

θ̂MAP

)]

,

(20)π(�,α,β) = π(�|α,β)π(α,β).

π(�|β) = βe−β�, 0 < β < c.

(21)

π(�, θ) = π(θ |�)

∫ c

0
π(�|β)π(β)dβ

=
1

cθ

∫ c

0
βe−β�dβ

=
1

cθ�2

[

1− (1+ c�)e−c�
]

.

(22)

π(�, θ |x) =
L(�, θ)π(�, θ)

∫

θ

∫

�
L(�, θ)π(�, θ)d�dθ

∝

[

k
∏

i=1

e−θxL(i)

1− e−2θxL(i)

]

θk−1
�
k−2

[

1− (1+ c�)e−c�
]

e−�h1(θ).

(23)

π(θ |x) =

∫

�

π(�, θ |x)d�

∝
θk−1

h2(θ)

k
∏

i=1

e−θxL(i)

1− e−2θxL(i)
,



Page 12 of 18Seo and Kang ﻿SpringerPlus  (2016) 5:1433 

where

Here the nuisance parameter θ can be estimated by maximizing the marginal posterior 
density function (23), and it is denoted by θ̂HMAP. The marginal posterior density func-
tion for � is provided in the following theorem.

Theorem 2  The marginal posterior density function for the parameter of interest, �, is 
approximated as

Proof  The marginal posterior density function for � is given by

where π(�|θ , x) is the conditional posterior density function for � for θ. With θ substi-
tuted by θ̂HMAP in π(�|θ , x), the marginal posterior density function (25) can be approxi-
mated as π

(

�|θ̂HMAP , x
)

, and this completes the proof. � �

Corollary 1  From the marginal posterior density function (24), the corresponding pos-
terior mean is

where

Therefore if c → ∞, then the posterior mean �̂HB(θ) is the same as the unbiased estimator 
�̂p(θ) when the nuisance parameter θ is known.

h2(θ) =
1

[h1(θ)]
k−1

−
ck + h1(θ)

[c + h1(θ)]
k
.

(24)π(�|x) ≈
�
k−2

[

1− (1+ c�)e−c�
]

e
−�h1

(

θ̂HMAP

)

Ŵ(k − 1)h2

(

θ̂HMAP

) .

(25)
π(�|x) =

∫

θ

π(�|θ , x)π(θ |x)dθ ,

�̂HB

(

θ̂MAP

)

=

∫

�

π(�|x)d�

=
(k − 1)h3

(

θ̂HMAP

)

h2

(

θ̂HMAP

) ,

h3

(

θ̂HMAP

)

=
1

[

h1

(

θ̂HMAP

)]k
−

c(k + 1)+ h1

(

θ̂HMAP

)

[

c + h1

(

θ̂HMAP

)]k+1
.
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Application
This section assesses the proposed methods and verifies them using real data.

A simulation study

For a simulation study, the proposed estimators are compared in terms of their MSEs 
and biases over 10,000 replications. Among the estimators φ̂i(i = 1, 2) of the unknown 
parameter φ, if the MSE of φ̂1 is smaller the that of φ̂2 for any value of φ, then φ̂1 is prefer-
able and can be said to be more efficient than the other. For the bias, the same argument 
is made. The Bayes estimator �̂B

(

θ̂MAP

)

 is computed based on a vague prior with the 
hyperparameters α = β = 0.01. To examine the robustness of the hierarchical prior (21), 
the Bayes estimator �̂HB

(

θ̂HMAP

)

 is computed for different c = 5, 100, 500. Lower record 
values are generated from the standard EHLD with � = 2(2)8. In addition, coverage 
probabilities (CPs) of CIs based on the MLE �̂

(

θ̂

)

 and the generalized pivotal quantity 
W (θ∗) are reported at the 0.95 confidence level based on 10,000 simulations. These val-
ues are given in Table 1. Because the parameter of interest is �, no results for the nui-
sance parameter θ are reported here.

Table  1 shows that �̂HB
(

θ̂HMAP

)

 is generally more efficient than other estimators in 
terms of the MSE and bias. In addition, it is quite robust to the choice c. CPs of CIs 
based on the MLE exceed corresponding nominal levels, whereas those of CIs based on 
the generalized pivotal quantity are well matched to their corresponding nominal levels.

Real data

This subsection analyzes real data considered in Seo and Kang (2014), which represent 
the amount of annual rainfall (in inches) recorded at the Los Angeles Civic Center from 
1877 to 2012. From the data, 10 lower record values are observed as

Seo and Kang (2014) showed that the EHLD provides a good fit to both whole data 
and observed lower record values. The record values are used to obtain estimates dis-
cussed in previous sections. For Bayesian inferences, hyperparameters α = β = 0.01 are 
set because no information on the prior is given. For the proposed hierarchical model, 
consider different c = 5, 100, 500. Estimates of the nuisance parameter θ are reported in 
Table 2, and estimates of the parameter of interest �, and corresponding 95% intervals 
are reported in Table 3. Figure 1 plots the likelihood function of unknown parameters 
(�, θ) and Fig. 2 plots the marginal posterior density functions for � derived in “Frequen-
tist estimation” section.

Tables 2 and 3 show that the Bayes estimates under the hierarchical prior (21) have the 
same values for different values of c. The credible intervals have shorter lengths than CIs. 
In addition, it is observed that the MLEs �̂ and θ̂ are exist and unique from Fig. 1. Fig-
ure 2 shows that the marginal posterior density function has the same shape for different 
values of c. These results indicate that the Bayesian approach based on the hierarchical 
prior (21) produces robust results and is superior to non-Bayesian approach in terms of 
the interval length.

21.26, 11.35, 10.40, 9.21, 6.73, 5.59, 5.58, 4.85, 4.42, 3.21.
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Table 1  MSEs(biases) and 95% CIs for �

� k MSE(bias) c MSE(bias) CI based on

�̂ �̂p

(

θ̂p

)

�̂B

(

θ̂MAP

)

�̂HB

(

θ̂HMAP

)

�̂ W(θ∗)

2 10 0.357 (0.239) 0.175 (0.005) 0.260 (0.115) 5 0.170 (−0.003) 0.977 0.954

100 0.173 (−0.004)

500 0.173 (−0.004)

12 0.230 (0.180) 0.135 (0.003) 0.179 (0.086) 5 0.132 (−0.002) 0.972 0.951

100 0.135 (−0.002)

500 0.135 (−0.002)

14 0.151 (0.139) 0.100 (−0.003) 0.123 (0.065) 5 0.099 (−0.002) 0.971 0.949

100 0.100 (−0.002)

500 0.100 (−0.002)

16 0.121 (0.119) 0.085 (−0.003) 0.101 (0.056) 5 0.084 (−0.001) 0.970 0.950

100 0.085 (−0.001)

500 0.085 (−0.001)

4 10 0.771 (0.330) 0.270 (0.020) 0.427 (0.178) 5 0.228 (−0.004) 0.972 0.954

100 0.229 (−0.005)

500 0.229 (−0.005)

12 0.406 (0.230) 0.189 (0.012) 0.266 (0.126) 5 0.172 (−0.005) 0.968 0.951

100 0.172 (−0.005)

500 0.172 (−0.005)

14 0.208 (0.167) 0.120 (0.001) 0.157 (0.089) 5 0.115 (−0.003) 0.968 0.950

100 0.115 (−0.003)

500 0.115 (−0.003)

16 0.151 (0.136) 0.096 (0.000) 0.119 (0.072) 5 0.094 (−0.002) 0.966 0.949

100 0.094 (−0.002)

500 0.094 (−0.002)

6 10 1.923 (0.454) 0.468 (0.046) 0.624 (0.227) 5 0.294 (0.004) 0.975 0.954

100 0.294 (0.004)

500 0.294 (0.004)

12 0.783 (0.298) 0.289 (0.027) 0.383 (0.159) 5 0.224 (0.002) 0.968 0.951

100 0.224 (0.002)

500 0.224 (0.002)

14 0.306 (0.204) 0.153 (0.008) 0.208 (0.110) 5 0.141 (−0.001) 0.967 0.950

100 0.141 (−0.001)

500 0.141 (−0.001)

16 0.195 (0.159) 0.113 (0.003) 0.146 (0.086) 5 0.108 (−0.001) 0.966 0.950

100 0.108 (−0.001)

500 0.108 (−0.001)

8 10 5.376 (0.604) 0.871 (0.079) 0.769 (0.264) 5 0.355 (0.009) 0.975 0.952

100 0.355 (0.009)

500 0.355 (0.009)

12 1.522 (0.377) 0.452 (0.047) 0.488 (0.188) 5 0.279 (0.006) 0.967 0.951

100 0.279 (0.006)

500 0.279 (0.006)

14 0.458 (0.247) 0.202 (0.018) 0.268 (0.130) 5 0.171 (−0.003) 0.964 0.950

100 0.171 (−0.003)

500 0.171 (−0.003)

16 0.254 (0.186) 0.134 (0.009) 0.176 (0.099) 5 0.124 (−0.003) 0.962 0.950

100 0.124 (−0.003)

500 0.124 (−0.003)



Page 15 of 18Seo and Kang ﻿SpringerPlus  (2016) 5:1433 

Conclusion
This paper proposes more efficient methods for estimating shape and scale parameters 
of the EHLD based on record values from Bayesian and non-Bayesian perspectives. The 
results verify that the method based on the pivotal quantity is superior to the maximum 
likelihood method in terms of the MSE, bias, and CP of the CI based on Monte Carlo 
simulations and that it is more computationally convenient. In addition, it is noted that 
the Bayes estimator of � under the hierarchical prior (21) is a generalized version of the 
unbiased estimator of � when the nuisance parameter θ is known. Through Monte Carlo 
simulations and real data analysis, it was verified that not only the Bayesian estimation 
under the hierarchical prior (21) are more efficient than the estimation based on the piv-
otal quantity in terms of the MSE and bias, but estimation results under the hierarchical 
prior (21) are robust to c. Therefore, the proposed robust Bayesian estimation method 
should be used if there is no sufficient prior information.

Table 2  Proposed estimates of θ

θ̂ θ̂p θ̂MAP θ̂HMAP

c = 5 c = 100 c = 500

0.184 0.138 0.156 0.137 0.137 0.137

Table 3  Proposed estimates of �

�̂ �̂p

(

θ̂p

)

�̂B

(

θ̂MAP

)

�̂HB

(

θ̂HMAP

)

c = 5 c = 100 c = 500

Estimates 7.996 5.897 7.051 5.891 5.890 5.890

Intervals (1.433, 14.560) (2.739, 15.661) (3.055, 11.530) (2.428, 9.889) (2.428, 9.889) (2.428, 9.889)

Lengths 13.127 12.922 8.475 7.461 7.461 7.461

Fig. 1  Likelihood function of � and θ



Page 16 of 18Seo and Kang ﻿SpringerPlus  (2016) 5:1433 

Authors’ contributions
Both authors contributed in process of manuscript writing. JS developed the theoretical and methodology, and wrote 
the article. SK worked on the literature review, collected the data sets and analyzed the data. Both authors read and 
approved the final manuscript.

Author details
1 Department of Statistics, Daejeon University, 62, Daehak‑ro, Dong‑gu, Korea. 2 Department of Statistics, Yeungnam 
University, 280, Daehak‑ro, Gyeongsan, Korea. 

Acknowlegements
This work was supported by the 2015 Yeungnam University Research Grant. The authors are very grateful to the editors 
and the reviewers for their helpful comments.

Competing interests
The authors declare that they have no competing interests

a

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

b

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

c=5
c=500

Fig. 2  a Marginal posterior density function π(�|α,β , x) and b Marginal posterior density function π(�|x)



Page 17 of 18Seo and Kang ﻿SpringerPlus  (2016) 5:1433 

Appendix
This appendix shows that the proposed estimator θ̂p is unique.

Let

which is the same as the CDF of the HLD with the parameter θ. Then the pivotal quan-
tity W (θ) can be written as

and by differentiating it for θ, the following derivative is obtained:

where

To show that the term gj(θ)/
(

Gj(θ) logGj(θ)
)

 is decreasing in xL(j), decompose it as

In the right side of  (27), it can be easily shown that the derivative of the first term is 
negative and the derivative of the second term is given by

Define ϕ
(

xL(j)
)

= 1− e−θxL(j) − θxL(j). Note that ϕ
(

xL(j)
)

 has supremum zero and it is a 
strictly decreasing function of xL(j) because

That is, the derivative (28) is negative. Then, because (27) is a strictly decreasing function 
of xL(j), the function (26) is positive, and the pivotal quantity W (θ) is a strictly increasing 
function of θ. Therefore the equation W (θ)/(2k − 4) = 1 has a unique solution.

Gj(θ) =

(

1− e−θxL(j)

1+ e−θxL(j)

)

, j = 1, . . . , k ,

W (θ) = 2

k−1
∑

j=1

[

log
(

− logGk(θ)
)

− log
(

− logGj(θ)
)]

(26)
∂

∂θ
W (θ) = 2

k−1
∑

j=1

(

gk(θ)

Gk(θ) logGk(θ)
−

gj(θ)

Gj(θ) logGj(θ)

)

,

gj(θ) =
∂

∂θ
Gj(θ)

=
2xL(k)e

−θxL(j)

[

1+ e−θxL(j)
]2
, j = 1, . . . , k .

(27)
gj(θ)

Gj(θ) logGj(θ)
=

1
(

1+ e−θxL(j)
)

logGj(θ)

xL(j)e
−θxL(j)

1− e−θxL(j)
.

(28)
∂

∂xL(j)

xL(j)e
−θxL(j)

1− e−θxL(j)
=

e−θxL(j)
(

1− e−θxL(j) − θxL(j)
)

(

1− e−θxL(j)
)2

.

∂

∂xL(j)
ϕ
(

xL(j)
)

= θ
(

e−θxL(j) − 1
)

< 0.
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