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Introduction and results
As the development of the singular integral operators, their commutators have been well
studied (Coifman et al. 1976; Harboure et al. 1997; Lin et al. 2015). Coifman et al. (1976)
proved that the commutators [b, T], which generated by Calderén—Zygmund singular
integral operators and BMO functions, are bounded on L? (R") for 1 < p < co. Chanillo
(1982) obtained a similar result when Calderén—Zygmund singular integral operators
are replaced by the fractional integral operators. Recently, some Toeplitz type operators
associated to the singular integral operators are introduced, and the boundedness for
the operators generated by singular integral operators and BMO functions and Lipschitz
functions are obtained (see Lin and Lu 2006; Lu and Mo 2009).

The following generalized Calderén-Zygmund operator was introduced by Chang
et al. (2007).

Definition 1 Let S(R”) be the space of all Schwartz functions on R” and S’ (R") its dual
space, the class of all tempered distributions on R”. Suppose that 7 : S(R”) — S'(R”)is
a linear operator with kernel K (-, -) defined initially by

T() () = /R Ky )y, feCE®", x¢ suppf.
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The operator T is called a generalized Calderén—Zygmund operator provided the follow-
ing three conditions are satisfied:

1. T can be extended as a continuous operator on L?(R");
2. Kis smooth away from the diagonal {(x, y) : x = y} with

/ (KG9 = K@)l + 1K (3,9 — K@) )dx < C,
[x—y|>2|z—y|

where C > 0 is a constant independent of y and z;
3. There is a sequence of positive constant numbers {C;} such that for each j € N,

1y ) ,
(/ ) K (x,5) — K(x,z)|”dx> <C@|z —yl)_n/y
Y9z—yl<lx—y|<Yt1|z—y|

and

1y ) ,
</ K (y,%x) — K(z,x)l’%ix) <C@|z— )’|)_n/y
Y9z—yl<lx—y|<Vt1|z—y|

where (y, ') is a fixed pair of positive numbers with1/y +1/y' =1and1 < y’ < 2.

If we compare the generalized Calder6n—Zygmund operator with the classical Calde-
rén—-Zygmund operator, whose kernel K(x, y) enjoys the conditions

IK(x,9)| < Clx —y|™"

and

. s
IK(®,y) = K(®2)| + |K(%) = K(z,%)]| < Clx —yl‘"<||azc —ﬂ) ,

where |x — y| > 2|z — y| for some § > 0, we can find out that the classical Calder6n—
Zygmund operator is a generalized Calderén-Zygmund operator defined above with
G = 27/%,j e N,and anyl < y < oo.

Let b be a locally integrable function on R”. The Toeplitz type operator associated to
generalized Calderén—Zygmund operator and fractional integral operator I, is defined
by

TP = TY\MPL, Ty + T5I,M"T,,

where T is the generalized Calder6n—Zygmund operator or +/ (the identity operator),
T and T} are the linear operators, T3 = +I,and M?f = bf.

Note that the commutators [b, I, ](f) = bl (f) — I (bf) are the particular operators of
the Toeplitz type operators . The Toeplitz type operators T are the non-trivial gener-
alizations of these commutators.

It is well known that the commutators of fractional integral have been widely stud-
ied by many authors. Paluszynski (1995) showed that b € Lipg(R")(0 < 8 < 1) (homo-
geneous Lipschitz space) if and only if [, I, ] is bounded from L (R”) to L(R"), where
l<p<n/(e+pB)and 1/g=1/p — (@ + B)/n. When b belongs to the weighted Lip-
schitz spaces Lipg(w), Hu and Gu (2008) proved that [b, I,] is bounded from L?(w) to

Page 2 of 15



Tang and Ban SpringerPlus (2016)5:1352 Page 3 of 15

L1(0'==/Ma) for 1/q = 1/p — (o + B)/n with 1 < p < n/(e + B). A similar result
obtained when I, is replaced by the generalized fractional integral operator (Hu et al.
2013).

This paper investigates the boundedness of the Toeplitz type operator associated to
generalized Calder6n—Zygmund operator, fractional integral operator I, and weighted
Lipschitz function on weighted Lebesgue space. The main result is as follows.

Theorem 1  Suppose that T is a Toeplitz type operator associated to generalized Calde-
rén-Zygmund operator and fractional integral operator I, and b € Lipg(w)(0 < B < 1).
Let 0<a<my <p<n/la+p),1/g=1/p— (a+B)/n{jC} e Nwl? € Ay and
the critical index of w for the reverse Holder condition ry, > (‘2__71;?//. IfTY(f) = O for any
f € I[P (w), Ty and Ty are the bounded operators on LP(w), then there exists a constant
C > Osuch that,

T ) g @r-a-amay < CUBNLips(e If 120 (@)-

Noticing that the classical Calder6n-Zygmund operator is a generalized Calder6n—
Zygmund operator with C; = 277°(j € N) and any 1 < y < co. Then we can obtain the
following result as a corollary.

Corollary 1 Let T be a classical Calderén—Zygmund operator, 0 < 8 < 1,1 <p < n/
(@+B)1/g=1/p— (a + B)/n,and ®1'? € Ay.Ifb € Lipg(w), then T? is bounded from
LP(0) to LI ('~ 1=e/ma),

The paper is organized as follows. Section introduces some notation and definitions,
and recalls some preliminary results. Section establishes the sharp estimates for Toe-
plitz type operators. Section gives the proof of Theorem 1.

In this paper, we shall use the symbol A < B to indicate that there exists a universal
positive constant C, independent of all important parameters, such that A < CB. A = B
means that A < Band B < A.

Some preliminaries

A weight w is a nonnegative, locally integrable function on R”. Let B = B, (x9) denote
the ball with the center xy and radius r, and let AB = B;,.(xg) for any 4 > 0. For a given
weight function w and a measurable set E, we also denote the Lebesgue measure of E by
|E| and set weighted measure w(E) = [ w(x)dx. For any given weight function @ on R”,
0 < p < 00, denote by L” (w) the space of all function fsatisfying

1/p
Wfllr ) = < /]R ) [f(x)lpa)(x)dx> < o0.

Definition 2 (Muckenhoupt 1972) Let1 < p < oco. We say w € A if

1 J 1 o g p-1
N - p—1
P <|B| /B‘”(x) x) <|B| /B“’(’“) ) <o
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where the supremum is considered over all ball B C R”and, w € A; if
Mow(x) =~ w(x) ae xecR"

Definition 3 (Muckenhoupt and Wheeden 1974) A weight function w belongs to A, 4
forl < p < g < oo, if for every ball B in R”, such that

1 —p )1/10/( 1 g >l/q
(|B|/“’(y) @ |B|/“’(y) h) <o

where p’ denotes the conjugate exponent of p > 1;thatis,1/p+1/p' = 1.
From the definition of A, 4, we can get that

weApy iff 0 €Ay (1)

Definition 4 (Garcia-Cuerva and Rubio de Francia 1985) A weight function » belongs
to the reverse Holder class RH; if there exists constant s > 1 such that the following
reverse Holder inequality

1 l/s
<|B| /w(x) dx) |B| /a)(x)dx

holds for every ball B C R”.

It is well known that if w € A, with1 < p < oo, thenw € A, for all¥ > p,and w € A,
for some 1 <g <p. If w € A, with 1 <p < oo, then there exists r > 1 such that
€ RH;. It follows directly from Hoélder’s inequality that w € RH, implies w € RH; for
all1 < s < r. Moreover, if w € RH,,r > 1, then we have w € RH, for some ¢ > 0. We
write 7, = sup{r > 1 : @ € RH,} to denote the critical index of w for the reverse Holder
condition.

Lemma 1 (Garcia-Cuerva and Rubio de Francia 1985) The following results about
weight function are right.

(i) Suppose w € Ai. Then
|B|?icr61£a)(x) ~ w(B). (2

(ii)Letl < p < oo,and w € Ap. Then, for any ball B and any A > 1,
w(AB) < P (B). (3)

Next, we shall recall the definition of the Hardy-Littlewood maximal operator and sev-
eral variants, the fractional integral operator and some function spaces.

Definition 5 The Hardy-Littlewood maximal operator Mf'is defined by

MO)) = sup / F)\dy.

We set M;(f) = M([f|‘3)1/‘3,where0 <8 < o0.
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The sharp maximal operator MPf is defined by

1 . 1

M*(f)(x) = sup — / If ) —fldy =~ supinf — / If () — cldy.
Bsx 1Bl JB Bsx ¢ |BlJB

We defined the §- sharp maximal operator Mg (f) = M*(|f1>)1/?, where 0 < § < 1.

Lemma 2 (Stein 1993) Let0 < g < 00,and w € Ay(1 < p < o0). Then

IMsf sy S IMES 2w
Definition 6 For0 < o < n,¢ > 1, we define the fractional maximal operator M, ;f by
1 1/t
_ L ¢
Mo (f) (%) = sup <|B|1at/" /Blf(y)l dy> ,

and define the fractional weighted maximal operator My ,.,f by

i 1/t
Moy t0f (%) = sup (W /B [f(y)|ta)(y)dy> .

Bax
In order to simplify the notation, we set My = M1, Mt = Mot

Definition 7 For 0 < « < n, the fractional integral operator I, is defined by

1o (f) (%) 2/ A

——_dy.
wr Jx— g™

Lemma 3 Let I, be fractional integral operator, and let E be a measurable set in R”.
Then for any f € L*(R"), we have

[ et < g

Proof Since

|(x € E: [Iof (x)] > A}
< | e R lf W) > 2}

- If Il ”/(Vl*a)’
~ A

we have




Tang and Ban SpringerPlus (2016)5:1352 Page 6 of 15

/E|qu(x)|dx = /0 |{(x € E: [If x)| > A}|dA
0 n/(n—a)
/O min{C(”f!Ll) , IEl}di

CIIf 1 [E/n— 00 n/(n—a)
/ ' |E|d )+ / (”f”“ ) d
0 Il IERm1 \ 4

< Wl E

IA

IA

O

Lemma 4 (See Muckenhoupt 1972) Let 0 <a <n,1/q=1/p —a/n and w € Ap 4.
Then

e )2y S Ifllzz@ry, and 1Mo (O llzawsy S If Iz @)

Let us recall the weighted Lipschitz function space.

Definition8 Forl <p < 00,0 < B < 1,and w € Ax. A locally integrable function b is
said to be in the weighted Lipschitz function space if

1/p

1 1 "
I _ 4 1-p
s;p (B L’(B) /B |b(x) — bplPw(x) Pdx < C < oo, 4)

where bg = |B| ™! /5 b(»)dy, and the supremum is taken over all balls B € R”.

The Banach space of such functions modulo constants is denoted by Lipg ,(w). The
smallest bound C satisfying conditions above is then taken to be the norm of b denoted
by 0| Lip, , @)- Obviously, for the case w = 1, the Lip, , () space is the classical Lipg(R")
space. Put Lipg(w) = Lipg,1(w). Let w € A1. Garcia-Cuerva (1979) proved that the spaces
Lipg,p(w) coincide, and the norms || Lip, , () are equivalent with respect to different val-
ues of p provided that1 < p < oc. Since we always discuss under the assumption w € A;
in the following, then we denote the norm of Lipg,, (@) by | - l|Lips(w) for1 < p < oo.

The sharp estimates for T°
To prove our main result, we first prove the following the sharp estimates for T?.

Theorem 2 Suppose that T is a Toeplitz type operator associated to generalized Calde-
ron—Zygmund operator and fractional integral operator I, and b € Lipg(w)(0 < B < 1).
Letl <p<ry<n/Bu=aw"?cAyr,>y,t> (r;:%l;?/ and {jC;} € LIFTY() =0
forany f € LP(w), then there exists a constant C > 0 such that

MUTP () @) S 1BllLipg )@ ()P Mg, (1 Tof ) (0)
1m0 (€ "M 0o T D @) + 00 "My (Tf) )
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holds for any0 < § < 1.

Proof For any ball B = B(xg, rp) which contains x. Without loss generality, we may
assume T is a generalized Calderén—Zygmund operator. We write, by T (f) = 0,

T () () = TiMPL, To(f) () + T3l MO Ta(f) (9)

where

UYb—b2 ) = TlM(b—bzs)xzsla To(f)(y) + TIM(b—b2B)X(23)C]a To(f) ()
Ui(») + Ua(y),

and

Yb—b2p () = Tg[aM(b_bZB)XZB Ta(f)(y) + TglaM(b—bZB)X(zm" T4(f)(y)
= Vi) + Va2 ().

Since 0 < § < 1, then

1/s
<|B|/’|Th(f)(y)| — |Ua(x0) + Va(xo)| ‘d}’>

1/8
< <|B|/\T”(f)<y> Un(ao) — Va(o)| dy)

1 1/8 1 1/8
< <|B|/|U1(y)| dy) +(|B|/|v1(y)| dy)

1/5 1 1/5
+ </ [Ua(y) — Uz(xo)lady) + (/ [Va(y) —Vz(xo)lsd)’)
|Bl JB Bl JB

= My + My + M3 + M.

We are going to estimate each terms, respectively. From Chang et al. (2007), we know
that T; is bounded from L! to WL!, then by Kolmogorov’s inequality and Holder’s ine-
quality we get

1 1/6
My = (|B|/|U1(y>| dy)

1/8
- <| 5 i, Tz(f)()’)l‘sdy>

A

L / (b — bap)a To () ) ldy
|B| Jop

1 g - l/t/( ; )l/t
5 (/ 1) — basl’ () dy) / L Tof ) (3)edy

C()( )1+/3/n
1B (60(23)

Z/\

AN

”b”Lipﬁ(w)

1/t
/ o Tszw(y)dy) .
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Since 4 = w"/? € A1, and ry > p, then
ro/p—1
n(2B) =~ (inf w(x)) w(2B).
x€2B

Thus

1 ; 1/t 1 , 1/t
LT dy) S\ om | MaT dy) . 5
(a)(2B) /23' S O ) y) < (WB) /23' o O 1) y) 5)

Note that

—afry/n* arg/n B/n
w(B)ﬂ/n = <infw(x)> ' (/ w(x) <infa)(x)> ' dx)
x€B B x€EB

—afry/n?
< (inf a)(x)> w(2B)P/". (6)
x€B

Since 1/rg > B/n,0 < a < n, we have 1 — afrg/n®> > 0. Then by w € Ay, (5) and (6) we
get

w(B)1+ﬂ/n < 1

1/t
[aT ta) d >

1—0(5;’0/712
< (inf w(x)) Mgt UoTof ) (%)
xeB
S 0@ B Mg, (I Tof ) (). )
Hence
_ 2
My S 116 Lipp @)@ ) P Mgy (U Tof ) ().
Since T3 = £/, by Lemma 3 and Hoélder’s inequality, we have

1
M < / | T3la MO—2208 T, ) () dy
B

1
|B|

1 _
5 |B|17a/n / |M(b bag)x2s T4(f)()’)|dy
Rn

A |IaM(b_b23)X23 Tu(f)(y)|dy

1 , , 1/t 1/t
S Tisam </ |b(y) — bapl" w(p)'~* dy) (/ |T4(f)()’)|tw()’)d)’> :
|B| 2B 2B
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Thus, by (4) and (2) we get

w(2B) 1/t

1-a/n 1
< . e - t
My S |b||Llp5(w)< |B| > <a)(23)1(°‘+ﬂ)t/" /23 |T4(f)(Y)| w()’)d)’)
S 16l Lips )@ ) Mot 0 (Taf ) ().

By the definition of generalized Calderén—Zygmund operator, we get,

| Ty M E=b28)x08 [, Ty () (y) — TaMO=028)%28¢ I, Ty (£)) (x0)

/23)6 |b(Z) N b23| |I<(y’ Z) - I<(x0’ Z)' |Iot TZ(f) (Z) |dZ

[Ua(y) — Ua(xo)l

AN

From Holder’s inequality we get
1 1/s
M= (G [ 10200 = Vo)

|Bl /B
1

S */IUz(y)—Uz(xo)ld)’
Bl Jg
1

S *// 1b(z) — bagl K (3, 2) — K (%0, 2) ||l T2 (f ) (2) |dzely
IBl JB JB)e

1 o0
s/ 1b2) by
18] ,zzl B Y ly—so|<lz—x0 <2+ ly—xo|

x |K(y,z) = K (x0,2) |l T2 (f ) (2) |dzdy

1 o0
+ B Z |byj+15 — DBl
j=1

x / / | K2 — Ko, ) Talf) ()| dedy
B JYy—xo|<|lz—xo| <2+ |y—x0]
= M3 + M3;.

For ry, > y’ > 1, we have t > % > y’, then there exists 1 </ < oo such that

1/y +1/1+ 1/t = 1. By Holder’s inequality for y, [, and ¢, and (3) of Definition 1 we get

1 00 1/y
Ms S — > / / K (y,2) — K (x0,2)|” dz
Bl \= /B \ 2 y-nol=lz—0l <2 -0l

1/1
x / . |b(Z) - b2j+1B|la)(z)(1/t/—l)ldz
Vy—xo|<|z—x0| <V {y—x0|

1/t
« / LT @' w@)dz | dy
2 ly—xo| <|z—axo| <2+ y—x0|

1 & . , , 1/
S 56 [y ay( [ b~ byl )
|B|,§ s M\ i 2

1/t
X </ |IaT2(f)(z)|tw(z)dz) .
2J+1B
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Note that
/ @y —xol)™" dy < 12B7V7|B),
B

then

o0

. , ) 1 1/t
May < 1Y B~V (2 BV 7/ LT .
51 S ;CJI T 0@V Sagy [, D@ 0@z

/ 1/
x ( / b(z) —h2,+13|lw(z)<1/f—1>ldz>
2+1B

Since t > %, we have r,, > (t UV .By r, = sup{s > 1 : w € RHy}, there is a s such

that s > (tt 1;}’ >y >1.Letpo—W then 1 < pg < o0. By +7 —I-f—lwe
=y’

have 7= (t l)y . Then po = 1, itiss = lp—o -2 Applymg Holder’s inequality for pg

and pj we get

) 1/1
< / 1b(2) — bynpl'w(@) V! —Dldz)
Y+1B

, O\ V@D 1/(pol)
< ( / |b(z) - bQ,-HBIlpOw(z)llpOdz) ( / 4 w(z)SdZ> .
2J+1pB 2J+1p

Then by (4) and w € RH;

</ |b(z) — ijHBIlw(z)(l/ﬂ_l)ldz)
2+1B
2/+1B|(1—5)/(1701)0)(21+1B)1/(P61)+S/(Pol)+/3/"'

1/1

S 18l Lipg ()

Note that (1 —s)/(pol) —1/y" = —1 and 1/t + 1/(pyl) + s/(pol) = 1. Then, by (6) we
get

M3 < |b||szﬁ(w) Z C]|2/+1B|(1 5)/(poh)—1/y’ a)(21+IB)1/t+1/(1001)+5/(1001)+/3/n

j=1
1 1/t
e I, T ¢ d
< (sgiig ., leBO@ o)
00 7 1/t
w(2]+1B)1+/3/Vl 1 .
N |b||Lipﬁ(w)j=ZIC}' B (w(Zj"’lB) /2/+13 o T2 (f) (2)] a)(z)dz>
) o
S 1Bl Lipp (@@ PO Mgy I Tof ) ) Y | G
j=1
2
S 1Bl Lipgy@ @) O Mgy (I Tof ) ().
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Let’s estimate M3;. By (6), when k < j we have

a)(zk-‘rlB)ﬂ/n S inf w(x)_aﬁrO/nZM(2k+lB)'B/n
xe2k+1B
< inf a)(x)_“ﬁrO/"zu(ZHlB)ﬂ/". (8)

xe2k+1p

Then

j
1
|byj+1p — bap| < Z w /2’<+IB |b(2) — by1pldz

k+1p\1+8/n
S ||b||szﬁ(w)k2:1 w(2|2kﬁ)3|
: k+1
N IIbIILipﬂ(w);xelzrkllew(x)w(z +pyB/n
< 116l i inf (@) (B
~ Lipp( k:1x62k+1B H
< 1Bl Lipy @)@ () =E L (I BYEI, )

Hence, by Holder’s inequality, (8) and (9), we can get

1/y
Mz < — / / |K (y,2z) — K(x0,2)|" dz
|B| 4 Z % ly—so|<|z—20| <2+ [y—zo]

‘ 1/t
X |by1g — bapl|2Z B! </,+1 IIaTz(f)(z)Itdz> dy
2

< 1Bl Lipg (@ @)~ Z/c / @y — xo)) ™" dy
j=1
B/ e /1+1/
i+1p1/l4+1/t
X /L(ZJB) n<(2/+13)/ o T2 (f) (2)] w(z)dz) |27 B|
< 18l i @@ P My (L Tof ) ) Z;‘CAzf“BH/’“/t-W’
j=1
_ 2
S 1Bl Lipy ) @ () PO Mg 1 (I Tof ) ().
Then

_ 2
M3 S 116l Lip )@ ) P Mg 4 (L Tof ) (x).

Finally, we estimate M. For any y € B,and z € (2B)¢, we have |y — z| ~ |xo — z|. Then,
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1 1/8
1)
My = (/Wz(y)—\/z(xo)l dy)
Bl Jp

1
< o / Va() — Va(xo)ldy
< g [Tl Ty ) ) — Tt MO0 Ty ) )y
N b(z)—b — Ta(f)(2)|dzd
|B|//2B)c| 28] T | T4(f)(2)|dzdy
%0 — 9]
N |b(2) — bypg| ———|Ta(f) (2)|dzd
|B|//23>c 28l et 110 y
< P ———— b b T, d.
< I:Zl ST ., 166 = sl Tu() @l
ad 1
S 12;2 |bojr15 — ]92B|m‘/v+1 |Ta(f)(2)|dz
+3 T 2/+1B|1 . / 162 = byl Ta() @)z
j=1
= My + Ny.

Since

j
byjs1p — bagl < |1bL; inf  w(x)w1B)P/"
2+1B ipg(w) gxe2k+13

N

B/n
bl i j+1p(B/n
161 Lipg @)@ () (xegr}le w(x)> 127 B|

1B Lipg @y () T/ 24 B A,

AN

then

o0
. 1
s o
My S ;_1 277 |byj1p — bap] 1B =a/n /2/’+IB |T4(f)(2)|dz

o0

151 Lipp (@ )P/ My g (Taf ) () D j277
j=1

S 1Bl Lips @ @) TP Moy (Tuf ) (x).

A
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By Holder’s inequality,
o0
M S ZZ_/W /2/ , 6@ ~ byl TP @ldz
]ZO:) 1 1/t
< z; ij ( /2/ 11, 10@ = b BV’w(z)”’dz)
f

1/t
x </ |T4(f)(2)|‘w(2)dZ>
2+1B

00 i 1—a/n
- w(@Zt1B)
” ”Llp,s(w) ;:1 < |2/+1B|

A

1 1/t
x (w(2/+13)1—(a+ﬂ)r/n /2/+IB|T4(f)(Z)|tw(z)dz>
||b||Lipﬂ(w)w(x)lfa/"MaJrﬂ,t,w(T4(f))(x)_

A

Then
Ma S 15l (0@ " Mo 0T @) + 0@ " Mo 5 (T ) 3) ).

Combining the estimates for M, My, M3 and M, the proof of Theorem 2 is com-
pleted. O

Proof of Theorem 1

Proof 1t follows from r, > (qq__il;?/ that g > (r;‘;%l}f?’,, then there exists ¢ such that
q>t> %.Let 1/q =1/ro — B/n,and1/rg = 1/p — a/n. Then

(1 —apro/n*)q+1— (1 —a/mq=ro/p,
and
A+B/mg+1—-1—a/nq=q/p.

Since w?/? € Ay, then u = w'/? € A}, and w € A;. By (1) we have w'/? € Apry and
w'/P € A, ,. Thus, by Lemma 2, Theorem 2, Lemma 4 and the boundedness of T5, T4 on
L?(w), we have



Tang and Ban SpringerPlus (2016)5:1352 Page 14 of 15

|| Tb (f) ||Lq (1= (—a/mq)
< AMETH() o @1 —aima
_ 2
1Bl1ipgte0 ([0 M1 1 Top)|

|0 O My 1o (T4

A

L1 (w1~ (1-a/maq)

L9 (w!=~a/mq)

0O My (1)

Lq(wl—(l—a/n)q))
S 10lzipgor (MU T

o+ IMat (T s + 1Mo Ta D s o))

S bl zips @) (e Tof o oy + 1 Ta () |2 (@)
S 1B Lipg ) If e @)-

This finishes the proof of Theorem 1. O

Conclusion

In the present paper, we have established the sharp maximal function estimates for a
class of Toeplitz type operator and we have obtained the weighted norm inequalities
related to the operators on weighted Lebesgue space. We believe that these results are
object of interest for a lots of scientists that study regularity of solutions of partial dif-
ferential equations.
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