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Background
Fractals are infinitely complex patterns that are self-similar across different scales. They 
are made by rehashing a basic procedure again and again in an ongoing feedback loop. 
Its uses in various areas of the study of materials and of other areas of engineering are 
examples of practical prose. Its uses in physical theory, especially in conjunction with 
the basic equations of mathematical physics. Let us, instead, give a few typical exam-
ples: to rock base, an essential of engineering, furthermore a proceeding with objective 
of science, is to depict nature quantitatively. Another illustration is viscus flow through 
porous media, i.e. the stream of water pushing oil, has demonstrated as of late to admit 
to a few administrations, one of which is a ‘front‘, which is a compelling and attractive 
arrangement and another is ‘fractal fingering‘ which is undesirable.

A fractal antenna (i.e. Fig. 1) is an antenna that uses a fractal, self-similar design to maximize 
the length, or increase the perimeter of material that can receive or transmit electromagnetic 
radiation within a given total surface area or volume. Another mechanical parts in engineer-
ing such as gears, chain, grari etc can be constructed based on ideas of fractal geometry.

Owing to the rapid emergence and growth of techniques in the engineering applica-
tion of fractals, it has become necessary to gather the most recent advances on a regular 
basis. This study starts from the question, can we design mechanical parts in engineer-
ing by simple iterative techniques?

Firstly, Mandelbrot (1982) found fractal geometry that deals with geometric shape 
which is self-similar, irregular and has detailed structure at arbitrarily small scales. 
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Nowadays, many techniques to generate fractals have been devised, such as IFS (iterated 
function systems) method Barnsley and Demko (1985), L-system method Prusinkiewicz 
and Lindenmayer (1990) and few others. Recently it has been shown that subdivision 
technique is not only an important tool for the fast generation of smooth engineering 
objects, but also an efficient tool for the fast generation of fractals.

Zheng et al. (2007a, b) analyzed fractal properties of 4-point binary and three point 
ternary interpolatory subdivision schemes. Wang et  al. (2011) discussed the fractal 
properties of the generalized chaikin corner-cutting subdivision scheme with two ten-
sion parameters. They gave the fractal range of scheme on the basis of the discussion of 
limit points on the limit curve. Li et al. (2013) designed the fractal curves by using the 
normal vector based subdivision scheme.

Sarfraz et al. (2015) designed some engineering images by using rational spline inter-
polation. In this paper, we explore the properties of Weissman (1989) fractal subdivi-
sion scheme in different areas including engineering images. We conclude that 6-point 
scheme of Weissman can create engineering images for curves and surfaces with true 
fractal allotting and can provide some ways of shape control.

The paper is organized as follows. In "Fractal properties of the scheme" section, frac-
tal range of 6-point subdivision scheme is being discussed. In "Numerical examples and 
demonstrations" section, some numerical examples are presented to confirm the cor-
rectness and effectiveness of the engineering images in the form of curve and surface. 
Finally, we give some concluding remarks in "Conclusions" section.

Fractal properties of the scheme
The well known 6-point binary interpolating scheme Weissman (1989) is

The scheme (1) produces C0- and C1- continuous curves at − 3
16 < µ < −1+3

√
2

16  and 
−6+3

√
2

32 < µ < −1+
√
19

32  respectively. By substituting µ = 0 and µ = 3
256, we get 4-point 

and 6-point schemes as given in Deslauriers and Dubuc (1989) respectively.
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Fig. 1  Fractal antenna
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According to interpolatory property pk0 ≡ p00, k ≥ 0. Suppose pmi  and pmj  are two 
fixed control points after m subdivision steps, ∀m ∈ Z,m ≥ 0. The role of parameter µ 
is required to be evaluated on the sum of all small edges among the two points after 
another k iterations. First we discuss and analyze the effect of µ among the two initial 
control points p00 and p01.

For i = −2 in the odd rule pk+1
2i+1 of scheme (1), we have

Substituting pk+1
−4 = pk−2 and pk+1

−2 = pk−1 in (2), we get

Putting i = −1, 0 in odd rule pk+1
2i+1 of scheme (1) by using pk+1

−2 = pk−1 and pk+1
2 = pk1, we 

have

and

Here, we define two edge vectors between the points p00 and p01 after k steps defined by 
vk = pk1 − pk0 and Rk = pk2 − pk1. Since pki = i

2k
 so we have pk2 = 2

2k
= 1

2k−1 = pk−1
1  and 

we can write as

Let Uk = pk1 − pk−1, Wk = pk0 − pk−1, we can write it as Uk −Wk = pk
1
− pk−1

− pk
0
+ pk−1

= pk
1
− pk

0
= vk . Further Uk = vk +Wk. This implies

Since by dyadic parametrization pk+1
i = i

2k+1 then the term µ
(
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−3

)

 can be 
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Therefore
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This implies

So we have

Equation (4) is the second order linear difference equation, such that

The characteristic equation is

By solving (5), we get Q1 = 1
8 + 6µ and Q2 = 1

2, (Q1 �= Q2) when µ �= 1
16.

Let U0 = p01 − p0−1 and U1 = p11 − p1−1. For k + 1 = 0 and i = 0 in (1), we get

This implies

Substitute k + 1 = 0 and i = −1 in (1), we have

This implies

Subtracting (7) from (6), we have
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(
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The solution of Eq. (8) is

where

and

When µ = 1
16, the solution of Eq. (4) will be

where

and

Since

Then by taking Uk+1 = pk+1
1 − pk+1

−1  and vk = pk1 − pk0, we get

Since by dyadic parametrization −µ
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Substitute Wk+1 = Uk+1 − vk+1 in (9), we get

Simplifying, we have

Now we will find the solution of Eq. (10), first consider

Case 1. When − 3
16 < µ < −6+3

√
2

32 , the solution of Eq.  (11) is γ1 = 1
4 +

√
−2µ and 

γ2 = 1
4 −

√
−2µ, and γ1 �= γ2, γ1, γ2 �= 1

8 + 6µ, γ1, γ2 �= 1
2. Equation  (10) can be 

expressed as

The solution of above equation is

where β1 and β2 are given as

From Eqs. (3) and (12), we have
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(
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(
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√
−2wp−1 + 6912 p0

√
−2w − 56

√
−2wp2

+ 56
√
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√
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√
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√
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2
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√
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√
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√
−2wp−1 + 56

√
−2wp−2

− 110592 p0
√
−2ww + 50816

√
−2wp−1w + 59776 p1

√
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√
−2wwp3 − 3584

√
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√
−2wwp−2 + 34560 p0w

− 3344wp−2 + 3568wp3 + 3344wp−3 − 17168 p−1w − 3568 p2w + 850 p−1
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.
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Case 2. When −1+
√
19

32 < µ < −1+3
√
2

16 , the solution of Eq.  (11) is ρ1 = 1
4 + i

√
2µ and 

ρ2 = 1
4 − i

√
2µ, ρ1 �= ρ2, ρ1, ρ2 �= 1

8 + 6µ, ρ1, ρ2 �= 1
2. The solution of Eq.  (10) can be 

expressed as

where χ1 and χ2 are given as

From Eqs. (3) and (14), we have

From the Eqs. (12)–(15), we have the following theorems.

Theorem 1  For −1+
√
19

32 < µ < −1+3
√
2

16 , the limit curve of the 6-point scheme is a frac-
tal curve.

(13)

Rk =
(

1

γ1
− 1

)

β1γ
k
1
+

(

1

γ2
− 1

)

β2γ
k
2
+

(

7− 48µ

1+ 48µ

)

65

144
c1

(

1

8
+ 6µ

)k

+ 1

2
c2

(

1

2

)k

.

(14)vk = χ1ρ
k
1 + χ2ρ

k
2 + 65

144
c1

(

1

8
+ 6µ

)k

+ 1

2
c2

(

1

2

)k

,

χ1 =
1

13824i
√
2w(−1+ 16w)
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−3568i
√
2wp−1 + 6912i p0

√
2w − 56i

√
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√
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√
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√
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√
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√
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− 3568wp3 + 3344wp−2 − 28416 p1w
2 + 3568 p2w + 221184 p0w

2 + 60672w2p3
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2

}
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χ2 =
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√
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√
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√
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√
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√
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√
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√
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√
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√
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}

.

(15)

Rk =
(

1

ρ1
− 1

)

χ1ρ
k
1
+

(

1

ρ2
− 1

)

χ2ρ
k
2
+
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65
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1
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.
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Proof  By following the Eqs. (14) and (15), we may conclude that the 2k small edge vectors 
between p00 and p01 after k subdivision steps can be expressed by induction as:

for j = 1, 2, . . . , 2k, where ρij �= 0, i = 1, 2, 3, 4. The Eq. (16) is written by the linear com-
bination of (14) and (15).

By taking ξ = 1
8 + 6µ and ξ > |ρ1|, |ρ2|. Let | v | denote the length of a vector v and 

| Ek
j0
|= minj=1,...,2k | Ek

j0
|, then we get

This implies

The sum of the length of all the small edges between p00 and p01 after k subdivision steps 
grows without bound when k approaches to infinity, so by Zheng et al. (2007a, (2007b) 
the limit curve of 6-point scheme is a fractal curve in the range −1+

√
19

32 < µ < −1+3
√
2

16  . 
� �

Similarly, we get following theorem.

Theorem 2  For − 3
16 < µ < −6+3

√
2

32 , the limit curve of the 6-point scheme is a fractal 
curve.

A straightforward generalization of 6-point scheme is its tensor-product version 
which generates fractal surfaces over the parametric ranges − 3

16 < µ < −6+3
√
2

32  and 
−1+

√
19

32 < µ < −1+3
√
2

16 .

Complexity of subdivision fractal

We measure the complexity of the 6-point binary interpolating subdivision fractal by 
estimating its box dimension. By using Theorem 1 and adopting the procedures of Zheng 
et al. (2010), Wang and Qian (2003), we get following theorem.

Theorem  3  If pki  are the control points at level k and f ki =
(

2k
)α
(

pki+1 − pki

)

 
then the sequence | f ki | is bounded above, where α = 1− log

32µ
l , l = −1+

√
19 and 

−1+
√
19

32 < µ < −1+3
√
2

16 .

By using Theorem 3 and taking up the methods of Zheng et al. (2010), Wang and Qian 
(2003), we get following theorem.

Theorem 4  The fractal dimension of the 6-point binary interpolatory subdivision frac-
tal is d = 2− α ∼= 2.5430.

(16)Ek
j = pkj − pkj−1 = ς1jρ

k
1 + ς2jρ

k
2 + ς3j

(

1

8
+ 6µ

)k

+ ς4j

(

1

2

)k

,

2k
∑

j=1

|Ek
j | ≥ 2k |Ek

j0
| = 2k

∣

∣

∣

∣

∣

ς1j0ρ
k
1 + ς2j0ρ

k
2 + ς3j0ξ

k + ς4j0

(

1

2

)k
∣

∣

∣

∣

∣

.

2k
∑

j=1

|Ek
j | = (2ξ)k

∣

∣

∣

∣

∣

ς1j0

(

ρ1

ξ

)k

+ ς2j0

(

ρ2

ξ

)k

+ ς3j0 + ς4j0

(

1

2ξ

)k
∣

∣

∣

∣

∣

→ ∞ as k → ∞.
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From Theorem 1, we know that subdivision fractal can be gotten by keeping the corre-
sponding subdivision parameter µ within the interval −1+

√
19

32 < µ < −1+3
√
2

16 . Therefore 
by Theorem 4 the fractal dimension of the 6-point subdivision fractal as a limit will be 
no more than d = 2− α ∼= 2.5430. Similarly, one can compute the fractal dimension of 
subdivision fractal for the interval − 3

16 < µ < −6+3
√
2

32 .

Numerical examples and demonstrations
The proposed work is used to construct the engineering structures such as fractal anten-
nas, bearings and garari’s etc. Figure 2a–d present the fractal antennas generated after 
third, seventh, tenth and thirteenth subdivision levels at µ = 0.1718. The fractal dimen-
sion of these fractals is 2.4066.

The initial sample of another fractal antenna is shown in Fig. 3a. Figure 3b, c show the 
fractal antennas generated by the scheme (1) at µ = −0.099. Figure 4a shows the initial 
sample for a bearing and Fig. 4b, c show the actual bearing generated at parametric val-
ues µ = 0 and µ = 3

256 respectively. The initial mesh for rock surface is shown in Fig. 5a. 
Figure 5b, c show the rock surfaces at third level with µ = −0.1 and µ = −0.05 respec-
tively. Figure 6 presents the structure of garari type shapes.

In the case of given initial control points, shapes and dimensions of the fractals can 
be adjusted and controlled by adjusting the parameter µ. Hence the obtained results in 
"Fractal properties of the scheme" section can be used to generate fractal in a fast and 
efficient way.    

Conclusions
In this article, we have reorganized the engineering images by fractal subdivision 
scheme. We have identified two different parametric intervals to generate different types 
of engineering models. The relationship between the subdivision parameter and the 

a b c d
Fig. 2  Fractals: Dotted lines with initial control points show the initial control polygon (a, b, c, d) whereas solid 
lines show the fractal antennas at third, seventh, tenth and thirteenth level with µ = 0.1718 respectively

cba
Fig. 3  Smooth curves: a shows the initial structure of bearing and b, c shows the bearing at third level with 
µ = 0 and µ = 3

256
 respectively
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fractal dimension of the limit fractal curve of the 6-point binary interpolatory subdivi-
sion fractal is also presented. It is concluded that 6-point subdivision scheme is an effi-
cient tool for the fast generation of self similar fractals useful in fractal antennas. It is 
also an appropriate technique for the designing of bearings and garari’s etc.
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a                                          b                                          c
Fig. 5  Fractal surfaces: a shows the initial control polygon whereas b, c show the rock surfaces at third level 
with µ = −0.1 and µ = −0.05 respectively

a                                      b                                        c
Fig. 6  Fractal surfaces: a shows the initial structure of garari and b, c show the garari at third level with 
µ = −0.187 and −0.08 respectively

a b c d
Fig. 4  Fractals: a shows the initial structure of fractal antenna and b–d show the fractal antennas at first, 
second and fourth iteration of the scheme (1) at parametric value µ = −0.099 respectively
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