
Performance impact of mutation
operators of a subpopulation‑based genetic
algorithm for multi‑robot task allocation
problems
Chun Liu1,2*  and Andreas Kroll2

Introduction
Multi-robot task allocation (MRTA) determines the task distribution and schedule for
a group of robots in multi-robot systems (Gerkey and Matarić 2004). It is a constrained
combinatorial optimization problem, which usually provides solutions to minimize the
cost or maximize the profit while satisfying some operational constraints. MRTA prob-
lems without cooperative tasks are similar to multiple traveling salesman problems,
both of them are NP- (non-deterministic polynomial-time) hard optimization problems.
MRTA problems with cooperative tasks are more complex and strongly NP-hard (Ger-
key and Matarić 2004), because each cooperative task requires at least two robots to
carry it out simultaneously, which introduces both spatial and temporal constraints.

Abstract 

Multi-robot task allocation determines the task sequence and distribution for a group
of robots in multi-robot systems, which is one of constrained combinatorial optimiza-
tion problems and more complex in case of cooperative tasks because they intro-
duce additional spatial and temporal constraints. To solve multi-robot task allocation
problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm,
a crossover-free genetic algorithm employing mutation operators and elitism selection
in each subpopulation, is developed in this paper. Moreover, the impact of mutation
operators (swap, insertion, inversion, displacement, and their various combinations) is
analyzed when solving several industrial plant inspection problems. The experimental
results show that: (1) the proposed genetic algorithm can obtain better solutions than
the tested binary tournament genetic algorithm with partially mapped crossover; (2)
inversion mutation performs better than other tested mutation operators when solving
problems without cooperative tasks, and the swap-inversion combination performs
better than other tested mutation operators/combinations when solving problems
with cooperative tasks. As it is difficult to produce all desired effects with a single muta-
tion operator, using multiple mutation operators (including both inversion and swap) is
suggested when solving similar combinatorial optimization problems.

Keywords:  Multi-robot task allocation, Genetic algorithms, Constrained combinatorial
optimization, Mutation operators, Subpopulation

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Liu and Kroll ﻿SpringerPlus (2016) 5:1361
DOI 10.1186/s40064-016-3027-2

*Correspondence: chun.liu@
bupt.edu.cn
1 School of Automation,
Beijing University of Posts
and Telecommunications,
No 10, Xitucheng Road,
100876 Beijing, China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-2834-9461
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3027-2&domain=pdf

Page 2 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

For solving an MRTA problem, the first important thing is to understand what the
tasks are. In general, tasks in an MRTA problem can be classified into single-robot tasks
and multi-robot tasks (Gerkey and Matarić 2004). A single-robot task is carried out by
a single robot. A multi-robot task requires multiple robots to perform, which is also
referred to as cooperative task. Tasks vary in different practical applications. Moreover,
the problem complexity increases with the number of robots required for each coopera-
tive task.

In the industrial plant inspection, two types of the inspection tasks exist according to
the measurement method and detection sensors (Bonow and Kroll 2013; Ordoñez Mül-
ler and Kroll 2013): single-robot tasks and two-robot tasks (cooperative tasks, each of
which requires two robots to carry out simultaneously). This paper aims at developing
an efficient algorithm to solve the multi-robot tasks allocation problems for the indus-
trial plant inspection.

The contributions of this paper include: (1) the development of the subpopulation-
based genetic algorithm, this algorithm employs mutation operators and elitism selec-
tion in each subpopulation, and can solve the multi-robot tasks allocation problems for
industrial plant inspection efficiently; and (2) the recommendation of mutation opera-
tors for solving multi-robot task allocation problems and similar optimization problems,
i.e., using multiple mutation operators (including both inversion and swap) is suggested.

Background
Related works on multi‑robot task allocation problems

To find good solutions efficiently for multi-robot task allocation problems, many
approaches have been developed, such as genetic algorithms (Jones et al. 2011; Liu and
Kroll 2012a), hybrid genetic algorithms (Liu and Kroll 2015; Ni and Yang 2012), auction-
based algorithms (Das et al. 2015), behavior-based algorithms (Butler and Hays 2015),
negotiations-based approaches (Rossi et al. 2015). Some of them can solve MRTA prob-
lems both without and with cooperative tasks, but some only can solve problems with-
out cooperative tasks.

Goldberg et al. (2003) proposed a distributed layered architecture for multi-robot sys-
tems. This architecture includes three layers: planning layer, executive layer, and behav-
ior layer. In the planning layer, a market-based approach was developed to allocate tasks.
Based on the market economy, Dias (2004), Zhang and Parker (2013) developed Trad-
erBots and IQ-ASyMTRe. Cicirello and Smith (2001, 2002) presented a decentralized
mechanism for coordinating factory operations in behavioral models. Similar behav-
ior-based algorithms include ALLIANCE (Parker 1998) and BLE (Werger and Matarić
2000). These methods can quickly deal with new tasks and dynamic environmental
information during execution. Different from distributed/decentralized methods men-
tioned above, this paper focuses on centralized approaches and aims at providing the
optimal solution for multi-robot task allocations with cooperative tasks.

Related works on genetic algorithms

A genetic algorithm (GA) (Mitchell 1998) is a centralized heuristic method inspired by
biological evolution. It is widely used for optimization and search problems because of
its simplicity, high flexibility in problem modeling, and good global search capability.

Page 3 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Many genetic algorithms have been developed to solve optimization problems in com-
putational science, engineering, economics, and other fields. For example, in engineer-
ing applications, genetic algorithms have been used to solve the design of roof structures
(Kociecki and Adeli 2014), assembly problems (Akpınar and Bayhan 2011), and indus-
trial plant inspection planning problems (Liu and Kroll 2012a).

Selection, crossover, and mutation operators maintain the population diversity (Mc
Ginley et al. 2011), and also influence the performance of genetic algorithms. There-
fore, many efforts have been devoted to the design of these operators; for example, a
new selection strategy based on population recombination and elitist refinement (Kwak
and Lee 2011), a two-part chromosome crossover operator (Yuan et al. 2013), and a
greedy sub tour mutation operator (Albayrak and Allahverdi 2011) have been developed
to improve the efficiency of genetic algorithms. Crossover and mutation are the main
search operators of genetic algorithms. They play different roles in genetic algorithms:
crossover tends to preserve the features of the parents, while mutation tends to make
some small local perturbation of individuals. Compared to crossover, mutation is usually
considered as a secondary operator with a low probability in standard genetic algorithms
(Holland 1992). This could be due to the fact that a large mutation rate would make
genetic algorithms to search randomly. However, many studies have shown that genetic
algorithms without crossover can perform better than standard genetic algorithms, if
mutation is combined with an effective selection operator (Fogel and Atmar 1990; Liu
and Kroll 2012b; Osaba et al. 2014; Walkenhorst and Bertram 2011).

Mutation is carried out with a single parent and plays an important role in increasing
the population diversity. Various mutation operators have been developed for different
solution representations: bit inversion mutation for binary coding (Holland 1992); swap,
insertion, inversion and displacement for permutation coding (Larrañaga et al. 1999);
Gaussian mutation (Sarangi et al. 2015), polynomial and power mutation for real cod-
ing (Deb and Deb 2012; Deep and Thakur 2007). Some mutation operators are problem-
dependent, such as greedy sub tour mutation for traveling salesman problems (Albayrak
and Allahverdi 2011) and energy mutation for multicast routing problems (Karthikeyan
et al. 2013). Some studies suggest a mutation-combination (Deep and Mebrahtu 2011)
or self-adaptive mutation operators (Hong et al. 2000; Mc Ginley et al. 2011; Serpell and
Smith 2010). The performance of different mutation operators highly depends on the
parameter choice of genetic algorithms (Brizuela and Aceves 2003; Osaba et al. 2014;
Wang and Zhang 2006) and the type of problems (Hasan and Saleh 2011; Karthikeyan
et al. 2013). Most of related work studied problems without cooperative tasks, such as
traveling salesman problems (Albayrak and Allahverdi 2011; Deep and Mebrahtu 2011)
and flow shop scheduling (Nearchou 2004; Wang and Zhang 2006). In this paper, the
performance of mutation operators will be analyzed when solving multi-robot task allo-
cation problems without or with cooperative tasks.

Permutation coding is used to represent solutions in this paper, which will be illus-
trated in section “Methods”. As a natural coding, permutation representation is widely
used for many search and optimization problems, such as traveling salesman prob-
lems, vehicle routing problems, job scheduling problems, task assignment problems.
Permutation problems can be classified into three types according to what influences
solution fitness (Cicirello 2015, 2016; Cicirello and Cernera 2013; Hernando et al. 2016;

Page 4 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Schiavinotto and Stützle 2007; Sörensen 2007; Tayarani-N. and Prügel-Bennett 2014):
A-permutation (absolute element positions most impact fitness), R-permutation (rela-
tive ordering most impacts fitness), and P-permutation (elements’ precedence impacts
fitness). Cicirello (2016) theoretically analyzed the performance of several common
mutation operators on different permutation problems. Multi-robot task allocation
problems studied in this paper are blended-permutation problems as both task assign-
ments among robots and task scheduling for each robot impact the fitness. The perfor-
mance of different mutation operators on solving these problems will also be analyzed in
this paper.

Multi‑robot task allocation problems for industrial plant inspection
Characteristics of tasks

This paper studies the problem of multi-robot task allocation for industrial plant inspec-
tion, and the target scenarios are derived from a tank farm of a petroleum refinery
(Fig. 1). To detect gas and fluid leakages in this refinery, remote sensing is usually used
(Bonow and Kroll 2013; Ordoñez Müller and Kroll 2013). This applied sensing technol-
ogy requires an active sensor and a diffuse reflecting background, and they are located in
different positions within their measurement range. If the surface of a target object can
be used as a reflecting background, only one robot with an active sensor is required to
detect the leakage of this target object; otherwise, two robots (one robot with an active
sensor and the other assistant robot with a special retro-reflector (Ordoñez Müller and
Kroll 2014) are required. This results in two types of tasks: single- and two-robot tasks.

Fig. 1  PCK refinery (© PCK Raffinerie GmbH)

Page 5 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Each single-robot task is performed by one robot with an active sensor at an inspec-
tion position. Each two-robot task is carried out by two distinct robots at two inspec-
tion positions simultaneously. Multi-robot task allocation for inspection problems with
cooperative tasks (two-robot tasks) introduces spatial and temporal constraints: spatial
constraints, tasks must be executed by robots each from specific inspection position;
temporal constraints, each cooperative task requires two robots to carry out at the very
same time.

Figures 2 and 3 display the simulation environments of two inspection problems with
cooperative tasks, which are derived from “Area 1” and “Area 2” of Fig. 1, respectively.
Both inspection problems are accomplished by 3 mobile robots. The inspection time of
the robots at inspection positions (marked with diamonds) is determined by the diam-
eters of target objects. All robots can move freely outside the inadmissible zones and
obstacles (marked with rectangles). Each pair of diamonds linked by a bold dashed line
defines the two inspection positions of a two-robot task (cooperative task). The other
diamonds represent inspection positions of single-robot tasks.

Assumptions of the problem

This paper focuses on strategic planning that makes decisions on allocating tasks to
robots, and does not respond to unplanned events such as robot collisions or road blocks
that can be handled during tactical planning. The multi-robot task allocation problems
studied in this paper are performed based on the following assumptions. (1) All robots
are identical and start at the same time. (2) All robots start from their home bases that

Fig. 2  Inspection area and tasks of Prob.C. Two inspection position of each cooperative task linked by a
dashed line

Page 6 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

are predefined, and end at their home bases after finishing their assigned tasks. Between
performing any two tasks, robots do not move back to their home bases. (3) Each sin-
gle-robot task is assigned to one robot, while each cooperative task is assigned to two
robots. Based on the described characteristics and assumptions of the multi-robot task
allocation for inspection problems, the time of each robot finishing its assigned tasks
includes three parts: the traveling time, the inspection time of each task, and the wait-
ing time occurring when performing cooperative tasks. In this work, the traveling time
is calculated using a modified A* algorithm (Liu 2014) that corrects infeasible paths
caused by the standard A* algorithm (Hart et al. 1968). The inspection time is predefined
according to the inspection method and measurement system properties. The waiting
time depends on the solution itself and is calculated for each solution candidate during
the execution of the genetic algorithm.

Objective and constraints

The objective of multi-robot task allocation problems is usually to minimize the total
mission cost due to energy consumption, completion time, and/or traveled distance.
Shorter duration of inspecting a plant permits a higher frequency of repetition of the
inspections, and also may reduce costs of the inspection. Therefore, the objective of
multi-robot task allocation problems in this paper is to find the optimal solution Aopt
that requires the minimal completion time (the time span between the first robot start-
ing its work and the last robot finishing its tasks). Aopt ∈ A, A is the set of all admissible
solutions of the task allocation problem.

Fig. 3  Inspection area and tasks of Prob.D. Two subtasks of each cooperative task linked by a dashed line

Page 7 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Formally, given a set of NR identical robots R = {Rk |k ∈ {1, 2, . . . ,NR}} and a set of NT
tasks T = {Tl |l ∈ {1, 2, . . . ,NT }}, the completion time (fitness value) J of each admissible
solution A ∈ A can be represented as

where A = {Ak |k ∈ {1, 2, . . . ,NR}} denoted as a set of NR vectors, Ak is the task sequence
of robot Rk and denoted as a vector, and Ck(Ak) is the time of robot Rk required to finish
all assigned tasks according to the sequence Ak. As we assume that all robots start at the
same time, the completion time is the maximal/longest value of operation times of all
robots in the system.

For task allocation problems with only single-robot tasks, instead of A in Eq. (1), each
admissible solution is denoted as AS = {AS

k |k ∈ {1, 2, . . . ,NR}} that has to satisfy the fol-
lowing constraint:

The task sequence of the k-th robot assigned d tasks is denoted as AS
k = {ak1, a

k
2, . . . , a

k
d} ;

each element in AS
k represents a task Tl. Equation (2) ensures that every task is exe-

cuted only once. In case of problems without cooperative tasks, the time Ck(A
S
k) of

robot Rk finishing all assigned tasks includes the traveling time from the home base
of Rk to the first task ak1, the sum of the traveling time of all pair of assigned tasks
(

aki and aki+1, k ∈ {1, 2, . . . , d − 1}
)

, the traveling time for returning from the last task akd
to the home base of Rk, and the sum of the inspection time of all tasks assigned to Rk.

For task allocation problems with cooperative tasks, each single-robot task is denoted
as a subtask Tl = tl and each cooperative task (two-robot task) is denoted as two sub-
tasks Tl = (tl1, tl2), all subtasks would form a set P = {Pi|i ∈ {1, 2, . . . ,NP}}, i.e.,

NP = NT + Nco, Nco is the number of cooperative tasks. Instead of A in Eq. (1), each
admissible solution is denoted as AC = {AC

k |k ∈ {1, 2, . . . ,NR}} that has to satisfy the
following constraint:

with i, k ∈ {1, 2, . . . ,NR}. Where each element in AC
k represents a subtask Pi. Subtasks

assigned to the same robot are performed sequentially, while subtasks assigned to differ-
ent robots are performed in parallel. The constraint (4) ensures that each subtask is exe-
cuted only once. In case of problems with cooperative tasks, the time Ck

(

AC
k

)

 of robot
Rk finishing all assigned tasks includes the traveling time from the home base of Rk to its
first task, the sum of the traveling time between two assigned tasks, the traveling time

(1)J (A) = max
k∈{1,...,NR}

Ck(Ak),

(2)
NR
⋃

k=1

AS
k =

NT
⋃

l=1

Tl , AS
k

⋂

k �=i

AS
i = ∅.

(3)
NT
⋃

l=1

Tl = P.

(4)
NR
⋃

k=1

AC
k = P, AC

k

⋂

k �=i

AC
i = ∅,

Page 8 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

for returning from the last task to the home base of Rk, the sum of the inspection time of
all tasks assigned to Rk, and the waiting time for carrying out cooperative tasks.

In addition, the following three executability constraints (EC) must also be satisfied
to ensure that the task allocation AC of problems with cooperative tasks is feasible for
execution:

(EC1)	 Each cooperative task is carried out by two different robots.
(EC2)	 Two subtasks of each cooperative task are started at the same time.
(EC3)	 When two robots are scheduled to carry out a cooperative task, all tasks that are

assigned to both robots before this cooperative task have to be executable and fin-
ished.

Methods
A subpopulation-based genetic algorithm is developed to solve the multi-robot task allo-
cation problems with cooperative tasks in this section. At the beginning of this section,
the solution representation is introduced. After that, the implementation of the pro-
posed genetic algorithm is illustrated. At the end, the subpopulation-based and standard
genetic algorithms (Beyki and Yaghoobi 2015; Larrañaga et al. 1999; Pandey et al. 2016)
are compared.

Solution representation

Many coding strategies have been proposed to represent solutions, e.g., permutation,
adjacency, ordinal coding (Larrañaga et al. 1999). Permutation coding is used to repre-
sent a solution in this paper because: (1) it is the most natural and readable way to rep-
resent a task sequence; (2) it can be easily implemented in the most commonly used
programming languages such as MATLAB or C/C++. Based on the permutation cod-
ing, the task-based coding is designed to solve multi-robot task allocation with coop-
erative tasks. This coding strategy will not create infeasible solutions and a genotype
corresponds to just one phenotype. In the following part, the encoding and the decoding
of this coding strategy are illustrated, respectively.

Encoding (Genotype) The genotype of a solution represents the task sequence of each
robot and consists of two parts:

• • A chromosome is a string of genes and represents the sequence of all NT tasks. Each
gene represents a task and is denoted as an integer in the range of [1,NT]. Each chro-
mosome consists of NT distinct integers in the range of [1,NT].

• • A gene-apportion is a set of NR − 1 distinct integers in the range of [1,NT − 1],
which splits a chromosome into NR parts for NR robots.

The genotypes represent the initial allocation that each task is assigned to one robot
and robot coalitions of cooperative tasks have not yet built. Genetic operators are
applied to the genotypes of solutions not phenotypes of them. Both the chromo-
some and gene-apportion of each genotype in the initial population is generated
at random. For example, Fig. 4a shows an example problem where six single-robot

Page 9 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

tasks (T1 − T5,T8) and two cooperative tasks (T6,T7) will be carried out by three
robots. In this example, T6 = (P6,P9) and T7 = (P7,P8), that is, the set of 10 subtasks
P = {P1,P2,P3,P4,P5,P6,P7,P8,P9,P10}. The subtasks and costs are listed in Tables 1, 2,
3, and 4. As each task is encoded as one gene, the genotype of a solution candidate can
be represented as shown in Fig. 4c: the chromosome consists of 8 distinct integers in
the range of [1, 8], e.g., {1, 2, 3, 4, 5, 6, 7, 8}; this chromosome is split into three segments
by a gene-apportion {3, 6} that is represented as two vertical lines. The phenotype and
schedule corresponding to this genotype is shown in Fig. 4d, the strategy of decoding
genotypes is detailed in the following parts.

Decoding (Phenotype) The phenotypes represent complete feasible task allocations
including the distribution and the sequence of all subtasks. The completion time of each
solution candidate is calculated according to its phenotype not genotype. In a genotype,
each cooperative task is only assigned to one robot, thus the other robot is required to
carry out this task simultaneously. A genotype is decoded as a phenotype via two steps:

(1) �For single-robot tasks, each gene is directly decoded as its corresponding task; see
Fig. 5a.

Fig. 4  An example with single-robot tasks (T1 − T5, T8) and cooperative tasks (T6, T7). a Example map. b Tasks
and subtasks. c Genotype. d Phenotype

Page 10 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Ta
bl

e 
1 

Co
or

di
na

te
s

an
d

in
sp

ec
ti

on
 ti

m
e

of
 e

ac
h

su
bt

as
k

in
 F

ig
. 4

Su
bt

as
k

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1
0

x
3

3
3

7
7

7
7

10
10

10

y
13

9
4

3
5

9
13

13
9

4

In
sp

ec
tio

n
tim

e
1

6
1

1
1

1
1

1
1

1

Page 11 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

(2) �For cooperative tasks, two subtasks of each cooperative task should be decoded. The
main idea of the following decoding is to minimize the waiting time. According to
the genotype, it is obvious that each cooperative task is already assigned to a robot
Rk, e.g. T6 is assigned to Rk = R2. Hence, the next step is to find the second robot Rs
so that two robots can carry it out cooperatively (satisfying the constraint EC1). For
each cooperative task Tl = (P′

α ,P
′
β) that is carried out by robot Rk after finishing Pγ

according to the genotype of an individual, the decoding process is:

(S1)	 One subtask of Tl = (P′
α ,P

′
β), which is closest to robot Rk when it finishing Pγ, is

denoted as Pα; the other subtask of Tl is denoted as Pβ. That is, Pα must satisfies
ct
αγ k ≤ ct

βγ k, where ctijk is the traveling time of robot Rk from one subtask Pi to
another subtask Pj. Subtask Pα is assigned to robot Rk after finishing Pγ.

(S2)	 Subtask Pβ is inserted at the “best” position of the task sequences of robots
Rs ∈ (R\Rk) to satisfy the constraint EC1. Denoting τai as the arriving time of a
robot at Pi, the waiting time must be cw =

∣

∣

∣
τaα − τaβ

∣

∣

∣
 to satisfy the constraint EC2.

If τaα < τaβ, robot Rk waits for cw at the inspection position of Pα until robot Rs
arrives at the inspection position of Pβ; otherwise robot Rs waits for cw at the
inspection position of Pβ until robot Rk arrives at the inspection position of Pα .
The “best” position is the position that provides the least waiting time for per-
forming this cooperative task, which is calculated by enumerating all possible
positions of the task sequences of robots Rs. To satisfy the constraint EC3, this
decoding is carried out starting from the cooperative task that a robot meets first,
so that all decoded phenotypes are feasible for execution. The steps of this decod-
ing are:

	 (S2.1) Calculate the arriving time τaα for all cooperative tasks denoted as a set TT;

	 (S2.2) Sort TT in ascending order by τaα;

	 (S2.3) For the first cooperative task of TT, insert its Pβ to all possible positions
and calculate cw; find the best position that provides the minimal cw; insert Pβ to
the best position, delete this cooperative task from TT, recalculate τaα.

	 (S2.4) Repeat (S2.2)–(S2.3) until all cooperative tasks are decoded.

	 For instance, the decoding outcome of the step “S1” is shown in Fig. 5b: P6 is
assigned to R2 because ct562 < ct592; P7 is assigned to R3 after leaving its home
base (denoted as “0”) because ct073 < ct083. The decoding outcome of the step
“S2” is shown in Fig. 5c, d. Possible positions are marked as “active” (denoted

Table 2  Coordinates of home base of each robot in Fig. 4

Home base S1 S2 S3

x 4 5 6

y 1 1 1

Page 12 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Ta
bl

e 
3 

Tr
av

el
in

g
ti

m
e

be
tw

ee
n

ho
m

e
ba

se
s

an
d

su
bt

as
ks

 in
 F

ig
. 4

Tr
av

el
in

g
tim

e
P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1
0

S 1
12

.4
8.

4
3.

4
3.

8
5.

2
9.

2
13

.2
16

.2
12

.2
8.

4

S 2
12

.8
8.

8
3.

8
2.

8
4.

8
8.

8
12

.8
15

.8
11

.8
7.

4

S 3
13

.2
9.

2
4.

2
2.

4
4.

4
8.

4
12

.4
15

.4
11

.4
6.

4

Page 13 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Ta
bl

e 
4 

Tr
av

el
in

g
ti

m
e

be
tw

ee
n

an
y

pa
ir

 o
f s

ub
ta

sk
s

in
 F

ig
. 4

Tr
av

el
in

g
tim

e
P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1
0

P
1

0.
0

4.
0

9.
0

11
.7

9.
7

5.
7

4.
0

18
.7

14
.7

13
.7

P
2

4.
0

0.
0

5.
0

7.
7

5.
7

4.
0

5.
7

15
.2

11
.2

10
.2

P
3

9.
0

5.
0

0.
0

4.
4

4.
4

6.
7

10
.7

14
.8

10
.8

9.
8

P
4

11
.7

7.
7

4.
4

0.
0

2.
0

6.
0

10
.0

13
.0

9.
0

6.
0

P
5

9.
7

5.
7

4.
4

2.
0

0.
0

4.
0

8.
0

11
.0

7.
0

6.
0

P
6

5.
7

4.
0

6.
7

6.
0

4.
0

0.
0

4.
0

13
.0

9.
0

8.
0

P
7

4.
0

5.
7

10
.7

10
.0

8.
0

4.
0

0.
0

17
.0

13
.0

12
.0

P
8

18
.7

15
.2

14
.8

13
.0

11
.0

13
.0

17
.0

0.
0

4.
0

9.
0

P
9

14
.7

11
.2

10
.8

9.
0

7.
0

9.
0

13
.0

4.
0

0.
0

5.
0

P
1
0

13
.7

10
.2

9.
8

6.
0

6.
0

8.
0

12
.0

9.
0

5.
0

0.
0

Page 14 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

as “1”), whereas impossible positions are marked as “inactive” (denoted as “0”).
The decoding algorithm first finds the “best” position for P9 because robot R2
meets task T6 earlier than robot R3 meets task T7, i.e., τa6 < τa7 (τai means the
arrival time of a robot at the inspection position of Pi). There are seven pos-
sible positions for decoding P9 except positions of robot R2, but only five posi-
tions will be tested: for R1, all four positions are tested; for R3, only the posi-
tion before P7 is tested because P7 belongs to another cooperative task, which
is performed in order to satisfy the constraint EC3. As P9 being inserted before
P7 provides the minimum waiting time, R2 is waiting for cw62 = |τa9 − τa6 | = 0.6
at P6 until R3 arrives at P9 such that robots R2 and R3 can cooperatively per-
form T6 (satisfying the constraints EC1 and EC2). In order to satisfy the con-
straint EC3, positions of chromosomes before either P6 or before P9 are marked
as “inactive”; see Fig. 5c. Therefore, only five active positions can be tested when
decoding the next cooperative task P8 (see Fig. 5d). Before assigning P8, the
arriving time of R3 at P7 is recalculated, τa7 = 25.4. The minimum waiting time
cw = 0 can be obtained when P8 is inserted after P6. That is, R2 arrives at P8 and
R3 arrives at P7 at the same time. The complete task allocation obtained using
this decoding requires robots R2 and R3 as a coalition to execute T6 and T7 as
shown in Fig. 5d. Based on the solution expression in section “Related works
on multi-robot task allocation problems”, the solution in Fig. 5 is denoted as
A
C =

{

AC
1 ,A

C
2 ,A

C
3

}

= {{P1,P2,P3}, {P4,P5,P6,P8}, {P9,P7,P10}}.

Fig. 5  Decoding for a genotype in Fig. 4. a Decode single-robot tasks. b Decode a subtask of each coopera-
tive task. c Decode the other subtask P9 of the first cooperative task T6. d Decode the other subtask P8 of the
second cooperative task T7

Page 15 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

As illustrated above, this decoding can satisfy all executability constraints, i.e., all
decoded phenotypes are feasible for execution.

Using this representation, each individual (solution candidate) includes a genotype
and a phenotype. In the proposed genetic algorithm, the chromosomes of the genotypes
are mutated for generating offspring; phenotypes are used to calculate the completion
time.

Process of the developed genetic algorithm

The developed genetic algorithm in this paper is based on subpopulations. The main
idea of this algorithm is that selection and genetic operators are applied separately in
each subpopulation. Elites selection is based on the fitness of individuals in a subpopula-
tion not in the whole population, thus more elites including both global elites and local
elites will be kept in the new generation. These elites avoid losing the best found solu-
tion and local optimal solutions. The pseudo code of our proposed subpopulation-based
genetic algorithm is presented in Algorithm 1.

Page 16 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Parameters Parameters of the genetic algorithm are set at the beginning, such as popula-
tion size (pop_siz), subpopulation size (pop_sub), elite count (eli_cnt), mutation prob-
ability (pm), and termination criterion (gen_num).
Initial population The initial population is randomly produced based on the permuta-
tion coding, that is, both the chromosome and gene-apportion of each genotype in the
initial population are generated at random based on encoding strategy.
Fitness calculation All genotypes should be decoded as phenotypes according to the
decoding procedure before fitness calculation. The fitness of each individual means the
completion time that is calculated according to the fitness function (1).
New population As can be seen from Algorithm 1, a new population is generated based
on subpopulations. First, the whole population is randomly divided into non-overlap-
ping subpopulations, and each subpopulation involves pop_sub individuals. After that,
the elitism selection and mutation operators are applied to each subpopulation. The
eli_cnt superior individuals are transferred to the new population, and the best_num
superior individuals are selected as parents. The pop_sub− eli_cnt offspring are pro-
duced by mutating parents and generating new gene-apportions:

• • The chromosome of a new offspring is produced by swap, insertion, inversion, or dis-
placement mutation. Swap mutation exchanges two randomly selected genes. Inser-
tion mutation moves a randomly chosen gene to another randomly chosen place.
Inversion mutation reverses a randomly selected gene string. Displacement mutation
inserts a random string of genes in another random place. Insertion can be consid-
ered as a special displacement.

• • The gene-apportion of a new offspring is generated with a probability pa; otherwise,
the gene-apportion of the parent is kept for the offspring. A gene-apportion is defined
by NR − 1 integers. Each element in a new gene-apportion is generated by rounding
a number that is randomly selected within the range of [1,NT] according to a stand-
ard normal distribution (µ, σ 2). µ is the cumulative average of the gene-apportion of
the best individual obtained in each previous generation; σ = 0.03× NT is used in
this paper. This gene-apportion procedure will choose numbers that are near to the
cumulative average, with a higher probability.

Termination criterion The genetic algorithm is terminated when the number of gener-
ations reaches a predefined number of generations (gen_num) in this paper. Both the
population size and the number of generations are fixed in the simulation studies, i.e.,
the number of all produced individuals is constant. There are many alternative choices
of the termination criterion, e.g. a maximal number of generations, CPU time limit, and
fitness limit/stall. In this paper, a fixed number of generations is used because (1) CPU
time highly depends on the computer hardware, (2) what is a good fitness value is unpre-
dictable, and (3) the convergence properties highly depend on the initial population and
the individual run of the genetic algorithm.

Page 17 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Comparison of the subpopulation‑based genetic algorithm and standard genetic

algorithms

The main difference between the subpopulation-based genetic algorithm and standard
genetic algorithms (Beyki and Yaghoobi 2015; Larrañaga et al. 1999; Pandey et al. 2016)
is the way of producing offspring. We compare the subpopulation-based genetic algo-
rithm with standard genetic algorithms with tournament selection (see Algorithm 2)
(Beyki and Yaghoobi 2015; Pandey et al. 2016), as the selection strategy of the subpopu-
lation-based genetic algorithm is similar to tournament selection.

Selection First, elites keeping in the new generation are different: a number of supe-
rior individuals in the whole population are selected in standard genetic algorithms,
while elites in each subpopulation are chosen in the subpopulation-based genetic algo-
rithm. The subpopulation-based genetic algorithm can keep both the current best solu-
tion and the local optima that may avoid the population being dominated by a fewer
“super” individuals. Second, tournament selection is performed in the whole population
randomly, while parents are selected from each non-overlapping subpopulation in the
subpopulation-based genetic algorithm. Parents from non-overlapping subpopulations

Page 18 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

are distributed evenly in the solution space of the current population, which may avoid
keeping too many better/worse individuals or missing some local optima.
Crossover and mutation Both crossover and mutation are used to produce offspring
in standard genetic algorithms, while only mutation operator is used in the proposed
genetic algorithm. The best_num superior individuals in each subpopulation are
mutated, while the rest is not used to produce offspring. pop_sub− eli_cnt offspring in
each subpopulation are generated by mutation with a probability of pm = 1. Note that,
pm = 1 does not mean a random search because: the mutation operator is performed in
each subpopulation, and eli_cnt superior individuals in each subpopulation are kept in
the new generation without mutation.

Time complexity The procedure of generating a new population in standard genetic
algorithms is more complex than that in the proposed subpopulation-based genetic
algorithm. The time complexity of the selection in standard genetic algorithms is
O(pop_siz − eli_cnt), because pop_siz − eli_cnt parents are selected. As illustrated
above, the time complexity of the selection in the subpopulation-based genetic algo-
rithm is O(best_num · pop_siz/pop_sub). The time complexity of swap is O(1) as it is
independent of the chromosome length. The time complexity of insertion, inversion, and
displacement is O(NT) as in the worst case all genes have to be changed. Many crosso-
ver alternatives such as partially mapped crossover (PMX) (Goldberg and Lingle 1985),
position based crossover, order crossover, and cycle crossover have been proposed for
permutation representation. The work of Larrañaga et al. (1999) shows that order cross-
over is the best crossover and PMX is the fastest crossover when solving small-scale
traveling salesman problems. The work of Mudaliar and Modi (2013) shows that PMX
is the best crossover when solving traveling salesman problems. The performance of dif-
ferent crossover highly depends on problems. Taking PMX as an example, the mapping
relationship between selected numg genes from each pair of parents should be built to
legalize the offspring. The time complexity of PMX is O(numg + NT) in the worst case:
all numg genes should be mapped from one parent to the other and all genes have to be
changed.

Results
In this section, the performance of the proposed genetic algorithm is analyzed when
solving multi-robot task allocation problems without/with cooperative tasks. Four prob-
lems are tested in the simulation studies:

• • Prob.A involves 90 single-robot tasks that are distributed in rows; its inspection area
is similar to that shown in Fig. 2 but all tasks are single-robot tasks.

• • Prob.B involves 100 single-robot tasks that are distributed in islands; its inspection
area is similar to that shown in Fig. 3 but all tasks are single-robot tasks.

• • Prob.C involves 80 single-robot tasks and 5 cooperative tasks, and all tasks are dis-
tributed in rows; see Fig. 2.

• • Prob.D involves 90 single-robot tasks and 5 cooperative tasks, and all tasks are dis-
tributed in islands; see Fig. 3.

Page 19 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Prob.A and Prob.B are multi-robot task allocation problems without cooperative tasks.
Prob.C and Prob.D are multi-robot task allocation problems with cooperative tasks.
These scenarios have been used as test cases already in Liu (2014), Liu and Kroll (2015)
to compare the performance of different encoding and decoding strategies.

In the experiments, each tested genetic algorithm is performed with a population size
of pop_siz = 200 and the number of generations chosen as gen_num = 104. To statis-
tically evaluate the performance of the proposed genetic algorithm, 20 independent
runs of each algorithm are implemented on an Intel Core i3 PC with 3.2 GHz, 8 GB
(RAM), Windows 7 Professional, MATLAB R2011b. More runs could provide more
accurate results but require more CPU time. Hence, 20 independent runs are carried out
to restrict the computational effort, and analysis of variance (ANOVA) is used to check
whether the performance differences (solution quality) between the different genetic
algorithms are statistically significant. If the value of the significance level is smaller than
0.05, the effects of genetic algorithms are assessed to be statistically significant at a level
of confidence of 95 %.

Experiment 1: Subpopulation‑based versus binary tournament GA

The first experiment compares the performance of the subpopulation-based genetic
algorithm with a standard genetic algorithm with binary tournament selection. The
frameworks of both genetic algorithms are displayed in Algorithm 1 and Algorithm 2
in section “Methods”, and the parameters of two genetic algorithms are listed in Table 5.
Inversion mutation is used in both genetic algorithms because it performs better than
other mutation operators when solving R-permutation problems (Cicirello 2016), such
as TSP (Albayrak and Allahverdi 2011; Deep and Mebrahtu 2011; Liu and Kroll 2012b)
and flow shop scheduling (Wang and Zhang 2006). As discussed in section “Comparison
of the subpopulation-based genetic algorithm and standard genetic algorithms”, a stand-
ard genetic algorithm with tournament selection and partially mapped crossover (PMX)
is compared with the proposed genetic algorithm because (1) tournament selection is
similar to our proposed selection and (2) tournament selection and PMX performs well
when solving similar problems (Beyki and Yaghoobi 2015; Mudaliar and Modi 2013;
Pandey et al. 2016; Taplin et al. 2005).

The experimental results are recorded in Table 6, which indicate that the proposed
subpopulation-based genetic algorithm provides better solutions and requires less CPU

Table 5  Parameter choice in the experiments

Parameter Subpopulation-based GA Standard GA

pop_sub 10 –

tor_siz – 2

eli_cnt 2 2

best_num 1 –

pc – 0.9

pm 1 0.01

pa 0.2 0.2

Crossover – PMX

Mutation Inversion Inversion

Page 20 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

time than the tested binary tournament genetic algorithm. An ANOVA test shows that
the differences in the solution quality between these two genetic algorithms are statisti-
cally significant. Randomly choosing 5 from the 20 runs of each genetic algorithm, the
solution quality (completion time) of the best solution candidate in each generation is
shown in Fig. 6. It is obvious that the subpopulation-based genetic algorithm converges
significantly faster than the tested binary tournament genetic algorithm within the first
1000 generations.

This experiment indicates that the proposed genetic algorithm based on subpopula-
tions performs better than the tested binary tournament genetic algorithm with PMX
crossover when solving multi-robot task allocation problems, especially when requiring
less CPU time and a fewer generations.

Experiment 2: Subpopulation‑based GA with single mutation operator

The second and the third experiments analyze the effects of the subpopulation-based
genetic algorithm with different mutation operators and their combinations. Swap,
insertion, inversion, and displacement mutation operators are investigated in this paper.
The tested subpopulation-based genetic algorithms are listed in Table 7.

The second experiment tests the performance of the subpopulation-based genetic
algorithms with a single mutation operator (GA1–GA4 in Table 7); each mutation oper-
ator produces pop_sub− eli_cnt = 8 offspring in each subpopulation. The results are
shown in Fig. 7. An ANOVA test shows that: (1) inversion (GA3) performs significantly
better than the other three mutation operators when solving Prob.A and Prob.B; (2) the
differences in the solution quality are not statistically significant when using swap, inver-
sion, and displacement to solve Prob.C and Prob.D.

Table 6  Completion time J in sec. and average CPU time in sec. for different genetic algo‑
rithms

Jmax maximum completion time, Jmean mean completion time, Jmin minimum completion time

Problem Criterion Subpopulation-based GA Standard GA

Prob.A Jmin 170.06 250.03

Jmean 189.55 290.07

Jmax 225.56 319.12

CPU 988 1432

Prob.B Jmin 185.95 257.16

Jmean 207.03 300.45

Jmax 228.75 355.11

CPU 1028 1423

Prob.C Jmin 252.72 348.52

Jmean 292.78 414.79

Jmax 376.46 500.94

CPU 2419 2732

Prob.D Jmin 255.96 374.93

Jmean 333.07 448.25

Jmax 383.95 480.42

CPU 2580 2885

Page 21 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Experiment 3: Subpopulation‑based GA with multiple mutation operators

The third experiment analyzes the performance of the subpopulation-based genetic
algorithms with multiple mutation operators (GA5–GA8 in Table 7). Each mutation
operator in GA5–GA7 produces 4 offspring in each subpopulation by repeated appli-
cation; each mutation operator in GA8 produces 2 offspring in each subpopulation; all
mutation operators are applied in parallel. Inversion is combined with the other muta-
tion operators in this experiment, because it performed well in the second experiment.
The experimental results are displayed in Fig. 8. An ANOVA test shows that: (1) the dif-
ferences in the solution quality between GA5–GA8 are not statistically significant when
solving Prob.A and Prob.B; (2) GA5 and GA8 can provide significantly better solutions
than GA6 and GA7 when solving Prob.C and Prob.D.

The results of all tested subpopulation-based genetic algorithms listed in Table 7 are
shown in Fig. 9 and Table 8. GA3, GA5, and GA8 can provide better solutions than the

Fig. 6  The search progress of two genetic algorithms for solving Prob.C. 5 runs selected from the total 20
runs of each algorithm

Table 7  Subpopulation-based genetic algorithm with different mutation operators

Genetic algorithm Mutation operator(s)

GA1 Swap

GA2 Insertion

GA3 Inversion

GA4 Displacement

GA5 Swap and inversion

GA6 Insertion and inversion

GA7 Displacement and inversion

GA8 Swap, insertion, inversion, and displacement

Page 22 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Fig. 7  The distribution of the solution quality of the subpopulation-based genetic algorithms with a single
mutation operator. 20 runs

Fig. 8  The distribution of the solution quality of the subpopulation-based genetic algorithm with multiple
mutation operators. 20 runs

Page 23 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

other genetic algorithms. An ANOVA test shows that: (1) the differences in the solution
quality using GA3, GA5, GA6, GA7, and GA8 are not statistically significant when solv-
ing Prob.A and Prob.B; (2) GA5 and GA8 perform significantly better than the other
tested genetic algorithms when solving Prob.C and Prob.D.

The implementation of the subpopulation-based genetic algorithm and test results for
solving Prob.C is available as Additional file 1.

Discussion
Experimental results show that inversion performs well when solving multi-robot task
allocation problems without cooperative tasks, which is similar to the study of solving
traveling salesman problems (Albayrak and Allahverdi 2011; Deep and Mebrahtu 2011;
Liu and Kroll 2012b). The swap and inversion combination performs well when solving
multi-robot task allocation problems with cooperative tasks, which could be due to the
fact that they can improve solution candidates with crossed paths effectively.

In general, it is difficult to find the best mutation operator that could produce all
desired effects. The influences of mutation operators vary in different genetic algorithms
and in solving different problems. According to what most influences solution fitness,
permutation problems were be classified into three major types (Cicirello 2015, 2016;
Cicirello and Cernera 2013; Sörensen 2007). Cicirello (2016) theoretically analyzed the
performance of several common mutation operators on different permutation problems,
and suggested swap for most A-permutation problems and inversion for R-permutation
problems with undirected edges.

Fig. 9  The distribution of the solution quality of the subpopulation-based genetic algorithm with different
mutation operators. 20 runs

Page 24 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Ta
bl

e 
8 

Co
m

pl
et

io
n

ti
m

e
J i

n
se

c.
 fo

r t
he

 s
ub

po
pu

la
ti

on
-b

as
ed

 g
en

et
ic

 a
lg

or
it

hm
 w

it
h

di
ff

er
en

t m
ut

at
io

n
op

er
at

or
s

 B
es

t r
es

ul
ts

 h
ig

hl
ig

ht
ed

 in
 it

al
ic

 fa
ce

G
A

1—
Sw

ap
; G

A
2—

In
se

rt
io

n;
 G

A
3—

In
ve

rs
io

n;
 G

A
4—

D
is

pl
ac

em
en

t;
G

A
5—

Sw
ap

 a
nd

 in
ve

rs
io

n;
 G

A
6—

In
se

rt
io

n
an

d
in

ve
rs

io
n;

 G
A

7—
D

is
pl

ac
em

en
t a

nd
 in

ve
rs

io
n;

 G
A

8—
Sw

ap
, i

ns
er

tio
n,

 in
ve

rs
io

n,
 a

nd
 d

is
pl

ac
em

en
t.

2

Pr
ob

.A
 a

nd
 P

ro
b.

B
w

ith
ou

t c
oo

pe
ra

tiv
e

ta
sk

s;
 P

ro
b.

C
an

d
Pr

ob
.D

 w
ith

 c
oo

pe
ra

tiv
e

ta
sk

s

Pr
ob

le
m

Cr
ite

ri
on

G
A

1
G

A
2

G
A

3
G

A
4

G
A

5
G

A
6

G
A

7
G

A
8

Pr
ob

.A
J m

in
24

0.
87

25
9.

00
17

0.
06

20
7.

28
18

4.
07

17
8.

41
17

0.
10

16
9.

73

J m
e
a
n

27
3.

98
31

0.
50

18
9.

55
22

5.
93

20
0.

86
19

8.
31

20
0.

00
19

7.
73

J m
a
x

31
4.

81
39

6.
67

22
5.

56
27

8.
89

22
4.

40
24

5.
39

22
9.

00
22

3.
99

Pr
ob

.B
J m

in
22

8.
42

29
3.

00
18

5.
95

22
2.

65
19

3.
22

19
3.

25
19

1.
36

18
9.

00

J m
e
a
n

26
0.

16
34

5.
23

20
7.

03
24

3.
05

20
6.

74
20

6.
91

21
3.

62
20

4.
46

J m
a
x

29
4.

05
39

0.
84

22
8.

75
27

0.
26

22
7.

21
24

6.
90

23
4.

23
22

9.
72

Pr
ob

.C
J m

in
27

0.
50

32
8.

82
25

2.
72

23
4.

96
22

0.
76

25
1.

82
24

8.
93

22
2.

82

J m
e
a
n

30
8.

14
38

4.
37

29
2.

78
32

1.
59

25
6.

44
29

8.
16

31
2.

96
25

7.
80

J m
a
x

38
8.

62
44

0.
42

37
6.

46
43

4.
31

30
2.

74
32

8.
96

39
0.

78
32

4.
31

Pr
ob

.D
J m

in
25

2.
29

34
0.

35
25

5.
96

28
5.

73
21

8.
58

24
2.

96
24

5.
62

22
0.

00

J m
e
a
n

30
6.

57
36

5.
23

33
3.

07
33

5.
02

26
1.

11
30

2.
09

29
4.

19
25

2.
44

J m
a
x

34
3.

06
39

2.
85

38
3.

95
41

0.
17

29
0.

83
34

2.
09

33
6.

63
28

3.
71

Page 25 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Multi-robot task allocation problems studied in this paper are blended-permutation
problems, as both task assignments among robots and task scheduling for each robot
impact the fitness. Therefore, the performance of mutation operators should be analyzed
based on specific permutation problems.

In industrial plant inspection problems, good task allocations usually do not include
crossed paths or only include a few crossed paths. Figure 10a shows an example
where one cross may occur. Transforming permutation {1, 5, 4, 3, 2, 6} (Fig. 10a) into
{1, 2, 3, 4, 5, 6} (Fig. 10b) needs at least: one inversion, that is, inverting {5, 4, 3, 2}; or two
swaps, that is, swaping {5} and {2}, then swaping {4} and {3}; or three insertions/displace-
ments, that is, inserting {2}, {3}, {4} before {5} sequentially. Figure 11a shows another
example where two crosses may occur. Transforming permutation (a) to (b) in Fig. 11
needs at least: one swap, that is, swapping {1} and {6}, see Fig. 11b; two inversions/inser-
tions/displacements, see Fig. 11c, d. These two examples imply that proper swap is more
efficient than inversion in case of many crossed paths. On the contrary, inappropriate
swap produces worse solutions than inversion, e.g. swap produces two crosses, while

Fig. 10  An example with one cross for inversion. a Parent. b Offspring obtained by inverting {5, 4, 3, 2}

Fig. 11  An example with two crosses for swap and inversion. a Parent. b Offspring obtained by swapping {1}
and {6}. c Offspring obtained by first inverting {2, 3, 4, 5} and then inverting {6, 5, 4, 3, 2 ,1}

Page 26 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

inversion produces one cross in Fig. 12. Therefore, inversion can obtain better results
than swap if given a large number of generations.

For mutation combinations, it is difficult to analyze which is the only operator that
guides the evolutionary search, because: (1) an operator cannot guarantee to produce
better offspring than parents; and (2) the best individual in n+ 1 generation may not be
generated by mating the best individual in n generation. Although there are no signifi-
cant differences between results of GA5 and GA8, it cannot indicate that insertion and
displacement mutation operators have no effect on the evolutionary search. Therefore, it
cannot be said that one specific mutation operator is the best. Based on the experimental
results, multiple mutation operators (including both inversion and swap) is suggested
when solving similar combinatorial optimization problems.

Conclusion
The problem complexity significantly increases if cooperative tasks are involved because
they introduce additional spatial and temporal constraints. To solve the multi-robot task
allocation problems without/with cooperative tasks for industrial plant inspection, a
subpopulation-based genetic algorithm is developed. The proposed subpopulation-based
genetic algorithm using just inversion mutation and selection obtains better solutions
than the tested binary tournament genetic algorithm with partially mapped crossover
(PMX) and inversion mutation. This provides the possibility of crossover-free genetic
algorithms. Succeeding, the impact of four mutation operators and four mutation opera-
tor combinations in the subpopulation-based genetic algorithm is analyzed to find suita-
ble mutation operators for multi-robot task allocation problems. The results indicate that
inversion mutation performs well when solving problems without cooperative tasks, and
the swap-inversion combination performs well when solving problems with cooperative
tasks. As it is difficult to produce all desired effects with a single mutation operator, using
multiple mutation operators (including both inversion and swap) is suggested when solv-
ing similar combinatorial optimization problems.

Fig. 12  An example of inappropriate swap and inversion. a Parent. b Offspring obtained by swapping {1}
and {6}. c Offspring obtained by inverting {2, 3, 4, 5}

Page 27 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Authors’ contributions
CL and AK designed the algorithm. CL implemented the algorithm. CL and AK analysed the experimental results and
wrote this manuscript. Both authors read and approved the final manuscript.

Author details
1 School of Automation, Beijing University of Posts and Telecommunications, No 10, Xitucheng Road, 100876 Beijing,
China. 2 Department of Measurement and Control, Mechanical Engineering, University of Kassel, Mönchebergstraße 7,
34125 Kassel, Germany.

Acknowlegements
This work was supported by the scholarship awarded by the China Scholarship Council (CSC), the Completion Scholar-
ship awarded by the University of Kassel (Abschlussstipendien für Promovierende der Universität Kassel), and the Funda-
mental Research Funds for the Central Universities (2016RC29), which are greatly acknowledged.

The author declares that this paper has been posted as arXiv:1606.00601.

Competing interests
The authors declare that they have no competing interests.

Received: 8 June 2016 Accepted: 9 August 2016

References
Akpınar S, Bayhan GM (2011) A hybrid genetic algorithm for mixed model assembly line balancing problem with parallel

workstations and zoning constraints. Eng Appl Artif Intell 24(3):449–457. doi:10.1016/j.engappai.2010.08.006
Albayrak M, Allahverdi N (2011) Development a new mutation operator to solve the traveling salesman problem by aid

of genetic algorithms. Exp Syst Appl 38(3):1313–1320. doi:10.1016/j.eswa.2010.07.006
Beyki M, Yaghoobi M (2015) Chaotic logic gate: a new approach in set and design by genetic algorithm. Chaos Solitons

Fractals 77:247–252. doi:10.1016/j.chaos.2015.05.032
Bonow G, Kroll A (2013) Gas leak localization in industrialenvironments using a TDLAS-based remote gas sensor and

autonomousmobile robot with the Tri-Max method. In: IEEE international conference on robotics and automation
(ICRA 2013), Piscataway, NJ:IEEE Press, Karlsruhe, Germany, pp 987–992

Brizuela CA, Aceves R (2003) Experimental genetic operators analysis for the multi-objective permutation flowshop.
In: Fonseca C, Fleming P, Zitzler E, Thiele L, Deb K (eds) Evolutionary multi-criterion optimization, lecture notes in
computer science, vol 2632. Springer, Berlin, pp 578–592. doi:10.1007/3-540-36970-8_41

Butler Z, Hays J (2015) Task allocation for reconfigurable teams. Robot Auton Syst 68:59–71. doi:10.1016/j.
robot.2015.02.001

Cicirello VA (2015) On the effects of window-limits on the distance profiles of permutation neighborhood operators. In:
8th International conference on bio-inspired information and communications technologies (formerly BIONETICS),
ICST. doi:10.4108/icst.bict.2014.257872

Cicirello VA (2016) The permutation in a haystack problem and the calculus of search landscapes. IEEE Trans Evol Comput
20(3):434–446. doi:10.1109/TEVC.2015.2477284

Cicirello VA, Cernera R (2013) Profiling the distance characteristics of mutation operators for permutation-based genetic
algorithms. In: The 26th Florida Aatificial intelligence research society conference, St. Pete Beach, USA, pp 46–51.
http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS13/paper/view/5841/6040

Cicirello VA, Smith S (2001) Randomizing dispatch scheduling policies. In: The 2001 AAAI fall symposium: using uncer-
tainty within computation

Cicirello VA, Smith S (2002) Distributed coordination of resources via wasp-like agents. In: The first NASA goddard/JPL
workshop on radical agent concepts (WRAC)

Das GP, McGinnity TM, Coleman SA, Behera L (2015) A distributed task allocation algorithm for a multi-robot system in
healthcare facilities. J Intell Robot Syst 80(1):33–58. doi:10.1007/s10846-014-0154-2

Deb D, Deb K (2012) Investigation of mutation schemes in real-parameter genetic algorithms. In: Panigrahi B, Das S,
Suganthan P, Nanda P (eds) Swarm, evolutionary, and memetic computing, lecture notes in computer science, vol
7677. Springer, Berlin, pp 1–8. doi:10.1007/978-3-642-35380-2_1

Deep K, Mebrahtu H (2011) Combined mutation operators of genetic algorithm for the travelling salesman problem. Int J
Combin Opt Probl Inf 2(3):1–23

Deep K, Thakur M (2007) A new mutation operator for real coded genetic algorithms. Appl Math Comput 193(1):211–
230. doi:10.1016/j.amc.2007.03.046

Dias MB (2004) TraderBots: a new paradigm for robust and efficient multirobot coordination in dynamic environments.
PhD thesis, Carnegie Mellon University

Additional file

Additional file 1. The implementation of the subpopulation-based genetic algorithm and test results for solving
Prob.C can be downloaded from https://figshare.com/s/752db35c921eea01f988.

http://dx.doi.org/10.1016/j.engappai.2010.08.006
http://dx.doi.org/10.1016/j.eswa.2010.07.006
http://dx.doi.org/10.1016/j.chaos.2015.05.032
http://dx.doi.org/10.1007/3-540-36970-8_41
http://dx.doi.org/10.1016/j.robot.2015.02.001
http://dx.doi.org/10.1016/j.robot.2015.02.001
http://dx.doi.org/10.4108/icst.bict.2014.257872
http://dx.doi.org/10.1109/TEVC.2015.2477284
http://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS13/paper/view/5841/6040
http://dx.doi.org/10.1007/s10846-014-0154-2
http://dx.doi.org/10.1007/978-3-642-35380-2_1
http://dx.doi.org/10.1016/j.amc.2007.03.046
http://dx.doi.org/10.1186/s40064-016-3027-2
https://figshare.com/s/752db35c921eea01f988

Page 28 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Fogel DB, Atmar J (1990) Comparing genetic operators with gaussian mutations in simulated evolutionary processes
using linear systems. Biol Cybern 63:111–114

Gerkey BP, Matarić MJ (2004) A formal analysis and taxonomy of task allocation in multi-robot systems. Int J Robot Res
23(9):939–954

Goldberg D, Cicirello V, Dias M, Simmons R, Smith S, Stentz A (2003) Market-based multi-robot planning in a distributed
layered architecture. In: Multi-robot systems: from swarms to intelligent automata: proceedings from the 2003
international workshop on multi-robot systems, pp 27–38

Goldberg DE, Lingle R (1985) Alleles, loci, and the traveling salesman problem. In: Grefenstette JJ (ed) Proceedings of the
1st international conference on genetic algorithms and their applications. Lawrence Erlbaum Associates, Publishers,
Los Angeles, pp 154–159

Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans
Syst Sci Cybern 4(2):100–107. doi:10.1109/TSSC.1968.300136

Hasan BHF, Saleh MSM (2011) Evaluating the effectiveness of mutation operators on the behavior of genetic algorithms
applied to non-deterministic polynomial problems. Informatica 35(4):513–518

Hernando L, Mendiburu A, Lozano JA (2016) A tunable generator of instances of permutation-based combinatorial
optimization problems. IEEE Trans Evol Comput 20(2):165–179. doi:10.1109/TEVC.2015.2433680

Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge
Hong TP, Wang HS, Chen WC (2000) Simultaneously applying multiple mutation operators in genetic algorithms. J Heu-

ristics 6(4):439–455. doi:10.1023/A:1009642825198
Jones EG, Dias MB, Stentz A (2011) Time-extended multi-robot coordination for domains with intra-path constraints.

Auton Robots 30(1, SI):41–56. doi:10.1007/s10514-010-9202-3
Karthikeyan P, Baskar S, Alphones A (2013) Improved genetic algorithm using different genetic operator combinations

(GOCs) for multicast routing in ad hoc networks. Soft Comput 17(9):1563–1572. doi:10.1007/s00500-012-0976-4
Kociecki M, Adeli H (2014) Two-phase genetic algorithm for topology optimization of free-form steel space-frame roof

structures with complex curvatures. Eng Appl Artif Intell 32:218–227. doi:10.1016/j.engappai.2014.01.010
Kwak NS, Lee J (2011) An implementation of new selection strategies in a genetic algorithm—population recombination

and elitist refinement. Eng Opt 43(12):1367–1384. doi:10.1080/0305215X.2011.558577
Larrañaga P, Kuijpers CMH, Murga RH, Inza I, Dizdarevic S (1999) Genetic algorithms for the travelling salesman problem: a

review of representations and operators. Artif Intell Rev 13(2):129–170. doi:10.1023/A:1006529012972
Liu C (2014) Multi-robot task allocation for inspection problems with cooperative tasks using hybrid genetic algorithms.

PhD thesis, Department of Measurement and Control, Mechanical Engineering, University of Kassel. http://nbn-
resolving.de/urn:nbn:de:hebis:34-2014101646126

Liu C, Kroll A (2012a) A centralized multi-robot task allocation for industrial plant inspection by using A* and genetic
algorithms. In: 11th International conference on artificial intelligence and soft computing (ICAISA 2012). Heidelberg,
Dordrecht. Lecture notes in computer science, vol 7268, pp 466–474

Liu C, Kroll A (2012b) On designing genetic algorithms for solving small- and medium-scale traveling salesman problems.
In: International symposium on swarm intelligence and differential evolution (SIDE 2012). Heidelberg, Dordrecht.
Lecture notes in computer science, vol 7269, pp 283–291

Liu C, Kroll A (2015) Memetic algorithms for optimal task allocation in multi-robot systems for inspection problems with
cooperative tasks. Soft Comput 19(3):567–584. doi:10.1007/s00500-014-1274-0

Mc Ginley B, Maher J, O’Riordan C, Morgan F (2011) Maintaining healthy population diversity using adaptive crossover,
mutation, and selection. IEEE Trans Evol Comput 15(5):692–714. doi:10.1109/TEVC.2010.2046173

Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge
Mudaliar DN, Modi NK (2013) Unraveling travelling salesman problemby genetic algorithm using m-crossover operator.

In: Bala GJ, Hemanth DJ, Jeyasingh R (eds) International conference on signal processing, image processing and
pattern recognition (ICSIPR2013). IEEE electron devices Soc; Minist Def, Def Res and DevOrganisat; Institut Elect
and Telecommunicat Engineers (IETE); SciRes Grp Egypt (SRGE); Egypt IRSS Rough Set Chapter; Sci and Engn Res-
Support Soc (SERSC), pp 127–130, International Conference onSignal Processing, Image Processing and Pattern
Recognition(ICSIPR), Karunya Univ, Sch Elect Sci, Dept Elect & Commun Engn,Coimbatore, INDIA, FEB 07–08, 2013

Ordoñez Müller A, Kroll A (2013) Effects of beam divergence in hand-held TDLAS sensors on long distance gas concen-
tration measurements. In: International workshop on advanced infrared technology and applications (AITA 2013),
Turin, Italy, vol 12, pp 9–13

Ordoñez Müller A, Kroll A (2014) On the use of cooperativeautonomous mobile robots and optical remote sensing in
inspectionrobotics. In: Automation 2014, Baden–Baden, Germany, pp 847–864

Nearchou AC (2004) The effect of various operators on the genetic search for large scheduling problems. Int J Prod Econ
88(2):191–203. doi:10.1016/S0925-5273(03)00184-1

Ni J, Yang SX (2012) A fuzzy-logic based chaos GA for cooperative foraging of multi-robots in unknown environments. Int
J Robot Autom 27(1):15–30. doi:10.2316/Journal.206.2012.1.206-3553

Osaba E, Carballedo R, Diaz F, Onieva E, de la Iglesia I, Perallos A (2014) Crossover versus mutation: a comparative analysis
of the evolutionary strategy of genetic algorithms applied to combinatorial optimization problems. Sci World J.
doi:10.1155/2014/154676

Pandey HM, Shukla A, Chaudhary A, Mehrotra D (2016) Evaluation of genetic algorithm’s selection methods. In: Satapathy
SC, Mandal JK, Udgata SK, Bhateja V (eds) Information systems design and intelligent applications, Anil Neerukonda
Inst Technol and Sci, Det CSE; ANITS CSI Student Branch, Advances in Intelligent Systems and Computing, vol 434,
pp 731–738. doi:10.1007/978-81-322-2752-6_72. 3rd International conference on information system design and
intelligent applications (INDIA), ANITS Campus, Visakhapatnam, INDIA, JAN 08–09, 2016

Parker LE (1998) ALLIANCE: an architecture for fault tolerant multi-robot cooperation. IEEE Trans Robot Autom 14:220–240
Rossi C, Aldama L, Barrientos A (2015) Simultaneous task subdivision and allocation using negotiations in multi-robot

systems. Int J Adv Robot Syst 12
Sarangi A, Lenka R, Sarangi SK (2015) Design of linear phase firhigh pass filter using PSO with gaussian mutation. In:

Swarm, evolutionalry, and memetic computing, Bhubaneswar, India, pp 471–479

http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TEVC.2015.2433680
http://dx.doi.org/10.1023/A:1009642825198
http://dx.doi.org/10.1007/s10514-010-9202-3
http://dx.doi.org/10.1007/s00500-012-0976-4
http://dx.doi.org/10.1016/j.engappai.2014.01.010
http://dx.doi.org/10.1080/0305215X.2011.558577
http://dx.doi.org/10.1023/A:1006529012972
http://nbn-resolving.de/urn:nbn:de:hebis:34-2014101646126
http://nbn-resolving.de/urn:nbn:de:hebis:34-2014101646126
http://dx.doi.org/10.1007/s00500-014-1274-0
http://dx.doi.org/10.1109/TEVC.2010.2046173
http://dx.doi.org/10.1016/S0925-5273(03)00184-1
http://dx.doi.org/10.2316/Journal.206.2012.1.206-3553
http://dx.doi.org/10.1155/2014/154676
http://dx.doi.org/10.1007/978-81-322-2752-6_72

Page 29 of 29Liu and Kroll ﻿SpringerPlus (2016) 5:1361

Schiavinotto T, Stützle T (2007) A review of metrics on permutations for search landscape analysis. Comput Oper
Res 34(10):3143–3153. doi:10.1016/j.cor.2005.11.022. http://www.sciencedirect.com/science/article/pii/
S0305054805003746

Serpell M, Smith JE (2010) Self-adaptation of mutation operator and probability for permutation representations in
genetic algorithms. Evol Comput 18(3):491–514. doi:10.1162/EVCO_a_00006

Sörensen K (2007) Distance measures based on the edit distance for permutation-type representations. J Heuristics
13(1):35–47. doi:10.1007/s10732-006-9001-3

Taplin JHE, Qui M, Salim VK, Han R (2005) Cost-benefit analysis and evolutionary computing: optimal scheduling of Inter-
active Road Projects. Edward Elgar Publishing, Massachusetts, USA

Tayarani-N MH, Prügel-Bennett A (2014) On the landscape of combinatorial optimization problems. IEEE Trans Evol Com-
put 18(3):420–434. doi:10.1109/TEVC.2013.2281502

Walkenhorst J, Bertram T (2011) Multikriterielleoptimierungsverfahren für pickup-and-delivery-probleme. In:Proceedings
of 21. Workshop computational intelligence, Dortmund, Germany, pp 61–76

Wang L, Zhang L (2006) Determining optimal combination of genetic operators for flow shop scheduling. Int J Adv
Manuf Technol 30(3–4):302–308. doi:10.1007/s00170-005-0082-1

Werger B, Matarić MJ (2000) Broadcast of local eligibility:Behavior-based control for strongly cooperative robot teams. In:
Proceedings of the 4th international conference on autonomous agents. ACM Press, New YorkS, pp 21–22

Yuan S, Skinner B, Huang S, Liu D (2013) A new crossover approach for solving the multiple travelling salesmen problem
using genetic algorithms. Eur J Oper Res 228(1):72–82. doi:10.1016/j.ejor.2013.01.043

Zhang Y, Parker L (2013) IQ-ASyMTRe: forming executable coalitions for tightly coupled multirobot tasks. IEEE Trans Robot
29(2):400–416

http://dx.doi.org/10.1016/j.cor.2005.11.022
http://www.sciencedirect.com/science/article/pii/S0305054805003746
http://www.sciencedirect.com/science/article/pii/S0305054805003746
http://dx.doi.org/10.1162/EVCO_a_00006
http://dx.doi.org/10.1007/s10732-006-9001-3
http://dx.doi.org/10.1109/TEVC.2013.2281502
http://dx.doi.org/10.1007/s00170-005-0082-1
http://dx.doi.org/10.1016/j.ejor.2013.01.043

	Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems
	Abstract
	Introduction
	Background
	Related works on multi-robot task allocation problems
	Related works on genetic algorithms

	Multi-robot task allocation problems for industrial plant inspection
	Characteristics of tasks
	Assumptions of the problem
	Objective and constraints

	Methods
	Solution representation
	Process of the developed genetic algorithm
	Comparison of the subpopulation-based genetic algorithm and standard genetic algorithms

	Results
	Experiment 1: Subpopulation-based versus binary tournament GA
	Experiment 2: Subpopulation-based GA with single mutation operator
	Experiment 3: Subpopulation-based GA with multiple mutation operators

	Discussion
	Conclusion
	Authors’ contributions
	References

