
Improving GPU‑accelerated adaptive
IDW interpolation algorithm using fast kNN
search
Gang Mei1,2,3  , Nengxiong Xu1,2*  and Liangliang Xu2

Introduction
Spatial interpolation is a fundamental tool in Geographic Information System (GIS).
The most frequently used spatial interpolation algorithms include the Inverse Distance
Weighting (IDW) (Shepard 1968), Kriging (Krige 1951), Discrete Smoothing Inter-
polation (DSI) (Mallet 1989, 1992), nearest neighbors, etc; see a comparative survey
investigated by Falivene et al. (2010). When applying those interpolation algorithms
for large-scale datasets, the computational cost is in general too high (Huang and Yang
2011). A common and effective solution to the above problem is to perform the interpo-
lating in parallel. Currently, a number of research efforts have been conducted to paral-
lelize the spatial interpolation algorithms on various parallel computing platforms (Shi
and Ye 2013).

For example, in order to speed up the Kriging interpolation method, Pesquer et al.
(2011) designed an effective solution to parallelizing the ordinary Kriging by exploiting

Abstract 

This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW)
interpolation algorithm on modern Graphics Processing Unit (GPU). The presented
algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by
adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several near-
est neighboring data points for each interpolated point to adaptively determine the
power parameter; and then the desired prediction value of the interpolated point
is obtained by weighted interpolating using the power parameter. In this work, we
develop a fast kNN search approach based on the space-partitioning data structure,
even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved
algorithm is composed of the stages of kNN search and weighted interpolating. To
evaluate the performance of the improved algorithm, we perform five groups of
experimental tests. The experimental results indicate: (1) the improved algorithm
can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the
improved algorithm is at least two times faster than our previous GPU-accelerated
AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the
computational efficiency of the entire GPU-accelerated AIDW algorithm.

Keywords:  Spatial interpolation, Inverse Distance Weighting (IDW), k-nearest
neighbors (kNN), Graphics Processing Unit (GPU)

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Mei et al. SpringerPlus (2016) 5:1389
DOI 10.1186/s40064-016-3035-2

*Correspondence:
xunengxiong@cugb.edu.cn
2 School of Engineering
and Technolgy, China
University of Geosciences,
No.29 Xueyuan Road,
Beijing 100083, China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-0026-5423
http://orcid.org/0000-0003-2576-1546
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3035-2&domain=pdf

Page 2 of 22Mei et al. SpringerPlus (2016) 5:1389

the MPI (Message Passing Interface) libraries in a High Performance Computing envi-
ronment, and significantly improved the computational efficiency of the entire process.
Similarly, Strzelczyk and Porzycka (2012) presented a new parallel Kriging algorithm to
deal with unevenly spaced data. Cheng (2013) proposed an efficient parallel scheme to
accelerate the universal Kriging algorithm on the NVIDIA CUDA platform by optimiz-
ing the compute-intensive steps in the Kriging algorithm, such as matrix–vector multi-
plication and matrix–matrix multiplication and achieved a nearly 18 speedup over the
serial program.

Allombert et al. (2014) introduced an efficient out-of-core algorithm that fully bene-
fited from graphics cards acceleration on a desktop computer, and found that it was able
to speed up Kriging on the GPU with data four times larger than a classical in-core GPU
algorithm, with a limited loss of performances.

To improve the computational efficiency of the most time-consuming steps in ordi-
nary Kriging, i.e., the calculating of weights and then the prediction of each unknown
point, Ravé et al. (2014) investigated the potential strategy for reducing the computa-
tional cost by by employing suitable operations involved in those steps to be parallelized
by using general-purpose computing on GPUs and CUDA.

Hu and Shu (2015) proposed an improved coarse-grained parallel algorithm to accel-
erate ordinary Kriging interpolation in a homogeneously distributed memory system
using the MPI (Message Passing Interface) model and achieved the speedups of up to
20.8. Wei et al. (2015) proposed an algorithm based on the k-d tree method to partition a
big dataset into workload-balanced child data groups, and achieved high efficiency when
the datasets were divided into an optimal number of child data groups.

The IDW interpolation algorithm has been also parallelized on various platforms. For
example, exemplified by a hybrid IDW algorithm to generate DEM from LiDAR point
clouds, Guan and Wu (2010) designed and implemented a parallel algorithm on multi-
core platforms to handle about one billion LiDAR points in approximately 12 min. Huraj
et al. (2010a, b) accelerated the IDW method on the GPU for predicting the snow cover
depth at the desired point.

Xia et al. (2010, 2011) attempted to map the IDW interpolation to the GPU for paral-
lelization and proposed a GPU-based framework for geospatial analysis, which gave rise
to a high computational throughput. Huang et al. (2011) explored of the implementation
of a parallel IDW interpolation algorithm in a Linux cluster-based parallel GIS. Li et al.
(2014) developed their IDW interpolation application uses the Java Virtual Machine
(JVM) for the multi-threading functionality.

Mei (2014) developed two GPU implementations (i.e., the tiled version and the CDP
version) of the standard IDW interpolation algorithm by utilizing the shared memory
and the feature of CUDA Dynamic Parallelism, and found that the tiled version is about
120 and 670 times faster than the CPU version when the power parameter was specified
to 2 and 3.0, respectively. Mei and Tian (2016) also evaluated the impact of several data
layouts on the efficiency of GPU-accelerated IDW interpolation.

Some of the other efforts have been also carried out to parallelize other interpolation
algorithms. For example, Wang et al. (2010) presented a computing scheme to speed up
the Projection-Onto-Convex-Sets (POCS) interpolation for 3D irregular seismic data
with GPUs. Guan et al. (2011) developed a parallel the fast Fourier transform (FFT)

Page 3 of 22Mei et al. SpringerPlus (2016) 5:1389

based geostatistical areal interpolation algorithm in a homogeneously distributed mem-
ory system using the MPI programming model. Huang et al. (2012) employed the k-d
tree in nearest neighbors search to accelerate the grid interpolation on the GPU. Cuomo
et al. (2013) proposed a parallel method based on radial basis functions for surface
reconstruction on GPU.

The Adaptive IDW (AIDW) is an improved version of the standard IDW Shepard
(1968), which was originally proposed by Lu and Wong (2008). In the AIDW it attempts
to calculate the power parameter adaptively according to the spatial distribution pattern
of the data points, while in the standard IDW the power parameter is a user-specified
constant value. Due to the adaptive determination of the power parameter, the AIDW
method can achieve much more accurate prediction results than those by the standard
IDW.

In our previous work (Mei et al. 2015), we have designed and implemented a parallel
AIDW algorithm on a GPU. And we have also evaluated the performance of the parallel
AIDW method by comparing its efficiency with that of the corresponding serial one. We
have observed that our GPU-accelerated AIDW algorithm can achieve the speedups of
up to 400 for one million data points and interpolated points on single precision.

In our previous GPU implementations of the parallel AIDW method, we have found
that the most computationally intensive step is the k nearest neighbors (kNN) search for
each interpolated points. We have designed a straightforward method to find the k near-
est neighboring data points for each interpolated point within a single thread. Although
the GPU implementing using our straightforward kNN search approach can achieve sat-
isfied computational efficiency, for example, the obtained speedups are about 100–400
on single precision, further performance improvement probably can be achieved by
optimizing the kNN search.

The task of the kNN search is to find the nearest neighbors to an input query. Previ-
ous research efforts conducted on the kNN search are mainly implemented and optimized
on the CPU (Sankaranarayanan et al. 2007). Recently, GPU-accelerated implementations
have improved performance by utilizing the massively parallel architecture of a single GPU
(Garcia et al. 2008; Leite et al. 2012; Pan and Manocha 2012; Liang et al. 2009; Huang and
Yang 2011; Beliakov and Li 2012; Komarov et al. 2014; Liu and Wei 2015), multi-GPUs
(Kato and Hosino 2012; Arefin et al. 2012), and GPU clusters (Dashti et al. 2013). Among
those GPU-accelerated kNN search algorithms, most of them attempt to speed up the
brute-force kNN search algorithm; and several of them are designed and optimized using
space partitioning data structures such as grid (Leite et al. 2012), RP-tree (Pan and Mano-
cha 2012), VP-tree (Liu and Wei 2015), and k-d tree (Beliakov and Li 2012).

In this paper, we attempt to improve the efficiency of our previous GPU-accelerated
AIDW algorithm by adopting a more efficient kNN search approach. The efficient kNN
search is expected to be performed in a separate stage with the use of the data struc-
ture, grid. The resulting values of the kNN search are the distances between the k nearest
neighboring data points to each interpolated point. Those distances are then transferred
into another stage of the AIDW to adaptively calculate the power parameter and the
expected prediction value (i.e., the weighted average). To evaluate the improved parallel
AIDW algorithm, we also compare its efficiency with that of our previous one intro-
duced in Mei et al. (2015).

Page 4 of 22Mei et al. SpringerPlus (2016) 5:1389

The rest of this paper is organized as follows. “The AIDW interpolation algorithm”
section introduces the background principles of the IDW algorithm, the AIDW algo-
rithm, and the kNN search. “The improved GPU-accelerated AIDW method” section
describes the strategies and considerations for improving our previous GPU-acceler-
ated AIDW algorithm. “Implementation details” section presents some implementation
details of the improved algorithm. Some comparative experimental tests and analysis are
provided in “Results and discussion” section. Finally, “Conclusion” section draws several
conclusions.

The AIDW interpolation algorithm
The AIDW is an improved version of the standard IDW (Shepard 1968), which is origi-
nated by Lu and Wong (2008). The basic and most interesting idea behind the AIDW
is as follows. It adaptively determines the distance-decay parameter α according to the
spatial pattern of data points in the neighborhood of the interpolated points. In other
words, the distance-decay parameter α is no longer a pre-specified constant value but
adaptively adjusted for a specific unknown interpolated point according to the distribu-
tion of the nearest neighboring data points.

When predicting the desired values for the interpolated points using AIDW, there
are typically two phases: the first one is to determine adaptively the power parameter α
according to the spatial pattern of data points; and the second is to perform the weight-
ing average of the values of data points. The second phase is the same as that in the
standard IDW.

In AIDW, for each interpolated point, the parameter α can be adaptively determined
according to the following steps.

Step 1  Determine the spatial pattern by comparing the observed average nearest
neighbor distance with the expected nearest neighbor distance.

1.	 Calculate the expected nearest neighbor distance rexp for a random pattern using:

 where n is the number of points in the study area, and A is the area of the study
region.

2.	 Calculate the observed average nearest neighbor distance robs by taking the average
of the nearest neighbor distances for all points:

 where k is the number of nearest neighbor points, and di is the nearest neighbor dis-
tances. The k can be specified before interpolating.

3.	 Obtain the nearest neighbor statistic R(S0) by:

(1)rexp =
1

2
√
n/A

,

(2)robs =
1

k

k
∑

i=1

di,

(3)R(S0) =
robs

rexp
,

Page 5 of 22Mei et al. SpringerPlus (2016) 5:1389

 where S0 is the location of an interpolated point.

Step 2  Normalize the R(S0) measure to µR such that µR is bounded by 0 and 1 by a
fuzzy membership function:

 where Rmin or Rmax refers to a local nearest neighbor statistic value (in general, the Rmin
and Rmax can be set to 0.0 and 2.0, respectively).

Step 3  Determine the distance-decay parameter α by mapping the µR value to a range
of α by a triangular membership function that belongs to certain levels or categories of
distance-decay value; see Eq. (5).

where the α1,α2,α3,α4,α5 are the assigned to be five levels or categories of distance-
decay value.

After determining the parameter α, the desired prediction value of each interpolated
point can be obtained via the weighting average. This stage is the same as that in the
standard IDW.

The improved GPU‑accelerated AIDW method
This section will briefly introduce the considerations and strategies in the development
of the improved GPU-accelerated AIDW interpolation algorithm.

Overview and basic ideas

The basic and most interesting concept behind the AIDW method is as follows. It
attempts to determine adaptively the power parameter α according to the spatial dis-
tribution pattern of each interpolated point. In AIDW algorithm, the spatial distribu-
tion pattern is considered as the distribution density of several nearest neighboring data
points locating around an interpolated point, which can be roughly measured by using
the average distance from those neighboring data points to the interpolated point.

In our previous work, we present a straightforward, easy-to-implement, and suitable
for GPU-parallelization algorithm to find the k nearest neighboring data points of each
interpolated point. Assuming there are n interpolated points and m data points, for each
interpolated point we carry out the following steps (Mei et al. 2015):

Step 1 Calculate the first k distances between the first k data points and the interpo-
lated points;

(4)µR =











0 R(S0) ≤ Rmin

0.5− 0.5 cos
�

π
Rmax

(R(S0)− Rmin)

�

Rmin ≤ R(S0) ≤ Rmax

1 R(S0) ≥ Rmax

,

(5)α(µR) =



























α1 0.0 ≤ µR ≤ 0.1
α1[1− 5(µR − 0.1)]+ 5α2(µR − 0.1) 0.1 ≤ µR ≤ 0.3
5α3(µR − 0.3)+ α2[1− 5(µR − 0.3)] 0.3 ≤ µR ≤ 0.5
α3[1− 5(µR − 0.5)]+ 5α4(µR − 0.5) 0.5 ≤ µR ≤ 0.7
5α5(µR − 0.7)+ α4[1− 5(µR − 0.7)] 0.7 ≤ µR ≤ 0.9
α5 0.9 ≤ µR ≤ 1.0

,

Page 6 of 22Mei et al. SpringerPlus (2016) 5:1389

Step 2 Sort the first k distances in ascending order;
Step 3 For each of the rest (m− k) data points,

1.	 Calculate the distance dist;
2.	 Compare the dist with the kth distance: if dist < the kth distance, then replace the kth

distance with the dist
3.	 Iteratively compare and swap the neighboring two distances from the kth distance to

the first distance until all the k distances are newly sorted in ascending order.

The major advantage of the above algorithm is that it is simple and easy to implement.
Obviously, there is no need to utilize any complex space partitioning data structures
such as various types of trees. In contrast, only arrays for storing distances and coordi-
nates are needed. Also, we find the desired nearest neighbors without the use of explicit
sorting algorithms such as binary search. In general, most sorting algorithms are com-
putationally complex and not suitable for entirely being invoked within a single GPU
thread.

The most obvious shortcoming of the above algorithm for finding nearest neighboring
data points is the computational inefficiency that is due to the global search for near-
est neighbors. In that algorithm, the first k distances are calculated and recorded; and
then the distances to the rest points are calculated and then compared with those first k
distances. The above procedure obviously needs a global search, which is not computa-
tionally optimal. One of the frequently used optimization strategies is to perform a local
search by filtering those data points and distances that are not needed to be considered.

In this work, we focus on improving our previous GPU-accelerated AIDW algorithm
by using a fast kNN search algorithm. Our considerations and basic ideas behind devel-
oping the efficient kNN search algorithm are as follows:

1.	 Create an even grid to partition the planar region that encloses the projected posi-
tions of all data points and interpolated points;

2.	 Distribute all the data points and interpolated points into the grid and record the
locations;

3.	 Perform a local and fast search within the grid to find the nearest neighboring data
points for each interpolated point.

After obtaining the average distance of those neighboring data points, the adaptive
power parameter α will be determined according to the average distance. Finally, the
desired prediction value for each interpolated point can be obtained via weighting aver-
age using the parameter α.

In summary, the improved GPU-accelerated AIDW algorithm is mainly composed of
two stages: (1) the kNN search and average distances calculation, and (2) the determina-
tion of adaptive power parameter and prediction value by weighted interpolating; see
Fig. 1.

Page 7 of 22Mei et al. SpringerPlus (2016) 5:1389

Stage 1: kNN search

The workflow of the stage of kNN search is listed in Fig. 1. In this section, more descrip-
tions on this stage will be presented.

Creating an even grid

The even grid is a simple type of data structure for space partitioning, which is com-
posed of regular cells such as squares or cubes; see an example of planar grid illustrated
in Fig. 2. Compared to other efficient but complex space partitioning data structures
such as the k-d tree, the even grid is much easier to create and search objects. In this
work, we use a planar even grid to partition all data points to speed up the kNN search
via local search.

The building of an even planar grid is straightforward. We first calculate or specify the
width of the square cell, then determine the planar rectangular region for partitioning
according to the minimum and maximum x and y coordinates of all points, i.e., obtain
the length and width of the rectangle. After that, the numbers of rows and columns of
the grid can be quite easily determined by dividing the rectangle.

Distributing data points into cells

The distribution of each data point is to find out that in which grid cell the data point
locates. Since each grid cell can be located and recorded using its row and column indi-
ces, the distribution of each data point is in fact to obtained the row and column indices
of the cell in which it locates.

This procedure can also be quite easily performed. First, the differences between the
coordinates of the data points and the minimum coordinates of all cells are calculated;
then the indices of row and column can be obtained by dividing the above differences
with the cell width.

Create a Grid according
to the min and max x and
y coordinates of all points

Distribute each data point
into the Grid, and record
the located Cell of Grid

Determine the number of
data points and the first

one locating in each Cell

Find kNN and calculate
the average distance robs
for each prediction point

()
exp

0 r
rSR obs=

Obtain nearest neighbor
statistic:

Normalize R(S0) to µR to
be bounded by 0 and 1 by

a membership function

Determine the parameter
α by mapping the R to a
range of αby a function

∑
∑=

=

⋅
=

n

i
n

j
j

ii

xxd

xxdzxZ
1

1

),(/1

),(/1)(
α

α

2egatS1egatS

Fig. 1  Process of the improved GPU-accelerated AIDW interpolation algorithm

Page 8 of 22Mei et al. SpringerPlus (2016) 5:1389

Determining data points in each cell

The most important and basic idea behind utilizing a space partitioning is to perform
a local search within local regions rather than a global search. When searching nearest
neighbors, it is computationally optimal to first search approximate nearest neighbors
within several local cells and then to find the exact nearest neighbors by filtering unde-
sired points.

Since the local search is operated within cells, it is thus needed to determine that
which data points locate inside a specific cell. In other words, it is needed to know the
number and the indices of those data points locating in the same cell. Moreover, the lay-
out for storing the number and indices should be carefully handled.

For each grid cell, to store the above-mentioned number and indices of those data
points locating in the same cell, in general, a dynamic array of integers needs to be
allocated. In the traditional CPU computing, the allocation and operations of dynamic
arrays are easy-to-implement and computationally inexpensive. However, in GPU com-
puting, it is no longer easy to implement or computationally cheap. This is due to the
following two reasons. (1) In GPU computing the programming model such as CUDA
cannot support the allocation and operations of dynamic arrays/containers like vector
and list in C++ STL (Standard Template Library); and (2) the allocation of a large-
enough static array of integers, e.g., int index[1000], for storing the indices of data
points within each GPU thread is not memory efficient.

Due to the above reasons, we design an optimal layout for storing the number and
indices of data points. Our basic idea is as follows. If the indices of those points locating

nCol

nRow

level = 0

level = 1

level = 2

    











Cell width

Cell

width

(Xmin, Ymin)

Interpolated Point Data Point

  















Fig. 2  The creation of an even grid according to the minimum and maximum coordinates of all the data
points and interpolated points

Page 9 of 22Mei et al. SpringerPlus (2016) 5:1389

inside the same cell are stored in a continuous segment/piece of integer values, then we
only need to know the address of the first point in the segment and the number of points
in the same segment (i.e., the size of the segment).

In this case, for each cell, we can only use two integer values to record the number and
the indices of those data points that locate in the same cell. One integer is used to hold
the number, and the other is used to record the address of the head/first point in each
segment. The above two values can be very efficiently determined in a parallel fashion.

Before determining the number and indices of data points locating in the same cell,
those data points should be recorded continuously. Since we have obtained the index of
the cell in which each data point locates, if we sort all data points according to their cor-
responding cell indices in ascending order, then those data points locating in the same
cell can be gathered in a continuous segment. This sorting procedure is suited to be par-
allelized on the GPU.

The number of data points locating in the same cell is determined using segmented
parallel reduction. As described above, after sorting all data points according to cell indi-
ces, all data points are stored in a group of segments; each segment is flagged with the
cell index, and contains the indices of data points locating in the same cell. The number
of data points locating in the same cell can be achieved by performing a reduction for
each segment; see Fig. 3a. Similarly, the head index of the first point of each segment can
be obtained using segmented parallel scan; see Fig. 3b.

Searching nearest neighbors

In this work, a space-partitioning data structure, the even grid, is employed to enhance
the kNN search algorithm. The most important and basic idea behind utilizing the space
partitioning is to perform a local search within local regions rather than a global search.
This idea is quite effective in practice for that the number of points that are needed to
find and compare can be significantly reduced, and therefore, the computational effi-
ciency can be improved.

The process of kNN search for each interpolated point can be summarized as follows.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Data Point’s ID

0 3 5 9 14 - - - - - - - - - -Head Point’s ID

1 1 1 2 2 3 3 3 3 4 4 4 4 4 5Located Cell’s ID

b

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Helper Values

3 2 4 5 1 - - - - - - - - - -Number of Points

1 1 1 2 2 3 3 3 3 4 4 4 4 4 5Located Cell’s ID

            

3 2 4 5 1

a

Fig. 3  Demonstration of determining the number of data points distributed in each cell and the index of the
head point. a the number of points; b the index of the head point

Page 10 of 22Mei et al. SpringerPlus (2016) 5:1389

• • Step 1 Locate the interpolate point into the even grid
• • Step 2 Determine the level of cell expanding
• • Step 3 Find the nearest neighbors within the local region
• • Step 4 Calculate the average distance

The locating of each interpolated point into the previously created planar grid is quite
straightforward. Since each grid cell can be located and recorded using its row and col-
umn indices, the distribution of each interpolated point is in fact to obtained the row
and column indices of the cell in which it locates. First, the differences between the coor-
dinates of the interpolated point and the minimum coordinates of all cells are calculated;
then the indices of row and column can be obtained by dividing the above differences
with the cell width.

The determining of the level of cell expanding is in fact to determine the region of cells
in which the local nearest neighbors search should be carried out; see three levels of cell
expanding in Fig. 2. In kNN search, the number of nearest neighbors, k, is typically pre-
specified; and obviously, the number of data points locating in the local cells must be
larger than the number k. Thus, the level of cell expanding can be iteratively determined
by comparing the number of currently found data points with the number k. For exam-
ple, when the k is specified as 15, and within the first level of local cells there are only
ten data points, and thus the level 1 needs to expand to level 2. Similarly, if only 14 data
points can be found within the second level of local cells, the level needs to be further
expanded to 3. This procedure is iteratively repeated until enough data points have been
found.

Remark  Note that after iteratively determining the level of cell expanding, for example,
level 3, the final level of cell expanding needs to increase with 1, i.e., level 4. This is due
to the following reason. Without expanding additional one level, the nearest neighbors
found in the initial level of local cells may not the desired exact k nearest neighbors; see
the marked data point in Fig. 4. When k = 10, the determined level of cell expanding is
0 (i.e., the yellow region). However, the marked data point is obvious one of the nearest
neighbors of the only interpolated point because it is much nearer to the interpolated
point than several data points locating in the yellow region. This demonstrates that:
without expanding additional one level, incorrect/undesired nearest neighboring data
points are probably found; and several of the expected nearest neighboring data points
may not able to be found.

The kNN search in the local cells is, in fact, to further find exact nearest neighbors by
filtering some undesired points. We first allocate an array with the size of k for storing
distances, and initiate all distances to 0. Then for each of those data points locating in
the local cells, we calculate the distance dist, and compare the dist with the kth distance;
and if dist is smaller than the kth distance, then replace the kth distance with the dist;
after that, we iteratively compare and swap the neighboring two distances from the kth
distance to the first distance until all the k distances are newly sorted in ascending order;
see Mei et al. (2015) for more details.

Page 11 of 22Mei et al. SpringerPlus (2016) 5:1389

After finding the nearest neighbors of each interpolated point, the distances between
each nearest neighbor and the interpolated point can be calculated; and finally, the
desired average distance can be obtained.

Stage 2: weighted interpolating

According to the principle of the AIDW interpolation algorithm, it is perfect that a sin-
gle GPU thread can take the responsibility to calculate the prediction value of an inter-
polated point. For example, assuming there are n interpolation points that are needed to
be predicted their values such as elevations, and then it is required to allocate n threads
to calculate the desired prediction values for all those n interpolated points concurrently.

In GPU computing, data access on the shared memory is inherently much faster than
that on the global memory; therefore, any choices to replace global memory access by
shared memory access should be utilized. Due to the fact that the shared memory resid-
ing in the GPU is limited per SM (Stream Multiprocessor), a common optimization
strategy called “tiling” is frequetnly used to handle the above problem, which divides the
data stored in global memory into pieces called tiles so that each tile fits into the size of
shared memory.

The above-mentioned strategy of “tiling” is also employed to enhance the GPU-accel-
erated AIDW algorithm. First, the coordinates of data points are loaded from the global
memory into the shared memory. Then, all threads within the same thread block are able
to concurrently access the coordinates currently residing in the shared memory. With
the utilization of the strategy of “tiling”, the accesses to the global memory can be obvi-
ously reduced; and performance gains are expected to be achieved.

Implementation details
As introduced in the above section, the improved GPU-accelerated AIDW interpolation
algorithm is mainly composed of two stages, i.e., the kNN search stage and the weighted
interpolating stage. In this section, we will describe some implementation details on the
above two stages.

level = 0

level = 1

Interpolated Point Data Point

Nearest

Fig. 4  An example for demonstrating the failure of finding exact nearest data points for an interpolated
point

Page 12 of 22Mei et al. SpringerPlus (2016) 5:1389

Stage 1: kNN search

Creating an even grid

An even grid is composed of a group of grid cells, and in this work, each grid cell is a
square. The creation of an even grid is in fact to determine the position of the grid, the
size of the cell, and the distribution layout of the cells. In our algorithm, an even planar
grid is created to cover the planar region in which the projected positions of all data
points and interpolated points locate.

We first obtain the minimum and maximum coordinates of all the data points and
interpolated points using the parallel reduction thrust::minmax_element()
provided by the library Thrust (Bell and Hoberock 2012), and calculate the differ-
ences between those minimum and maximum coordinates in x- and y- direction. After
approximately determining the planar region, we then calculate the length of interval
cellWidth, i.e., the width of a square cell, according to Eq. (1). After that, the number
of rows and columns of grid cells can be easily calculated.

Distributing data points into cells

After creating the even grid, the subsequent step is to distribute all the data points into
the grid. This procedure can be naturally parallelized since the distributing of each data
point can be performed independently. Assuming there are m data points, we allocate m
GPU threads to distribute all the data points. Each thread is responsible for calculating
the position of one data point locating in the grid, i.e., to determine the index of the cell
where the data point locates.

A cell in a grid can be exactly positioned according to the indices of row and column,
i.e., int col_idx, row_idx. Also, the position of each grid can be found according
to its global index that can be calculated using the simple transformation, global_idx
= row_idx * nCol + col_idx.

The above transformation formulation can be used to transform a two-dimensional
index of each grid cell to a unique one-dimensional index. Obviously, this transforma-
tion can be easily transformed back. The reasons why we carry out the transformation
are as follows. First the memory requirement is reduced since only one array of integers
is needed to be stored; and the second is that sorting with using one value as the key is
much faster than that with two values as keys.

To obtain the indices and numbers of those data points locating in each cell, an effec-
tive solution is to store those data points that locate in the same cell continuously. Then,
operations on the continuous pieces of data (i.e., segments) can be very efficient; see
more descriptions in the closely subsequent section.

Determining data points in each cell

In the stage of the kNN search, our objective is to find k nearest neighboring data points
for each interpolated point. The kNN search for each interpolated point is locally per-
formed within several grid cells. The first requirement is to determine how many and
which data points locate in each grid cell. More specifically, we need to know the indices
and the number of those data points locating in each grid cell. We obtain this simply by
using parallel reduction and scan; see our ideas illustrated in Fig. 3.

Page 13 of 22Mei et al. SpringerPlus (2016) 5:1389

Before carrying out the parallel reduction and scan, those data points that locate inside
the same cell should be stored continuously. This requirement can be fulfilled by utiliz-
ing a parallel sort with the use of the global index of cells as keys. The parallel sort is
realized by using the corresponding parallel primitive provided by the powerful library
Thrust, thrust::sort_by_key(keys, values).

Note that those data points locating in the same cell are stored continuously, and if we
know the number of data points locating in the same cell, then we only to know the first
address of the first data point; and each of the rest data points can be referenced accord-
ing to the address of the first point and its local position. This idea is quite similar to the
reference of any value/element in an array.

Then, the parallel reduction and scan are also performed by using the primitives pro-
vided by Thrust. We also use the global index of cells as the keys for Segmented reduc-
tion and scan. The motivation why we use the segmented reduction and scan rather than
the global reduction and scan is that in the current step we only need to operate on the
data points locating in the same cell; and those data points locating in the same cell have
been stored continuously and marked using the global index of cell as flags; see Fig. 3.

The number of those data points locating in the same cell is obtained by using the
primitive thrust::reduce_by_keys(); and the index of the first/head point of
each segment of data points are found using thrust::unique_by_keys(). As illus-
trated in Fig. 3, a helper array of constant integers is additionally used to count the num-
ber of data points stored in the same piece/segment.

Searching nearest neighbors

The finding of k nearest neighboring data points for each interpolated points can be
inherently parallelized. Assuming there are n interpolated points, and we allocate n
threads to search the nearest neighbors for all the interpolated points. Each thread is
invoked to find the nearest neighbors for only one interpolated point.

Within each thread, we first distribute the interpolated point into the created grid by
calculating its row index and column index; see lines 13–14 in Fig. 5. Then we determine
the region of the local cells by approximately calculating the level of expanding accord-
ing to the number of data points; see lines 16–29 in Fig. 5. Note that currently those data
points locating in the determined local cells are the Approximate nearest neighbors of
the interpolated points. After that, we further find the Exact nearest neighbors by filter-
ing those approximate nearest neighbors by inserting and swapping; see lines 31–58 in
Fig. 5. Finally, the desired average distance between the exact nearest neighboring data
points and the target interpolated point is calculated.

Note that there is a remarkable implementation detail. When finding the nearest
neighbors according to the Euclidean distances between points, we do not use the real
distance value but the square value of the distance. This is because in GPU computing
the calculation of square root is quite computationally expensive; and any choice to avoid
the use of calculating square root should be exploited. Thus, we calculate the square root
in the last step of computing the average distance, rather in the step of searching nearest
neighbors.

Page 14 of 22Mei et al. SpringerPlus (2016) 5:1389

Stage 2: weighted interpolating

This subsection will present the details on implementing the interpolating stage in the
GPU-accelerated AIDW algorithm. We implement two versions: the naive version and

Fig. 5  A CUDA kernel of the kNN search

Page 15 of 22Mei et al. SpringerPlus (2016) 5:1389

the tiled version, by employing the data layout Structure-of-Arrays (SoA) only. Both the
naive and the tiled implementations developed in this work are the same as those corre-
sponding implementations presented in our previous work (Mei et al. 2015).

Naive version

In this version, the global memory and registers on GPU architecture are employed with-
out exploiting the shared memory. The input data and the output data are stored in the
global memory. Assuming that there are m data points used to evaluate the prediction
values for n interpolation points, we allocate n threads to parallelize the interpolating.

Since that after invoking the kNN kernel, we have obtained the average distance, i.e.,
the robs defined in Eq. (2), thus in this stage each thread is only responsible for comput-
ing the rexp and R(S0) according to the Eqs. (1) and (3). After that, the R(S0) measure is
normalized to µR such that µR is bounded by 0 and 1 by a fuzzy membership function;
see Eq. (4). Finally, the power parameter α is determined by mapping the µR values to a
range of α by a triangular membership function; see Eq. (5).

After adaptively determining the power parameter, the desired prediction value of
each interpolated point can be achieved by weighting average. This step of calculating
the weighting average is the same as that in the standard IDW method.

Tiled version

The workflow of the tiled version is the same as that of the naive version. However, in the
tiled version the shared memory is exploited to improve the computational efficiency,
while in the naive the shared memory is not utilized.

When implementing the tiled version, the tile size (i.e., the number of tiles) is simply
specified as the same as the block size (i.e., the number of blocks within a grid). Each
thread within the grid is responsible to (1) transferring the coordinates of only one data
point from the global memory to the shared memory, and (2) calculating the distances
and weights to those data points currently residing in the shared memory.

When all the threads within a thread block complete the calculating of partial dis-
tances and weights, the subsequent wave of points’ coordinates is transferred from the
global memory to the shared memory again. This new piece of data is employed to com-
pute the current wave of partial distances and corresponding weights.

When finishing the calculation of all waves of partial distances and weights, each
thread is invoked to accumulate all the weights and weighted values into two registers.
At last, the desired prediction value of an unknown point, i.e., the weighted average, is
computed and then written to the global memory.

Results and discussion
Experimental environment and testing data

In this work, we focus on improving our previous GPU-accelerated AIDW algorithm by
utilizing a fast kNN search method. We refer our previously developed GPU-accelerated
AIDW algorithm as the original algorithm, and the presented algorithm in this work as
the improved algorithm.

To evaluate the computational efficiency of the improved algorithm, we have carried
out five groups of experimental tests on a laptop computer which features with an Intel

Page 16 of 22Mei et al. SpringerPlus (2016) 5:1389

Core i7 CPU (2.40GHz), 4.0 GB RAM memory, and a GeForce GT730M card. All the
experimental tests are executed on OS Windows 7 Professional (64-bit), Visual Studio
2010, and CUDA v7.0.

Two versions of the improved GPU-accelerated AIDW, i.e., the naive version and the
tiled version, are implemented using the SoA layout and evaluated on single precision.
In contrast, the CPU version of the AIDW implementation is tested on double precision;
and all results of this CPU version presented in our previous work (Mei et al. 2015) are
directly accepted to be used as the baseline. The efficiency of all GPU implementations is
benchmarked by comparing to the baseline results.

When evaluating the execution time of GPU implementations, the overhead spent on
transferring the input data (i.e., the coordinates of data points and interpolated points)
from the host side to the device side and transferring the results from the device side to
the host side is considered. However, the time spent on generating the test data is not
included.

The input of the AIDW interpolation is the coordinates of data points and interpolated
points. The efficiency of the CPU and GPU implementations may differ due to differ-
ent sizes of input data. However, the research objective in this work is to improve our
previous GPU-accelerated AIDW algorithm using fast kNN search; thus, we only con-
sider a particular situation where the numbers of interpolated points and data points are
identical.

All the testing data including the data points and interpolated points are randomly
generated within a square. We design five groups of sizes, i.e., 10K, 50K, 100K, 500K,
and 1000K, where one K represents the number of 1024 (1K = 1024). Five tests are per-
formed by setting the numbers of both the data points and interpolated points as the
above five groups of sizes.

Performance of the improved GPU‑accelerated AIDW algorithm

Computational efficiency

We evaluate the computational efficiency of the improved GPU-accelerated AIDW algo-
rithm with the use of five groups of testing data. The running time and the GFLOPS are
listed in Table 1 and Table 2, respectively. Note that, to compare with the original GPU-
accelerated algorithm, we have also listed the execution time of the original algorithm
in Table 1; and these experimental results of the original algorithm are directly derived
from our previous work (Mei et al. 2015).

We have also calculated the speedups of our improved GPU-accelerated AIDW algo-
rithm against the corresponding serial algorithm (i.e., the CPU version listed in Table 1)
and see Fig. 6. The results indicate: (1) the highest speedups achieved by the naive ver-
sion and the tiled version can be up to 543 and 1017, respectively; and (2) the tiled
version is always faster than the naive version. The GFLOPS listed in Table 2 also dem-
onstrates that the tiled version is always faster than the naive version for both the origi-
nal and the improved GPU-accelerated AIDW algorithms.

Comparison of the improved naive version and tiled version

As observed from the experimental tests, the tiled version of the improved algorithm
is about 1.33–1.87 times faster than the naive version. This behavior is due to the fact

Page 17 of 22Mei et al. SpringerPlus (2016) 5:1389

that the stage of interpolating in the tiled version is much more computationally effi-
cient than that in the naive version; see the execution time of the interpolating stage in
Table 3.

As described in “The improved GPU-accelerated AIDW method” section, the
improved algorithm includes both the naive version and tiled version, which can be
divided into two major stages: i.e., the stage of kNN search and the stage of weighted
interpolating. The first stage in the above two versions are the same, while the second
stage differs.

In the stage of interpolating of the tiled version, the benefit of the use of shared mem-
ory is exploited, while in the naive version it is not. For this reason, the interpolating
stage in the tiled version executes about 1.79–1.89 times faster than that in the naive
version. Thus, the entire tiled version is more efficient than the naive version. This is
also demonstrated according to the GFLOPS of the naive version and tiled version; see
Table 2.

Workload between the stages of kNN search and weighted interpolating

There are two major stages in the improved GPU-accelerated AIDW algorithm. To
understand the efficiency bottleneck for further optimizations in the future, we in par-
ticular record the execution time for the stages of kNN search and weighted interpolat-
ing separately; see Table 3. In addition, we have also evaluated the workload percentage
between the above two stages in both the naive version and tiled version; see Fig. 7.

We have found the computational cost spent in the stage of kNN search is much less
than that in the stage of the weighted interpolating. Moreover, with the increase of the
size of testing data, the weight of the running time cost in the stage of kNN significantly
decreases; and it even reduces to about one percentage. This observation indicates that
most overhead in both the naive version and the tiled version is spent in the stage of
weighted interpolating rather than the kNN search. Therefore, further optimizations
may need to be employed to improve the efficiency of the weighted interpolating.

104 195 234 265 269111

236
301

384 401

244

420
493 538 543

324

721

874

1003 1017

0

200

400

600

800

1000

1200

10K 50K 100K 500K 1000K

Sp
ee

du
p

Data Size (1K = 1024)

Naive-Original Tiled-Original

Naive-Improved Tiled-Improved

Fig. 6  Speedups of the improved and the original GPU-accelerated AIDW algorithms over the serial AIDW
algorithm

Page 18 of 22Mei et al. SpringerPlus (2016) 5:1389

Comparison with the original GPU‑accelerated AIDW algorithm

In “Experimental environment and testing data” section, the efficiency of the improved
GPU-accelerated AIDW algorithm has been compared with that of the original serial
AIDW algorithm (Tables 1, 2); and it was found that the proposed improve algorithm
can obtain quite satisfactory speedups. In this subsection, the present improved GPU-
accelerated AIDW algorithm will be benchmarked with the original GPU-accelerated
AIDW algorithm introduced in Mei et al. (2015).

The speedups of the improved GPU-accelerated AIDW algorithm over the original
algorithm are illustrated in Fig. 8. The results show that the improved naive version and
tiled version are at least 2.02 and 2.54 times faster than the original naive version and
tiled version, respectively. This also indicates that significant performance gains have
been achieved by improving the original algorithm using fast kNN search.

The major difference between the original algorithm and the improved algorithm is
the use of different kNN search approaches. We attempt to explain the reason why sig-
nificant performance gains have been achieved by analyzing the impact of different kNN
search algorithm on the computational efficiency.

First, we obtain the computational time of the kNN search in the original algorithm by
subtracting the time spent in the stage of weighted interpolating from the total execution
time; see Table 4. Note that, the execution time cost in the stage of weighted interpolat-
ing is directly derived from the improved algorithm. This is because (1) the weighted
interpolating in both the original algorithm and the improved algorithm is the same; and
(2) the running time of the weighted interpolating can be separately measured in the

55
.8

7

91
.0

2

94
.1

0

98
.5

9

99
.2

6

0

20

40

60

80

100

10K 50K 100K 500K 1000K

Pe
rc

en
ta

ge
 (%

)

Data Size (1K = 1024)

Workload of Two Stages in the Improved Naive Version

Stage Interp.

Stage kNN

41
.3

6

84
.5

8

89
.5

5

97
.3

8

98
.6

2
0

20

40

60

80

100

10K 50K 100K 500K 1000K

Pe
rc

en
ta

ge
 (%

)

Data Size (1K = 1024)

Workload of Two Stages in the Improved Tiled Version

Stage Interp.

Stage kNN

a

b

Fig. 7  Workload of the two stages in the improved GPU-accelerated AIDW algorithm. a Naive version; b tiled
version

Page 19 of 22Mei et al. SpringerPlus (2016) 5:1389

2.34
2.16 2.11 2.03 2.02

2.92
3.06

2.91

2.61 2.54

1.0

1.5

2.0

2.5

3.0

3.5

10K 50K 100K 500K 1000K

Sp
ee

du
p

Data Size (1K = 1024)

Speedups of Improved Versions against Original Versions

Naive

Tiled

Fig. 8  Speedups of the improved GPU-accelerated AIDW algorithm over the original algorithm for both the
naive version and tiled version

24.74

7.21
5.04

1.34 0.72
0

10

20

30

40

10K 50K 100K 500K 1000K

Pe
rc

en
ta

ge
 (%

)

Data Size (1K = 1024)

Percentages of the Running Time of kNN Search in
Improved Versions over Original Versions

Naive

Tiled

Fig. 9  Percentages of the running time of kNN search in the improved algorithm over the original algorithm

Table 1  Execution time (/ms) of CPU and GPU versions of the AIDW algorithm on single
precision

Version Data size (1K = 1024)

10K 50K 100K 500K 1000K

CPU/serial 6791 168,234 673,806 16,852,984 67,471,402

Original naive version 65.3 863 2884 63,599 250,574

Original tiled version 61.3 714 2242 43,843 168,189

Improved naive version 27.9 400 1366 31,306 124,353

Improved tiled version 21.0 233 771 16,797 66,338

Table 2  GFLOPS of the original and the improved GPU-accelerated AIDW algorithms
when the data size is set as 1000K (1K = 1024)

Version GFLOPS

Original naive version 51.81

Original tiled version 107.12

Improved naive version 100.95

Improved tiled version 192.34

Page 20 of 22Mei et al. SpringerPlus (2016) 5:1389

improved algorithm, while in contrast it is unable to accurately evaluate the execution
time specifically for the weighted interpolating in the original algorithm.

Second, we calculate the percentages of the running time of the kNN search in the
improved algorithm over that in the original algorithm; see Fig. 9. We have found in
both the naive version and the tiled version, the execution time of the kNN search in
the improved algorithm is much less than that in the original algorithm, for example,
less than one percentage for about one million points. This suggests the use of fast kNN
search approach can significantly improve the efficiency of the entire GPU-accelerated
AIDW interpolation algorithm (see Additional file 1).

Conclusion
In this work, we have presented an efficient AIDW interpolation algorithm on the
GPU by utilizing a fast kNN search method. The presented algorithm is composed of
two major stages, i.e., the kNN search and weighted interpolating, and is developed
by improving a previous GPU-accelerated AIDW algorithm with the use of fast kNN
search. The kNN search is carried out based upon an even grid, and is capable of find-
ing exact nearest neighbors very fast for each interpolated point. We have performed
five groups of experimental tests to evaluate the performance of the improved GPU-
accelerated AIDW algorithm. We have found: (1) the improved algorithm can achieve a
speedup of up to 1017 over the corresponding serial algorithm for one million points; (2)
the improved algorithm is at least two times faster than our previously developed GPU-
accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly
improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

To benefit the community, all source code and testing data related to the presented
AIDW algorithm is publicly available. In the future, further improvements in the com-
putational efficiency are planed to be achieved by adopting different algorithm mapping
strategies on a GPU and multi-GPU architecture (Cuomo et al. 2014).

Table 3  Execution time (/ms) of the stage of kNN search and the stage of weighted inter‑
polating in the improved GPU-accelerated AIDW algorithm

Stage Data size (1K = 1024)

10K 50K 100K 500K 1000K

kNN search (both versions) 12.3 36 81 440 917

Weighted interpolating (improved naive version) 15.6 364 1286 30,866 123,437

Weighted interpolating (improved tiled version) 8.7 197 691 16,357 65,421

Table 4  Execution time (/ms) of the stage of kNN search in the original and the improved
GPU-accelerated AIDW algorithm

Version Data size (1K = 1024)

10K 50K 100K 500K 1000K

Original naive version 49.7 499 1598 32733 127137

Original tiled version 52.6 517 1551 27486 102768

Both of improved versions 12.3 36 81 440 917

Page 21 of 22Mei et al. SpringerPlus (2016) 5:1389

Authors’ contributions
GM carried out the study, analyzed the results and wrote the manuscript. NX and GM conceived and designed the study.
GM and NX reviewed and edited the manuscript. LN carried out the experimental tests. All authors read and approved
the final manuscript.

Author details
1 Department of Geological Engineering, Qinghai University, No.251 Ningda Road, Xining 810016, China. 2 School
of Engineering and Technolgy, China University of Geosciences, No.29 Xueyuan Road, Beijing 100083, China. 3 Institute
of Earth and Environmental Science, University of Freiburg, Albertstr.23B, 79104 Freiburg im Breisgau, Germany.

Acknowlegements
This research was supported by the Natural Science Foundation of China (Grant Nos. 40602037, 40872183, and
11602235), China Postdoctoral Science Foundation (2015M571081), and the Fundamental Research Funds for the Central
Universities (2652015065). The authors would like to thank the editor and the reviewers for their contributions on the
paper. Gang Mei declares that this paper has been posted as arXiv:1601.05904.

Competing interests
The authors declare that they have no competing interests.

Received: 13 April 2016 Accepted: 10 August 2016

References
Allombert V, Michéa D, Dupros F, Bellier C, Bourgine B, Aochi H, Jubertie S (2014) An out-of-core GPU approach for accel-

erating geostatistical interpolation. Proc Comput Sci 29:888–896
Arefin AS, Riveros C, Berretta R, Moscato P (2012) GPU-FS-kNN: a software tool for fast and scalable kNN computation

using GPUs. PLoS ONE 7(8):1–13
Beliakov G, Li G (2012) Improving the speed and stability of the k-nearest neighbors method. Pattern Recognit Lett

33(10):1296–1301
Bell N, Hoberock J (2012) Thrust: a productivity-oriented library for CUDA. In: Hwu WW (ed) GPU Computing Gems Jade

Edition. Applications of GPU computing series. Morgan Kaufmann, Boston, pp 359–371
Cheng T (2013) Accelerating universal Kriging interpolation algorithm using CUDA-enabled GPU. Comput Geosci

54:178–183
Cuomo S, Galletti A, Giunta G, Starace A (2013) Surface reconstruction from scattered point via RBF interpolation on GPU.

In: Ganzha M, Maciaszek LA, Paprzycki M (eds) Proceedings of the 2013 federated conference on computer science
and information systems, Kraków, Poland, September 8–11, 2013, pp 433–440

Cuomo S, De Michele P, Piccialli F (2014) 3D data denoising via nonlocal means filter by using parallel GPU strategies.
Comput Math Methods Med. doi:10.1155/2014/523862

Dashti A, Komarov I, D’Souza RM (2013) Efficient computation of k-nearest neighbour graphs for large high-dimensional
data sets on GPU clusters. PLoS ONE. doi:10.1371/journal.pone.0074113

de Ravé EG, Jiménez-Hornero FJ, Ariza-Villaverde AB, Gómez-López JM (2014) Using general-purpose computing on
graphics processing units (GPGPU) to accelerate the ordinary Kriging algorithm. Comput Geosci 64:1–6

Falivene O, Cabrera L, Tolosana-Delgado R, Sáez A (2010) Interpolation algorithm ranking using cross-validation and the
role of smoothing effect. A coal zone example. Comput Geosci 36(4):512–519

Garcia V, Debreuve E, Barlaud M (2008) Fast k nearest neighbor search using GPU. In: IEEE conference on computer vision
and pattern recognition, CVPR workshops 2008, Anchorage, AK, USA, 23–28 June, 2008, pp 1–6

Guan X, Wu H (2010) Leveraging the power of multi-core platforms for large-scale geospatial data processing: exempli-
fied by generating DEM from massive lidar point clouds. Comput Geosci 36(10):1276–1282

Guan Q, Kyriakidis PC, Goodchild MF (2011) A parallel computing approach to fast geostatistical areal interpolation. Int J
Geogr Inf Sci 25(8):1241–1267

Hu H, Shu H (2015) An improved coarse-grained parallel algorithm for computational acceleration of ordinary Kriging
interpolation. Comput Geosci 78:44–52

Huang Q, Yang C (2011) Optimizing grid computing configuration and scheduling for geospatial analysis: an example
with interpolating DEM. Comput. Geosci 37(2):165–176

Huang F, Liu D, Tan X, Wang J, Chen Y, He B (2011) Explorations of the implementation of a parallel IDW interpolation
algorithm in a linux cluster-based parallel GIS. Comput Geosci 37(4):426–434

Huang H, Cui C, Cheng L, Liu Q, Wang J (2012) Grid interpolation algorithm based on nearest neighbor fast search. Earth
Sci Inf 5(3–4):181–187

Huraj L, Siládi V, Silác̆i J (2010a) Comparison of design and performance of snow cover computing on GPUs and multi-
core processors. WSEAS Trans Inf Sci Appl 7(10):1284–1294

Additional file

Additional file 1. cudaAIDW_kNN: Source code of the improved GPU-accelerated adaptive IDW algorithm.

http://dx.doi.org/10.1155/2014/523862
http://dx.doi.org/10.1371/journal.pone.0074113
http://dx.doi.org/10.1186/s40064-016-3035-2

Page 22 of 22Mei et al. SpringerPlus (2016) 5:1389

Huraj L, Siládi V, Siláci J (2010b) Design and performance evaluation of snow cover computing on GPUs. In: Proceedings
of the 14th WSEAS international conference on computers: latest trends on computers, pp 674–677

Kato K, Hosino T (2012) Multi-GPU algorithm for k-nearest neighbor problem. Concurr Comput Pract Exp 24(1):45–53
Komarov I, Dashti A, D’Souza R (2014) Fast k-NNG construction with GPU-based quick multi-select. PLoS ONE.

doi:10.1371/journal.pone.0092409
Krige DG (1951) A statistical approach to some basic mine valuation problems on the witwatersrand. J Chem Metall Min

Soc 52(6):119–139
Leite PJS, Teixeira JMXN, de Farias TSMC, Reis B, Teichrieb V, Kelner J (2012) Nearest neighbor searches on the GPU—a

massively parallel approach for dynamic point clouds. Int J Parallel Program 40(3):313–330
Li L, Losser T, Yorke C, Piltner R (2014) Fast inverse distance weighting-based spatiotemporal interpolation: a web-based

application of interpolating daily fine particulate matter pm2.5 in the contiguous u.s. using parallel programming
and k-d tree. Int J Environ Res Public Health 11(9):9101–9141

Liang S, Wang C, Liu Y, Jian L (2009) CUKNN: a parallel implementation of k-nearest neighbor on CUDA-enabled GPU. In:
IEEE youth conference on information, computing and telecommunication, 2009. YC-ICT ’09, pp 415–418

Liu S, Wei Y (2015) Fast nearest neighbor searching based on improved VP-tree. Pattern Recognit Lett 60:8–15
Lu GY, Wong DW (2008) An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci

34(9):1044–1055
Mallet J (1989) Discrete smooth interpolation. ACM Trans Graph 8(2):121–144
Mallet J (1992) Discrete smooth interpolation in geometric modelling. Comput Aided Des 24(4):178–191
Mei G (2014) Evaluating the power of GPU acceleration for IDW interpolation algorithm. Sci World J.

doi:10.1155/2014/171574
Mei G, Tian H (2016) Impact of data layouts on the efficiency of GPU-accelerated IDW interpolation. SpringerPlus

5(1):1–18. doi:10.1186/s40064-016-1731-6
Mei G, Xu L, Xu N (2015) Accelerating adaptive IDW interpolation algorithm on a single GPU. arXiv:1511.02186
Pan J, Manocha D (2012) Bi-level locality sensitive hashing for k-nearest neighbor computation. In: IEEE 28th international

conference on data engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1–5 April, 2012, pp 378–389
Pesquer L, Cortés A, Pons X (2011) Parallel ordinary Kriging interpolation incorporating automatic variogram fitting.

Comput Geosci 37(4):464–473
Sankaranarayanan J, Samet H, Varshney A (2007) A fast all nearest neighbor algorithm for applications involving large

point-clouds. Comput Graph 31(2):157–174
Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd

ACM national conference. ACM’68, pp 517–524. ACM, New York, NY, USA
Shi X, Ye F (2013) Kriging interpolation over heterogeneous computer architectures and systems. GIScience Remote Sens

50(2):196–211
Strzelczyk J, Porzycka S (2012) Parallel Kriging algorithm for unevenly spaced data. In: Jónasson K (ed) Applied parallel

and scientific computing—10th international conference, PARA 2010, Reykjavík, Iceland, June 6–9, 2010, Revised
Selected Papers, Part I. Lecture notes in computer science, vol 7133, pp 204–212

Wang S, Gao X, Yao Z (2010) Accelerating POCS interpolation of 3D irregular seismic data with graphics processing units.
Comput Geosci 36(10):1292–1300

Wei H, Du Y, Liang F, Zhou C, Liu Z, Yi J, Xu K, Wu D (2015) A k-d tree-based algorithm to parallelize Kriging interpolation
of big spatial data. GIScience Remote Sens 52(1):40–57

Xia Y, Shi X, Kuang L, Xuan J (2010) Parallel geospatial analysis on windows HPC platform. In: Proceedings of the 2010
international conference on environmental science and information application technology (ESIAT), pp 210–213

Xia Y, Kuang L, Li X (2011) Accelerating geospatial analysis on GPUs using CUDA. J Zhejiang Univ Sci C 12(12):990–999

http://dx.doi.org/10.1371/journal.pone.0092409
http://dx.doi.org/10.1155/2014/171574
http://dx.doi.org/10.1186/s40064-016-1731-6
http://arxiv.org/abs/1511.02186

	Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search
	Abstract
	Introduction
	The AIDW interpolation algorithm
	The improved GPU-accelerated AIDW method
	Overview and basic ideas
	Stage 1: kNN search
	Creating an even grid
	Distributing data points into cells
	Determining data points in each cell
	Searching nearest neighbors

	Stage 2: weighted interpolating

	Implementation details
	Stage 1: kNN search
	Creating an even grid
	Distributing data points into cells
	Determining data points in each cell
	Searching nearest neighbors

	Stage 2: weighted interpolating
	Naive version
	Tiled version

	Results and discussion
	Experimental environment and testing data
	Performance of the improved GPU-accelerated AIDW algorithm
	Computational efficiency
	Comparison of the improved naive version and tiled version
	Workload between the stages of kNN search and weighted interpolating

	Comparison with the original GPU-accelerated AIDW algorithm

	Conclusion
	Authors’ contributions
	References

