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Background
Medical image artifacts are commonly encountered in medical imaging by X-ray com-
puted tomography (CT), ultrasonography and magnetic resonance imaging (MRI). Such 
artifacts affect image quality and may obscure anatomic structure and pathology (Anas 
et al. 2011; Boas and Fleischmann 2012). To increase image quality, several types of arti-
fact—such as beam hardening, scattering, motion, helical, ring and metal artifacts—have 
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Background:  Image artifacts affect the quality of medical images and may obscure 
anatomic structure and pathology. Numerous methods for suppression and correc‑
tion of scattered image artifacts have been suggested in the past three decades. In this 
paper, we assessed the feasibility of use of information on scattered artifacts for estima‑
tion of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or 
quantitative computed tomographic imaging (QCT).

Methods:  To investigate the relationship between scattered image artifacts and BMD, 
we first used a forearm phantom and cone-beam computed tomography. In the phan‑
tom, we considered two regions of interest—bone-equivalent solid material contain‑
ing 50 mg HA per cm−3 and water—to represent low- and high-density trabecular 
bone, respectively. We compared the scattered image artifacts in the high-density 
material with those in the low-density material. The technique was then applied to 
osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation.

Results:  The high-density material produced a greater number of scattered image 
artifacts than the low-density material. Moreover, the radius and ulna of healthy sub‑
jects produced a greater number of scattered image artifacts than those from osteopo‑
rosis patients.

Conclusions:  Although other parameters, such as bone thickness and X-ray incidence, 
should be considered, our technique facilitated BMD estimation directly without DXA 
or QCT. We believe that BMD estimation based on assessment of scattered image arti‑
facts may benefit the prevention, early treatment and management of osteoporosis.
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been the subjects of investigation (Glover and Pelc 1981; Huang et al. 2015; Mřnch et al. 
2009; Yazdi and Beaulieu 2008; Zhang et al. 2007).

This study focused on scattered image artifacts from cone-beam computed tomogra-
phy (CBCT). Scattered image artifacts produce dark streaks between two high-atten-
uation objects (such as metal, bone, iodinated contrast and barium) with surrounding 
bright streaks (Huang et al. 2015; Schulze et al. 2014; Zhen et al. 2012). Numerous meth-
ods for suppression and correction of scattered image artifacts have been suggested in 
the past three decades (Ogawa et al. 1991; Ohnesorge et al. 1999; Siewerdsen et al. 2006; 
Sun et  al. 2011). However, the complete correction of scattered image artifacts in CT 
images remains a challenge.

The focus of this work was not on reducing the number of scattered artifacts, but 
on making use of information on scattered artifacts to facilitate bone mineral density 
(BMD) estimation without dual-energy X-ray absorptiometry (DXA) or quantitative 
computed tomographic imaging (QCT). Indeed, BMD estimation based on scattered 
image artifacts was first attempted in the 1980s (Huddleston and Weaver 1983). How-
ever, CBCT was not available in the 1980s; it was introduced in the US in 2001 (Hatcher 
2010).

In this paper, the effect of substance density on scattered image artifacts using CBCT 
was evaluated using a forearm phantom containing cortical walls and trabecular bones, 
the densities of which differed according to their hydroxyapatite (HA) content (200, 100, 
50 or 0 mg cm−3). The abundance of scattered image artifacts was compared between 
low- and high-density regions of interest. The scattered image artifacts technique was 
then applied to osteoporosis patients and healthy subjects.

Methods
Scattered Radiation

The number of scattered photons based on Compton interactions is proportional to the 
electron density of a substance. Given a sphere with radius r, let the number of scattered 
photons from the center of a sphere be denoted by dIs(r), which can be formulated as 
follows (Huddleston and Weaver 1983):

where I(r) is the number of photons scattered to the detector per unit volume, A(r) is 
the area of the beam, µ(E) is the linear attenuation coefficient of the sphere substance at 
the incident photon energy E, ρ is the electron density of the sphere substance and θ(r) 
is the solid angle originating at the center. Then, by integrating dIs(r) through the entire 
sphere, the total number of scattered photons can be calculated as:

where S is the average scatter intensity per electron. Thus, the number of scattered arti-
facts is proportional to the attenuation coefficient, thickness and density of a substance. 
Therefore, given an identical X-ray incidence and substance thickness, the density can be 
estimated using the abundance of scattered image artifacts.

(1)dIs(r) ∼
I(r)

A(r)
· exp (−µ(E) · r) · ρ · θ(r),

(2)Is ∼ exp (−µ(E) · r) · ρ · S,
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Forearm phantom

To investigate the relationship between the abundance of scattered image artifacts 
and BMD, a forearm phantom consisting of materials of various densities was used. 
The Medicine European Forearm Phantom (QRM-EFP) comprises water- and bone-
equivalent solid materials and is used to test peripheral bone densitometry systems 
(Ruegsegger and Kalender 1993). The QRM-EFP is manufactured from a resin-based 
water-equivalent material and contains cortical walls and trabecular bones of various 
densities (200, 100 and 50 mg HA cm−3, representing high-, medium- and low-density 
bone, respectively) (Fig. 1). The cortical walls are of thickness 1.2 and 2.5 mm and den-
sity 800 mg HA cm−3 (Augat et al. 1998; Ruegsegger and Kalender 1993).

Acquisition of scattered image artifacts using peripheral CBCT

We obtained phantom images of the QRM-EFP forearm using peripheral CBCT 
(PHION, Nano Focus Ray, Jeonju, Korea). The scanning parameters were 130  kVp, 
10 mA, scanning times of 15–20 ms and a 1024 × 1024 image matrix. The total number 
of image slices was 462, each of 0.2162 mm thickness. To avoid generation of artifacts 
due to reflection from the underlying table, we suspended the phantom in the air (Fig. 2).

Figure 3a shows a QRM-EFP image obtained by peripheral CBCT. Using this image, 
the cortical wall contour was extracted as shown in Fig.  3b. The cortical bone com-
partment was segmented by an auto-contouring process, which generates a periosteal 
contour that delineates mineralized bone and extra-osseal soft tissue, and an endosteal 
contour that delineates the endocortical boundary from the cancellous compartment 
(Ma and Manjunath 2000; Shah et al. 2006). To extract the periosteal surface, threshold-
ing using a value of 900 Hounsfield units (HU) was applied to the CT image to obtain the 
contour of cortical bone. Clinically, the threshold HU value can differ among anatomi-
cal locations (De Oliveira et al. 2008; Hu et al. 2000; Richter et al. 2008). The endosteal 
surface was then extracted by masking the periosteal surface with a bone mask from the 
original image, and the periosteal contour was removed to leave only the pixels repre-
senting the marrow (Defreitas 1999). Subsequently, the area inside the periosteal surface 
was subtracted so that only the scattered image artifacts remained, as shown in Fig. 3.

Fig. 1  Medicine European forearm phantom (QRM-EFP); a QRM-EFP appearance and b its inner structure
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Among the extracted scattered image artifacts from 462 slice images, we considered 
40 slice images corresponding to the two regions of interest (“Results”, “Discussion” 
sections) (Fig.  4). Each ROI corresponded to bone-equivalent solid material contain-
ing 50 mg HA per cm−3 and water, representing low- and high-density trabecular bone, 
respectively. To evaluate the effect of density on scattered artifacts, threshold HU val-
ues of 500–900 in increments of 20 HU were applied, and the artifact pixels in low- and 
high-density materials were enumerated. The number of artifact pixels in the high-den-
sity material was subtracted from that in the low-density material.

Results
Phantom study

Figure 5 shows a CBCT image of the QRM-EFP obtained with 130 kVp, 10 mA and a 
20 ms X-ray exposure time. The left and right circles represent high- and low-density 
material, respectively. The results suggest that the high-density material produces a 
greater number of scattered image artifacts than does the low-density material. Scat-
tered image artifacts were further investigated by varying the threshold HU values from 
500 to 900 with an increment of 20  HU and enumerating the scattered artifact pixels 
from low- and high-density materials. The number of scattered image artifacts from the 
high-density material was subtracted from that of the low-density material (Fig. 6a). The 

Fig. 2  Cross-sectional view of QRM-EFP scanning from CBCT

Fig. 3  Scattered image artifacts acquisition a original QRM-EFP images obtained from CBCT, b separation of 
the cortical wall, and c remained scattered image artifacts
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number of scattered image artifacts was highest using a threshold value of 660, which 
yielded 5169 ± 37 scattered image artifacts from the low-density material and 5590 ± 32 
from the high-density material (Fig. 6b).

Clinical results from pilot study

Using the procedure outlined above, a pilot study involving two osteoporosis patients 
and two healthy subjects using CBCT was performed. Written informed consent was 
obtained from the patient for publication of this case report and any accompany-
ing images. The scanning parameters were 130 kVp, 8 mA, scanning time of 7.5 s, and 
image matrixes of 1024 × 1024 pixels with a slice thickness of 0.2162 mm. The scanning 
region extended roughly from the carpal bone to the elbow. Scattered image artifacts 
were enumerated using the optimal threshold value determined by two radiologists. 
The measurement and image analysis were performed by two radiologists at Wonkwang 

Fig. 4  Two regions of interest (ROIs) representing low and high density of a trabecular bone

Fig. 5  The scanned QRM-EFP images obtained from peripheral CBCT with 130 kvp, 10 mA and 20 ms expo‑
sure time
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University Hospital (WKUH). The WKUH Institutional Review Board (IRB) approved 
the measurement and analysis protocol. Figure 7a–d shows the scanned CBCT images 
of the forearm of the two healthy subjects and the two osteoporosis patients, respec-
tively. The radius and ulna of healthy subjects produced a greater number of scattered 
image artifacts than did those of the osteoporosis patients. The number of scattered arti-
fact pixels was 2332 ± 229 from the two osteoporosis patients and 5572 ± 831 from the 
two healthy subjects (Fig. 8).

Fig. 6  a The subtracted values (the number of artifacts from the high density material minus the number 
of artifacts from low density material) according to the threshold values, and b the number of artifact pixels 
from low- and high-density material; The diamonds above and below represent the 5th and the 95th percen‑
tiles of each group, and the squares above and below represent the 90th and the 10th percentiles. Whiskers 
above and below represent the 75th and the 25th percentiles, respectively. The circle is the median value

Fig. 7  Scanned forearm CBCT images; a, b From two healthy subjects, c, d From osteoporosis patients
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Discussion
Using the QRM-EFP, we scanned and acquired BMD values for the ROI (50 g/cm3) from 
DXA and QCT, and the values were 0.048 g/cm3 and 0.052 g/cm3, respectively, which 
were within the tolerance range in the phantom specification. In this study, we presented 
feasibility study that high-density material produced a greater number of scattered 
image artifacts than the low-density material. In addition, we further presented feasibil-
ity for the screening of osteoporosis. To quantify BMD value from the amount and/or 
intensity of artifacts, more sophisticated material density intervals in phantoms or clini-
cal data with optimized parameters of scanning time, image matrix, voltage and current 
need be further investigated in the future work.

In our study, we used peripheral CBCT, which was recently introduced two decades 
ago and currently and widely used for clinical diagnosis. It provides two-dimensional 
and three-dimensional images for the radiographed area with a relatively low cost radia-
tion dose as compared to conventional CT. Due to the low cost and low radiation dose, 
it became popular for peripheral site scanning, which can simply scan the extremity in a 
convenient way (ex. in a sitting or standing posture) rather than in a supine position using 
QCT and DXA. Regarding the radiation dose, DXA is with less radiation dose than CBCT. 
For an adult forearm, the effective radiation dose from CBCT is approximately 0.04 mSv, 
which is less than that from multi-detector CT (MDCT) with 0.13 mSv, but higher than 
that from DXA with 0.03 µSv (Huang et al. 2015; Thomas et al. 2006). However, in our 
study, only one slice image with thickness of 0.2162 mm out of 462 slice images is enough 
to assess the BMD value. Then, assuming the CBCT detector is optimized with the corre-
sponding thickness, the radiation dose can be further reduced up to 1/462 times, which is 
approximately equivalent to 0.3 µSv. Furthermore, the forearm CBCT images can be used 
for estimating BMD values of lumbar spine and hip bone with a linear regression (Jeong 
et al. 2016). Then, for lumbar spine and/or hip bone BMD, the effective radiation dose 
from CBCT is less than that from DXA, 2.2 µSv (Thomas et al. 2006).

One of the advantages in our approach is that only a forearm needs to be exposed 
via X-ray for BMD assessment of a lumbar spine and/or hip bones since the fore-
arm CBCT images can be used for estimating BMD values of a lumbar spine and hip 
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Fig. 8  Comparison of the number of scattered artifact pixels from two healthy subjects and two osteoporo‑
sis patients
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bones (Jeong et al. 2016). On the other hand, traditional approaches using DXA and 
QCT require X-ray exposure in the entire axial skeleton near a lumbar spine or a hip. 
Since the cancer occurrence by X-ray exposure is one of the main reasons, the expo-
sure of the forearm is better than that of the axial skeleton. Another advantage in our 
approach is that the radiation dose can be further reduced since only the artifacts 
images are used for BMD estimation. Much research efforts on BMD estimation have 
been conducted based on the correlation with HU and the image quality improvement 
of the bone ROI. More specifically, in Islamian et al. (2016), the effect of intravenous 
contrast media was investigated on BMD measurement of lumbar spine vertebrae 
with CT densitometric data. In (Schreiber et al. 2011), the correlation relationship was 
studied on HU with BMD and compressive strength. In Pickhardt et  al. (2011), the 
BMD assessment was studied on phantomless QCT and simple ROI attenuation meas-
urements of the lumbar spine. In (Islamian et al. 2016), BMD of lumbar spine verte-
brae was investigated with CT densitometric data on HU from abdominal and lumbar 
spine CT examinations. In Li et  al. (2013), the osteoporosis detection rates in post-
menopausal were compared from BMD with QCT and DXA in the ROI, spine images. 
In Bauer and Link (2009; Buckens et al. 2015; Majumdar and Leslie 2013), the osteo-
porosis screening based on QCT and/or DXA was similarly investigated. On the other 
hand, we used the amount of scattered artifacts outside the ROI, which is available 
even with low radiation dose. Thus, more research on the low radiation dose needs to 
be investigated in the future work.

However, even though the scattered image artifacts using CBCT simply and conveni-
ently provide the bone density information, the other parameters of attenuation coeffi-
cient and bone thickness are also proportional to the scattered artifact intensity. Figure 9 
shows the scattered image artifacts according to x-ray tube voltages, where x-ray tube 
current and scanning time is fixed with 10 mA and 20 ms, respectively. Thus, an opti-
mum x-ray incident as well as a bone thickness should be considered to be clinically 
available in the future. Furthermore, the pilot study needs to be rigorously further vali-
dated by considering more extensive subjects.

Conclusion
We investigated the effect of substance density on the production of scattered image 
artifacts using CBCT. The high-density material in a forearm phantom produced more 
scattered image artifacts than did the low-density material. To validate this finding, we 

Fig. 9  Effect of X-ray tube voltage on scattered image artifacts. a 100 kvp, 10 mA, 20 ms, b 110 kvp, 10 mA, 
20 ms, and c 120 kvp, 10 mA, 20 ms



Page 9 of 10Ko et al. SpringerPlus  (2016) 5:1360 

applied the technique to osteoporosis patients and healthy subjects as a pilot study, and 
found that the osteoporosis patients produced fewer scattered image artifacts than the 
healthy controls. Although other parameters, such as bone thickness and X-ray inci-
dence, should be considered, our technique facilitates BMD estimation without DXA 
or QCT. Therefore, BMD estimation based on scattered image artifacts may benefit the 
prevention, early treatment and management of osteoporosis.
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