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Background
The main aim of this paper is to develop a recursive algorithm for constructing trans-
formations to the Poincaré normal form for non-autonomous differential systems with 
quasi-periodic coefficients (Arnold 1983), suitable for performing on a computer. The 
algorithm is based on the Carleman linearization technique (Carleman 1932).

Several applications of Carleman linearization have been presented up until now. Bell-
man (1961) used Carleman linearization to obtain approximate solutions to nonlinear 
systems. Babadzanjanz (1978) studied the existence of continuations and representa-
tion of the solutions in celestial mechanics. Steeb and Wilhelm (1980) and Kowalski and 
Steeb (1991) studied nonlinear dynamical systems and generalizations of Carleman lin-
earization. Carleman linearization technique has been used in a series of applications 
in the field of control theory, for example, to controlability and observability of infinite-
dimentional linear dynamical systems (Mozyrska and Bartosiewicz 2006, 2008) and to 
stochastic systems (Germani et al. 2007).

The connection between Carleman linearization and the Poincaré-Dulac normal form 
for autonomous differential systems has been the subject of work by Tsiligiannis and 
Lyberatos (1989), Della Dora and Stolovitch (1991). The refinement of classical normal 
form for dynamical systems was proposed by Chen and Della Dora (1999, 2000).
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In this paper, we apply Carleman linearization to the problem of constructing the 
Poincaré normal form for non-autonomous differential equations with quasi-periodic 
coefficients, as proposed in Chermnykh (1987).

Poincaré normalization for non-autonomous differential systems with quasi-periodic 
coefficients is used, for example, in celestial mechanics to construct the GPT-method 
of general planetary theory (Brumberg 1970; Brumberg and Chapront 1973) and GPT-
compatible methods of the general Earth’s rotation theory (Brumberg and Ivanova 2011) 
and the Moon’s motion theory (Ivanova 2014). Planetary theories have been historically 
developed to provide ephemerides of planetary bodies; reviews of planetary theories can 
be found in Seidelmann (1993) and Kholshevnikov and Kuznetsov (2007).

The first step of GPT-method is to reduce the differential system in the vicinity of 
unperturbed motion by a proper choice of coordinates to the form

where the components of vector f are holomorphic functions with respect to the compo-
nents of vector X ∈ Cν; f depends on t by means of quasi-periodic functions; f(0, t) = 0 ; 
the Jacobi matrix (∂f/∂X)|X=0 is of Jordan form (even diagonal) with purely imaginary 
eigenvalues.

The second step of the GPT-method is to construct iterative transformations of the 
differential system (1) with quasi-periodic coefficients to the normal form (Birkhoff 
1927). The system (1) is subjected to the normalizing iterative transformations excluding 
all short-period terms and leading to the secular system with slowly changing variables. 
As a result, one obtains the solution of the secular system avoiding the appearance of the 
non-physical secular terms.

The most cumbersome operation of GPT-method is the Poincaré normalization of 
the differential system (1). The evaluation problem in celestial mechanics is of particular 
importance owing to the large number of terms in the series. The analytical calculations 
in GPT-method are performed by the Poisson series processor (Brumberg 1995; Ivanova 
2001).

In the present paper we develop a recursive algorithm based on Carleman lineariza-
tion for computing the series. The algorithm provides explicit formulas for the coeffi-
cients of the Poincaré normal form and the normalizing transformation. Therefore, the 
Carleman linearization technique may be advantageous for constructing normal forms 
in a literal form.

This paper is organized as follows. In the next section, we describe our notations. In 
sections ‘The Weierstrass matrix’ and ‘The Carleman matrix’, we study two classes of 
infinite matrices, corresponding to nonlinear mappings and differential systems. In sec-
tion ‘Transformations’, we study the transformations of infinite matrices. Section ‘Nor-
mal form of a Carleman matrix’ presents the recursive algorithm for constructing the 
Poincaré normalization. The proofs of the propositions are given in section ‘Proofs’. 
Finally, we give an example and discuss the results.

(1)
d

dt
X = f(X, t),
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Notations
R—real number field,
C—complex number field,
K—either real or complex number field,
Z—the ring of integer numbers,
N0—the set of integer non-negative numbers,
N
ν
0

def
= {n = (n1, . . . , nν) | nα ∈ N0}—the set of multi-indices,

|n|
def
=

∑ν
α=1 nα,

Xn def
= X

n1
1 × · · · × Xnν

ν ,

eα
def
= (0, . . . , 1

︸︷︷︸

α

, . . . , 0),

≺—the precedence sign in Nν
0,

�—the sign of precedence or equality in Nν
0,

(m : n)
def
=

{
l ∈ N

ν
0 | m ≺ l ≺ n

}
,

(m : n]
def
=

{
l ∈ N

ν
0 | m ≺ l � n

}
,

[m : n)
def
=

{
l ∈ N

ν
0 | m � l ≺ n

}
,

I(µ, ν)
def
=

{
n ∈ N

ν
0 | |n| = µ

}
,

s(µ, ν)
def
= card(I(µ, ν)) =

(µ+ ν − 1)!

(ν − 1)!µ!
,

〈, 〉—scalar product,
A—algebra over K of quasi-periodic functions R → K, defined by K-valued finite trig-
onometric sums,
d

dt
—differential operator in A.

The Weierstrass matrix
Let A[ν] be algebra over K of mappings R×Kν → Kν, represented by a formal power 
series:

with X, Y ∈ Kν , g[eα ,n] ∈ A, α = 1, . . . , ν.
We introduce the countable sets of variables:

Let x[n] = 1 for n /∈ N
ν
0 and g[m,n] = 0 for (m /∈ N

ν
0) ∨ (n /∈ N

ν
0) ∨ (n = 0) ∨ (m = 0).

Proposition 1  The variables y[m] and x[m] satisfy the linear equations

Yα = gα(t,X) =

∞∑

µ=1

∑

n∈I(µ,ν)

g[eα ,n]X
n
,

(2)
{
x[n] = Xn | n ∈ N

ν
0

}
,
{
y[n] = Yn | n ∈ N

ν
0

}
.

y[m] =

∞∑

µ=1

∑

n∈I(µ,ν)

g[m,n] x[n]
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where the coefficients g[m,n] for |m| > 1 may be obtained by the recursion formula

We introduce natural ordering for the set Nν
0. Let k ≺ l for k, l ∈ N

ν
0, if |k| < |l| or 

|k| = |l| and there exists a number β such that kα = lα for α < β and kβ > lβ.
Using the ordering of Nν

0, we introduce infinite-dimensional vectors x = (x[n]), 
y = (y[n]) and the matrix G = (g[m,n]) for m, n ∈ N

ν
0 such that

Definition 1  The infinite matrix G is said to be a Weierstrass matrix with a range ν

if the elements g[m,n] ∈ A satisfy the condition given by (3) for |m| > 1.

Let ψ denote the constructed correspondence between mappings and matrices

The following proposition describes the structure of Weierstrass matrices.

Proposition 2  1. A Weierstrass matrix G consists of rectangular blocks Gα,β =

(s(α, ν)× s(β , ν)) such that Gα,β = 0 for α > β.

2.	 Let the Jacobi matrix 
(
∂g

∂X

)∣
∣
∣
∣
X=0

 for g ∈ A[ν] be upper triangular with a main diago-

nal � = (�1, . . . , �ν) ∈ Kν. Then, ψ(g) is an upper triangular matrix with main diago-
nal elements g[n, n] = �

n.

Definition 2  1.	The mapping g ∈ A[ν] is said to be invertible if there exists g−1 ∈ A[ν] 
such that g ◦ g−1 = 1A[ν]—identity mapping.

2.	 A matrix G ∈ W ν(A) is said to be invertible if there exists G−1 ∈ W ν(A) such that 
G ·G−1 = E.

Proposition 3  Weierstrass matrices W ν(A) form a semi-group with multiplica-
tion, which is isomorphic to the semi-group of mappings A[ν] with composition: 
ψ(f ◦ g) = ψ(f) · ψ(g) for f , g ∈ A[ν].

Corollary 1  Invertible Weierstrass matrices W ν(A) form a group with multiplication, 
which is isomorphic to the group of invertible mappings A[ν] with composition.

Corollary 2  Let f , g ∈ A[ν] and g be invertible. We introduce the mapping 
bg : f → g−1 ◦ f ◦ g. Let F, G ∈ W ν(A) and G be invertible. We introduce the mapping 
BG : F → G−1FG.

(3)g[m,n] =
1

|m|

|n|−1
∑

µ=|m|−1

∑

k∈I(µ,ν)

ν∑

α=1

mαg[m − eα , k] g[eα ,n − k].

y = Gx.

G ∈ W ν(A)

ψ : A[ν] → W ν(A).
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Then, the following diagram is commutative

The Carleman matrix
Here, we construct a class of infinite matrices representing ordinary differential 
equations.

Let A[ν] denote linear space over K of vector fields f = (f1, . . . , fν) ∈ A[ν], represented 
by a formal power series:

for X ∈ Kν , t ∈ R, α = 1, . . . , ν.
Let f [eα ,n] = 0 for n /∈ N

ν
0 or n = 0.

Proposition 4  The variables x[n] (2) satisfy the following differential equations:

where the coefficients f [m,n] for |m| > 1 may be obtained from (4) by the formula

Using the ordering of Nν
0, we introduce the infinite-dimensional vector x = (x[n]) and 

matrix F = (f [m,n]) for m, n ∈ N
ν
0 such that:

where 
d′

dt
 denotes differentiation of components.

Definition 3  The infinite matrix F is said to be a Carleman matrix of range ν

if the elements f [m,n] ∈ A for |m| > 1 satisfy the condition (5).

Let ϕ denote the constructed correspondence between vector fields and matrices

It is easy to see that ϕ is an isomorphism of linear spaces. The following proposition 
describes the structure of the Carleman matrix.

(4)
d

dt
X = f(X, t), fα(X, t) =

∞∑

µ=1

∑

n∈I(µ,ν)

f [eα ,n]X
n

d

dt
x[m] =

∞∑

µ=|m|

∑

n∈I(µ,ν)

f [m,n] x[n],

(5)f [m,n] =

ν∑

α=1

mα f [eα ,n −m + eα].

(6)
d′

dt
x = Fx,

F ∈ Cν(A)

ϕ : A[ν] → Cν(A).
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Proposition 5  1. The Carleman matrix F consists of rectangular blocks Fα,β = (s

(α, ν)× s(β , ν)) such that Fα,β = 0 for α > β.

2.	 Let the Jacobi matrix 
(

∂f

∂X

)∣
∣
∣
∣
X=0

 for f ∈ A[ν] be upper triangular with a main diago-

nal � = (�1, . . . , �ν) ∈ Kν. Then, ϕ(f) is an upper triangular matrix with main diago-
nal elements f [n,n] = �n, ��.

Transformations
Now, we consider the substitution

defined by the Weierstrass matrix G into differential equation (6) defined by the Carle-
man matrix F. We prove that the result of the substitution (7) gives the differential equa-
tion defined by the Carleman matrix (Proposition 6) and may be interpreted in terms of 
vector fields (Proposition 7).

Proposition 6  Let G ∈ W ν(A) be invertible, F ∈ Cν(A). Let AG denote the mapping

Then, AG : Cν(A) → Cν(A).

Proposition 7  Let g(t,X) ∈ A[ν] be invertible and Jg =

(
∂g

∂X

)

. Let ag : A[ν] → A[ν] 
denote the mapping

Then, the following diagram is commutative:

Normal form of a Carleman matrix
In this section, we provide a definition of the normal form of a Carleman matrix. We 
also introduce a method for reducing the corresponding differential equations to the 
normal form.

Let Cν
T (A) denote the linear space over K of upper triangular Carleman matrices with 

main diagonal elements from K. Let W ν
T (A) denote the semi-group of upper triangular 

Weierstrass matrices with main diagonal elements from K.
Let A be the algebra over K of K-valued finite trigonometric sums

(7)x = Gy

AG(F) = G−1

(

FG−
d′

dt
G

)

.

ag(f) = J−1
g

(

f ◦ g −
∂g

∂t

)

.

∑

k∈Zσ

a[k] exp�iωt, k� for a[k] ∈ C, t ∈ R
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which determine quasi-periodic functions of t with a frequency set ω ∈ Rσ. If K = R, let 
a[k] = a[−k].

Consider the matrix H ∈ Cν
T (A) with elements

Let � ∈ Kν denote the first ν main diagonal elements of H : �α = h[eα , eα], α = 1, . . . , ν .

Definition 4  (m,n, k)—resonance holds if the following condition is satisfied:

where m, n ∈ N
ν
0, k ∈ Zσ. The harmonic h[m,n, k] exp�iωt, k� is said to be resonant if 

(m,n, k)—resonance holds. A Carleman matrix H is reduced to the normal form if all of 
its non-zero harmonics are resonant.

Theorem  For any Carleman matrix F ∈ Cν
T (A), there exists an invertible Weierstrass 

matrix G ∈ W ν
T (A) reducing F to the normal form H ∈ Cν

T (A):

Proof  We obtain the components of G and H in the following order:

We restrict ourselves to the case g[n,n] = 1 for n ∈ N
ν
0.

It follows from the equation FG−
d′

dt
G = GH that we can make the non-resonant 

harmonic h[eα ,n, k]exp�iωt, k� vanish by a proper choice of each g[eα ,n, k], namely

If (eα ,n, k)—resonance holds, we cannot eliminate the corresponding resonant har-
monic via a choice of g[eα ,n, k]. In this case, g[eα ,n, k] may be assigned an arbitrary 
value. Then, one obtains the resonant harmonic in H as follows

By Proposition 6, one obtains the components of G and H below the ν-row by (3) and (5), 
respectively. � �

h[m,n] =
∑

k∈Zσ

h[m,n, k] exp�iωt, k�.

�m, �� = �n, �� + i�k,ω�,

H = AG(F).

(8)(1, 1) → (2, 2) → (1, 2) → (3, 3) → (2, 3) → (1, 3) → · · · .

(9)

g[eα ,n, k] =
1

�n − eα , �� + i�ω, k�

×




�

i∈(eα :n]

�

a∈Zσ

f [eα , i, a] g[i,n, k − a] −
�

j∈[eα :n)

�

b∈Zσ

g[eα , j,b] h[j,n, k − b]



.

(10)

h[eα ,n, k] =
∑

i∈[eα :n]

∑

a∈Zσ

f [eα , i, a] g[i,n, k − a]

−
∑

j∈(eα :n]

∑

b∈Zσ

g[eα , j,b] h[j,n, k − b] − �iω, k� g[eα ,n, k].
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Remark 1  The leading ν rows of G and H determine the normalizing transformation 

X = g(t,Y) and the normal form of the differential equation 
d

dt
X = h(t,X), respectively, 

where G = ψ(g) and H = ϕ(h).

Remark 2  The elements of the inverse matrix G−1 = (g∗[m,n]) may be obtained 
together with the elements of G in the order (8). By equation G−1G = E, one obtains 
that:

Proofs
In this section, we provide proofs of the propositions introduced above.

Proof of Proposition 1  Using the properties of homogeneous polynomials, we obtain:

� �

Proof of Proposition 2  Part 1. It is an immediate consequence of the definition provided 
in (3).

Part 2. Let G = ψ(g). We prove that g[m,n] �= 0 for m � n only. By (3), g[m,n] �= 0 
yields

for at least one α = 1, . . . , ν and one k ∈
⋃|n|−1

µ=|m|−1 I(µ, ν). It accordingly follows that 
m � n. � �

For later considerations, it will be useful to prove a property of Weierstrass matrices.

Lemma 1  Let G = (g[m,n]) ∈ W ν(A) and i, j, n ∈ N
ν
0. Then:

g∗[m,n] = −
∑

k∈[m:n)

g∗[m, k] g[k,n].

y[m] = Ym =

ν∑

α=1

1

|m|

∂Ym

∂Yα
Yα =

1

|m|

ν∑

α=1

mαy[m − eα] y[eα]

=
1

|m|

∞∑

γ=|m|−1

∑

k∈I(γ ,ν)

∞∑

δ=1

∑

l∈I(δ,ν)

(
ν∑

α=1

mαg[m − eα , k] g[eα , l]

)

x[k + l]

=
1

|m|

∞∑

γ=|m|

∑

n∈I(γ ,ν)

γ−1
∑

µ=|m|−1

∑

k∈I(µ,ν)

(
ν∑

α=1

mαg[m − eα , k] g[eα ,n − k]

)

x[n].

(
(m − eα) ∈ N

ν
0

)
∧
(
(n − k) ∈ N

ν
0

)
∧ ((m − eα) � k) ∧ (eα � (n − k))

g[i + j,n] =

|n|−|j|
∑

µ=|i|

∑

k∈I(µ,ν)

g[i, k] g[j,n − k].
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Proof 

� �

Remark 3  Another definition of a Weierstrass matrix may be introduced. Let 
α = 1, . . . , ν and m ∈ N

ν
0. Then:

Proof of Proposition 3  Let F, G ∈ W ν(A) and H = FG. We prove that H ∈ W ν(A). We 
have

Condition (11) is satisfied, i.e., H ∈ W ν(A). �  �

y[i + j] = y[i] y[j] =

∞�

µ=|i|

�

k∈I(µ,ν)

g[i, k] x[k]

∞�

δ=|j|

�

l∈I(δ,ν)

g[j, l] x[l]

=

∞�

γ=|i|+|j|

�

n∈I(γ ,ν)





|n|−|j|
�

µ=|i|

�

k∈I(µ,ν)

g[i, k] g[j,n − k]



x[n].

(11)g[m + eα ,n] =

|n|−|m|
∑

µ=1

∑

k∈I(µ,ν)

g[eα , k] g[m,n − k].

h[m + eα ,n] =

|n|
�

γ=|m|+1

�

i∈I(γ ,ν)

f [m + eα , i] g[i,n]

=

|n|
�

γ=|m|

�

i∈I(γ ,ν)

g[i,n]

γ−|m|
�

δ=1

�

j∈I(δ,ν)

f [eα , j] f [m, i − j]

=

|n|−|m|
�

δ=1

�

j∈I(δ,ν)

f [eα , j]

|n|
�

γ=|m|

�

i∈I(γ ,ν)

g[i,n] f [m, i − j]

=

|n|−|m|
�

δ=1

�

j∈I(δ,ν)

f [eα , j]

|n|
�

γ=|m|

�

l∈I(γ ,ν)

g[l + j,n] f [m, l]

=

|n|−|m|
�

δ=1

�

j∈I(δ,ν)

f [eα , j]

|n|
�

γ=|m|

�

l∈I(γ ,ν)

f [m, l]

|n|−γ
�

ε=δ

�

k∈I(ε,ν)

g[j, k] g[l,n − k]

=

|n|−|m|
�

ε=1

�

k∈I(ε,ν)





|n|−|m|
�

δ=1

�

j∈I(δ,ν)

f [eα , j] g[j, k]





×





|n|
�

γ=|m|

�

l∈I(γ ,ν)

f [m, l] g[l,n − k]





=

|n|−|m|
�

ε=1

�

k∈I(ε,ν)

h[eα , k] h[m,n − k].
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Proof of Proposition 4  One obtains that:

This mathematics proves the proposition. � �

Proof of Proposition 5  Part 1. It is an immediate consequence of definition (5) Part 2. 
We prove that f [m,n] �= 0 for m � n only. By (5), f [m,n] �= 0 yields:

for at least one α = 1, . . . , ν. From this statement, it follows that m � n.  � �

Lemma 2  Let F = (f [n,m]) ∈ Cν(A) and i, j, n ∈ N
ν
0. Then:

Proof  One obtains that:

� �

Remark 4  Another definition for the Carleman matrix may be introduced. Let 
α = 1, . . . , ν and m ∈ N

ν
0. Then:

Proof of Proposition 6  Step 1. Let H = G−1FG and G−1 = (g∗[m,n]). We prove that 
H ∈ Cν(A). By (11), one obtains that:

d

dt
x[m] =

ν∑

α=1

mαx[m − eα]
d

dt
x[eα]

=

∞∑

µ=1

∑

k∈I(µ,ν)

ν∑

α=1

mα f [eα , k] x[k +m − eα]

=

∞∑

µ=|m|

∑

n∈I(µ,ν)

(
ν∑

α=1

mα f [eα ,n −m + eα]

)

x[n].

(
(n −m + eα) ∈ N

ν
0

)
∧ ((n −m + eα) � eα)

f [i + j,n] = f [i,n − j] + f [j,n − i].

d

dt
x[i + j] = x[i]

d

dt
x[j] + x[j]

d

dt
x[i]

=

∞∑

ε=|j|

∑

q∈I(ε,ν)

f [j,q] x[q + i] +

∞∑

δ=|i|

∑

p∈I(δ,ν)

f [i,p] x[p+ j]

=

∞∑

µ=|i|+|j|

∑

n∈I(µ,ν)

(
f [i,n − j] + f [j,n − i]

)
x[n].

(12)f [m + eα ,n] = f [m,n − eα] + f [eα ,n −m].
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where

h[m + eα ,n] =

|n|
∑

γ=|m|+1

∑

k∈I(γ ,ν)

g∗[m + eα , k]

|n|
∑

δ=γ

∑

l∈I(δ,ν)

f [k, l] g[l,n]

=

|n|
∑

γ=|m|+1

∑

k∈I(γ ,ν)

γ−|m|
∑

ε=1

∑

p∈I(ε,ν)

g∗[eα ,p]g
∗[m, k − p]

|n|
∑

δ=γ

∑

l∈I(δ,ν)

f [k, l] g[l,n]

=

|n|−|m|
∑

ε=1

∑

p∈I(ε,ν)

g∗[eα ,p]

|n|−1
∑

γ=|m|

∑

i∈I(γ ,ν)

g∗[m, i]

|n|
∑

δ=ε+γ

∑

l∈I(δ,ν)

f [p+ i, l] g[l,n]

= �1 +�2,

�1 =

|n|−|m|
∑

ε=1

∑

p∈I(ε,ν)

g∗[eα ,p]

|n|−1
∑

γ=|m|

∑

i∈I(γ ,ν)

g∗[m, i]

|n|
∑

δ=ε+γ

∑

l∈I(δ,ν)

f [p, l − i] g[l,n]

=

|n|−|m|
∑

ε=1

∑

p∈I(ε,ν)

g∗[eα ,p]

|n|−1
∑

γ=|m|

∑

i∈I(γ ,ν)

g∗[m, i]

|n|−γ
∑

δ=ε

∑

r∈I(δ,ν)

f [p, r] g[r + i,n]

=

|n|−|m|
∑

ε=1

∑

p∈I(ε,ν)

g∗[eα ,p]

|n|−|m|
∑

δ=ε

∑

r∈I(δ,ν)

f [p, r]

|n|−1
∑

γ=|m|

∑

i∈I(γ ,ν)

g∗[m, i] g[r + i,n]

=

|n|−|m|
∑

ε=1

∑

p∈I(ε,ν)

g∗[eα ,p]

|n|−|m|
∑

δ=ε

∑

r∈I(δ,ν)

f [p, r]

|n|−1
∑

γ=|m|

∑

i∈I(γ ,ν)

g∗[m, i]

×

|n|−δ
∑

σ=γ

∑

s∈I(σ ,ν)

g[i, s] g[r,n − s] =

|n|−|m|
∑

ε=1

∑

p∈I(ε,ν)

g∗[eα ,p]

|n|−|m|
∑

δ=ε

∑

r∈I(δ,ν)

f [p, r]

×

|n|−δ
∑

σ=|m|

∑

s∈I(σ ,ν)

g[r,n − s]

|n|−1
∑

γ=|m|

∑

i∈I(γ ,ν)

g∗[m, i] g[i, s]

=

|n|−|m|
∑

ε=1

∑

p∈I(ε,ν)

g∗[eα ,p]

|n|−|m|
∑

δ=ε

∑

r∈I(δ,ν)

f [p, r] g[r,n −m] = h[eα ,n −m],

�2 =

|n|−|m|
∑

ε=1

∑

p∈I(ε,ν)

g∗[eα ,p]

|n|−1
∑

γ=|m|

∑

i∈I(γ ,ν)

g∗[m, i]

|n|
∑

δ=ε+γ

∑

l∈I(δ,ν)

f [i, l − p] g[l,n]

=

|n|−1
∑

γ=|m|

∑

i∈I(γ ,ν)

g∗[m, i]

|n|−1
∑

δ=|m|

∑

j∈I(δ,ν)

f [i, j]

|n|−|m|
∑

ε=1

∑

p∈I(ε,ν)

g∗[eα ,p] g[p+ j,n]

=

|n|−1
∑

γ=|m|

∑

i∈I(γ ,ν)

g∗[m, i]

|n|−1
∑

δ=|m|

∑

j∈I(δ,ν)

f [i, j]

|n|−|m|
∑

ε=1

∑

p∈I(ε,ν)

g∗[eα ,p]

×

|n|−ε
∑

σ=δ

∑

s∈I(σ ,ν)

g[j, s] g[p,n − s] =

|n|−1
∑

γ=|m|

∑

i∈I(γ ,ν)

g∗[m, i]

|n|−1
∑

δ=|m|

∑

j∈I(δ,ν)

f [i, j]

×

|n|−1
∑

σ=δ

∑

s∈I(σ ,ν)

g[j, s]

|n|−|m|
∑

ε=1

∑

p∈I(ε,ν)

g∗[eα ,p] g[p,n − s]

=

|n|−1
∑

γ=|m|

∑

i∈I(γ ,ν)

g∗[m, i]

|n|−1
∑

δ=|m|

∑

j∈I(δ,ν)

f [i, j] g[j,n − eα] = h[m,n − eα].
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Consequently, the elements of H satisfy definition (12), i.e. H ∈ Cν(A).

Step 2. Let H = G−1
d′

dt
G. We prove that H ∈ Cν(A). Let the superscript point denote 

differentiation 
d

dt
. Here, we have:

The elements of H satisfy definition (12), i.e., H ∈ Cν(A).
Step 3. It is easy to see that if H1, H2 ∈ Cν(A), then H1 +H2 ∈ Cν(A). Consequently, 

AG : Cν(A) → Cν(A).  � �

Proof of Proposition 7  Step 1. Let G ∈ W ν(A). We prove that:

Let m ∈ I(1, ν), m = eγ , γ = 1, . . . , ν. Setting g[0, 0] = 1, one obtains that:

These calculations prove (13) for |m| = 1. Let |m| = 2, m = eγ + eδ , where γ , δ =
1, . . . , ν. Then:

h[m + eα ,n] =

|n|
∑

γ=|m|+1

∑

k∈I(γ ,ν)

g∗[m + eα , k] ġ[k,n]

=

|n|
∑

γ=|m|+1

∑

k∈I(γ ,ν)

ġ[k,n]

γ−|m|
∑

δ=1

∑

p∈I(δ,ν)

g∗[eα ,p] g
∗[m, k − p]

=

|n|−|m|
∑

δ=1

∑

p∈I(δ,ν)

g∗[eα ,p]

|n|
∑

γ=|m|+δ

∑

k∈I(γ ,ν)

ġ[k,n] g∗[m, k − p]

=

|n|−|m|
∑

δ=1

∑

p∈I(δ,ν)

g∗[eα ,p]

|n|−1
∑

γ=|m|

∑

l∈I(γ ,ν)

ġ[l + p,n] g∗[m, l]

=

|n|−|m|
∑

δ=1

∑

p∈I(δ,ν)

g∗[eα ,p]

|n|−1
∑

γ=|m|

∑

l∈I(γ ,ν)

g∗[m, l]

×

|n|−δ
∑

σ=γ

∑

q∈I(σ ,ν)

(
ġ[l,q] g[p,n − q] + g[l,q] ġ[p,n − q]

)

=

|n|−1
∑

γ=|m|

∑

l∈I(γ ,ν)

g∗[m, l]

|n|−1
∑

σ=γ

∑

q∈I(σ ,ν)

ġ[l,q]

|n|−|m|
∑

δ=1

∑

p∈I(δ,ν)

g∗[eα ,p] g[p,n − q]

+

|n|−|m|
∑

δ=1

∑

p∈I(δ,ν)

g∗[eα ,p]

|n|−δ
∑

σ=|m|

∑

q∈I(σ ,ν)

ġ[p,n − q]

|n|−1
∑

γ=|m|

∑

l∈I(γ ,ν)

g∗[m, l] g[l,q]

=

|n|−1
∑

γ=|m|

∑

l∈I(γ ,ν)

g∗[m, l] ġ[l,n − eα] +

|n|−|m|
∑

δ=1

∑

p∈I(δ,ν)

g∗[eα ,p] ġ[p,n −m]

= h[m,n − eα] + h[eα ,n −m].

(13)ġ[m,n] =

ν∑

α=1

mα

|n|−|m|+1
∑

ε=1

∑

l∈I(ε,ν)

ġ[eα , l] g[m − eα ,n − l].

|n|
∑

ε=1

∑

l∈I(ε,ν)

ġ[eγ , l] g[0,n − l] = ġ[eγ ,n].
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These expressions prove (13) for |m| = 2. Suppose by induction that (13) holds for 
|m| ≥ 2. Then, for β = 1, . . . , ν, one obtains:

where δβα is the Kronecker symbol. These calculations prove (13).
Step 2. We prove the equality of Carleman matrices:

To prove this equality, it is sufficient to show that the leading ν rows of matrices are 
equal. Let X = g(t,Y), w(t,Y) = J−1

g (t,Y) · (f ◦ g)(t,Y). Then:

ν∑

α=1

mα

|n|−|m|+1
∑

ε=1

∑

l∈I(ε,ν)

ġ[eα , l] g[m − eα ,n − l]

=

|n|−1
∑

σ=1

∑

l∈I(σ ,ν)

ġ[eγ , l] g[eδ ,n − l] +

|n|−1
∑

ζ=1

∑

j∈I(ζ ,ν)

ġ[eδ , j] g[eγ ,n − j]

=

|n|−1
∑

σ=1

∑

l∈I(σ ,ν)

ġ[eγ , l] g[eδ ,n − l] +

|n|−1
∑

ζ=1

∑

k∈I(ζ ,ν)

ġ[eδ ,n − k] g[eγ , k]

=

|n|−1
∑

σ=1

∑

l∈I(σ ,ν)

(
ġ[eγ , l] g[eδ ,n − l] + ġ[eδ ,n − l] g[eγ , l]

)
= ġ[eγ + eδ ,n].

ġ[m + eβ ,n] =

|n|−|m|
∑

γ=1

∑

k∈I(γ ,ν)

(
ġ[eβ , k] g[m,n − k] + g[eβ , k] ġ[m,n − k]

)

=

|n|−|m|
∑

γ=1

∑

k∈I(γ ,ν)

g[eβ , k]

ν∑

α=1

mα

|n|−γ+|m|+1
∑

ε=1

∑

l∈I(ε,ν)

ġ[eα , l] g[m − eα ,n − k − l]

+

|n|−|m|
∑

γ=1

∑

k∈I(γ ,ν)

ġ[eβ , k] g[m,n − k] =

ν∑

α=1

mα

|n|−|m|
∑

ε=1

∑

l∈I(ε,ν)

ġ[eα , l]

×

|n|−ε−|m|+1
∑

γ=1

∑

k∈I(γ ,ν)

g[eβ , k] g[m − eα ,n − l − k]

+

|n|−|m|
∑

γ=1

∑

k∈I(γ ,ν)

ġ[eβ , k] g[m,n − k]

=

ν∑

α=1

mα

|n|−|m|
∑

ε=1

∑

l∈I(ε,ν)

ġ[eα , l] g[m − eα + eβ ,n − l]

+

|n|−|m|
∑

γ=1

∑

l∈I(γ ,ν)

ġ[eβ , l] g[m,n − l]

=

ν∑

α=1

(mα + δβα )

|n|−|m|
∑

ε=1

∑

l∈I(ε,ν)

ġ[eα , l] g[m − eα + eβ ,n − l]

(14)ϕ(J−1
g · (f ◦ g)) = (ψ(g))−1ϕ(f)ψ(g).

J−1
g (t,Y) = Jg−1(t,X)

∣
∣
X=g(t,Y)

= (Jg−1 ◦ g)(t,Y).
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It follows that:

This mathematics proves (14).
Step 3. Now, we prove the equality of Carleman matrices:

Let: X = g(t,Y), u = J−1
g

∂g

∂t
. Then, we have:

wβ =
�

(grad(g−1
β )

�

◦ g)(t,Y) · (f ◦ g)(t,Y)

=

ν�

α=1

∞�

γ=1

�

n∈I(γ ,ν)

nαg
∗[eβ ,n]

∞�

δ=γ−1

�

m∈I(δ,ν)

g[n − eα ,m] y[m]

×

∞�

ε=1

�

k∈I(ε,ν)

f [eα , k]

∞�

σ=ε

�

i∈I(σ ,ν)

g[k, i] y[i]

=

∞�

δ=1

�

l∈I(δ,ν)

ν�

α=1

∞�

γ=1

�

n∈I(γ ,ν)

∞�

ε=1

�

k∈I(ε,ν)

nαg
∗[eβ ,n] f [eα , k]

×





δ�

σ=ε

�

i∈I(σ ,ν)

g[n − eα , l − i] g[k, i]



y[l] =

∞�

δ=1

�

l∈I(δ,ν)

ν�

α=1

∞�

γ=1

�

n∈I(γ ,ν)

×

∞�

ε=1

�

k∈I(ε,ν)

nαg
∗[eβ ,n] f [eα , k] g[k + n − eα , l] y[l]

=

∞�

δ=1

�

l∈I(δ,ν)

∞�

γ=1

�

n∈I(γ ,ν)

δ�

ε=1

�

j∈I(ε,ν)

g∗[eβ ,n]

×

�
ν�

α=1

nα f [eα , j− n + eα]

�

g[j, l] y[l]

=

∞�

δ=1

�

l∈I(δ,ν)





δ�

γ=1

�

n∈I(γ ,ν)

g∗[eβ ,n]

δ�

ε=γ

�

j∈I(ε,ν)

f [n, j] g[j, l]



y[l].

(15)ϕ

(

J−1
g

∂g

∂t

)

= (ψ(g))−1 d
′

dt
ψ(g).

uβ = (grad(g−1
β ) ◦ g)(t,Y)×

∂g(t,Y)

∂t

=

ν∑

α=1

∞∑

γ=1

∑

m∈I(γ ,ν)

mαg
∗[eβ ,m]

∞∑

δ=γ−1

∑

k∈I(δ,ν)

g[m − eα , k] y[k]

×

∞∑

ε=1

∑

n∈I(ε,ν)

ġ[eα ,n] y[n] =

∞∑

δ=1

∑

l∈I(δ,ν)

∞∑

γ=1

∑

m∈I(γ ,ν)

g∗[eβ ,m]

×

ν∑

α=1

mα

δ−γ+1
∑

ε=1

∑

n∈I(ε,ν)

ġ[eα ,n] g[m − eα , l − n] y[l].
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Hence, by (13):

which proves (15).
Step 4. Since ϕ is a linear mapping, by (14) and (15):

These calculations prove the proposition.  � �

Example
In this section, we give an example of the algorithm introduced above. Consider the fol-
lowing system of ordinary differential equations with quasi-periodic coefficients with a 
frequency set ω = (1,π):

where Z = (z1, z2) ∈ C2, z1 = z2, a = 1+ eit + eiπ t. We shall compute a third order nor-
mal form. For calculating the Carleman matrix F we can use either the formula (5) or the 
direct differentiation of monomials:

uβ =

∞�

δ=1

�

l∈I(δ,ν)





δ�

γ=1

�

m∈I(γ ,ν)

g∗[eβ ,m] ġ[m, l]



y[l]

(ϕ ◦ ag)(f) = ϕ(J−1
g (f ◦ g))− ϕ(J−1

g

∂g

∂t
)

= (ψ(g))−1ϕ(f)ψ(g)− (ψ(g))−1 d′

dt
ψ(g)

= (Aψ(g) ◦ ϕ)(f).







dz1

dt
= iz1 + az1z2 + 2z2

1
z2,

dz2

dt
= −iz2 + az1z2 + 2z1z

2
2
,

d

dt

(

z21

)

= 2iz21 + 2az21z2 + O
(

�Z�4
)

,

d

dt
(z1z2) = az21z2 + az1z

2
2 + O

(

�Z�4
)

,

d

dt

(

z22

)

= −2iz22 + 2az1z
2
2 + O

(

�Z�4
)

,

d

dt

(

z31

)

= 3iz31 + O
(

�Z�4
)

,

d

dt

(

z21z2

)

= iz21z2 + O
(

�Z�4
)

,

d

dt

(

z1z
2
2

)

= −iz1z
2
2 + O

(

�Z�4
)

,

d

dt

(

z32

)

= −3iz32 + O
(

�Z�4
)

.
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Then we have the following Carleman matrix F:

The elements of the Weierstrass matrix G of normalizing transformation Z = g(Y), 
Y = (y1, y2) and the normal form H are calculated in the order (8). The elements of the 
leading two rows of G and H are calculated by (9) and (10), respectively. One obtains the 
elements of G and H below the second row by (3) and (5), respectively.

The Weierstrass matrix G of normalizing transformation takes the form:

where b, c, d are as follows:

The Weierstrass matrix G−1 of the inverse of the normalizing transformation Y = g−1(Z) 
takes the form:

F 1 2 3 4 5 6 7 8 9

(1, 0) (0, 1) (2, 0) (1, 1) (0, 2) (3, 0) (2, 1) (1, 2) (0, 3)

1 (1, 0) i a 2

2 (0, 1) −i a 2

3 (2, 0) 2i 2a
4 (1, 1) 0 a a
5 (0, 2) −2i 2a
6 (3, 0) 3i
7 (2, 1) i
8 (1, 2) −i
9 (0, 3) −3i.

G 1 2 3 4 5 6 7 8 9

(1, 0) (0, 1) (2, 0) (1, 1) (0, 2) (3, 0) (2, 1) (1, 2) (0, 3)

1 (1, 0) 1 b c d

2 (0, 1) 1 b d c
3 (2, 0) 1 2b

4 (1, 1) 1 b b

5 (0, 2) 1 2b
6 (3, 0) 1

7 (2, 1) 1

8 (1, 2) 1

9 (0, 3) 1,

b = i −
i

π − 1
eiπ t , d = −

1

2
+

1

π − 1
eiπ t −

1

2(π − 1)2
e2iπ t ,

c = e−it − eit −
1

π(π − 1)
e−iπ t −

1

π
eiπ t −

1

(π − 1)2
eit−iπ t +

1

(π − 1)2
eiπ t−it

.

G
−1 1 2 3 4 5 6 7 8 9

(1, 0) (0, 1) (2, 0) (1, 1) (0, 2) (3, 0) (2, 1) (1, 2) (0, 3)

1 (1, 0) 1 −b bb− c b2 − d

2 (0, 1) 1 −b b
2
− d bb− c

3 (2, 0) 1 −2b

4 (1, 1) 1 −b −b

5 (0, 2) 1 −2b

6 (3, 0) 1

7 (2, 1) 1

8 (1, 2) 1

9 (0, 3) 1.
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The normal form H of the Carleman matrix F takes the form:

where p, q are as follows: p = eit , q = 2− π−2
π−1

i.
For example, consider the calculation of the elements g1,7 = g[(1, 0), (2, 1)],

h1,7 = h[(1, 0), (2, 1)]. From the proof of the theorem we have:

One can see, that the harmonic 2− π−2
π−1

i is resonant. In this case, g[(1, 0), (2, 1), (0, 0)] 
may be assigned an arbitrary value. Let g[(1, 0), (2, 1), (0, 0)] = 0. Then we have 
h1,7 = 2− π−2

π−1
i. The coefficients of non-resonant harmonics in g1,7 are calculated by (9):

Consider the calculation of the element g5,8 = g[(0, 2), (1, 2)]. From (3) or (11) we have:

Finally, the leading two rows of H determine a third order normal form for the system 
of ordinary differential equations:

H 1 2 3 4 5 6 7 8 9

(1, 0) (0, 1) (2, 0) (1, 1) (0, 2) (3, 0) (2, 1) (1, 2) (0, 3)

1 (1, 0) i p q
2 (0, 1) −i p q
3 (2, 0) 2i 2p
4 (1, 1) 0 p p
5 (0, 2) −2i 2p
6 (3, 0) 3i
7 (2, 1) i
8 (1, 2) −i
9 (0, 3) −3i,

d

dt
g1,7 =

�
f1,1 − f7,7

�
g1,7 +





7�

γ=2

f1,γ gγ ,7 −

6�

γ=1

g1,γ hγ ,7



,

�
f1,1 − f7,7

�
g1,7 +





7�

γ=2

f1,γ gγ ,7 −

6�

γ=1

g1,γ hγ ,7





= f1,4g4,7 + f1,7g7,7 − g1,1h1,7 − g1,4h4,7 = ab+ 2− h1,7 − bp

= 2−
π − 2

π − 1
i − ie−it − ieit +

i

π − 1
e−iπ t − ieiπ t +

i

π − 1
eit−iπ t

+
i

π − 1
eiπ t−it − h1,7.

g1,7 = e−it − eit −
1

π(π − 1)
e−iπ t −

1

π
eiπ t −

1

(π − 1)2
eit−iπ t +

1

(π − 1)2
eiπ t−it

.

g5,8 = g[(0, 2), (1, 2)] = g[(0, 1)+ (0, 1), (1, 2)]

=

2∑

µ=1

∑

k∈I(µ,2)

g[(0, 1), k] g[(0, 1), (1, 2)− k]

= g[(0, 1), (1, 0)]g[(0, 1), (0, 2)] + g[(0, 1), (0, 1)]g[(0, 1), (1, 1)]

+ g[(0, 1), (1, 1)]g[(0, 1), (0, 1)] + g[(0, 1), (0, 2)]g[(0, 1), (1, 0)] = 2g2,4 = 2b.







dy1

dt
= iy1 + py1y2 + qy2

1
y2 + O

�
�Y�4

�
,

dy2

dt
= −iy2 + py1y2 + qy1y

2
2
+ O

�
�Y�4

�
.
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Results and discussion
The algorithm presented here for constructing the normal form and normalizing trans-
formation is based on Carleman linearization of differential equations (4) to the form (6) 
by (5). This algorithm permits us to write the normalizing transformation in matrix form 
(7) by (9), (3) and the normal form of the differential system by (10), (5) in the sequence 
(8).

Performing this algorithm using computers presents no difficulties. The algorithm 
provides explicit recursive formulas for the coefficients of the normal form and the cor-
responding transformation.

Conclusions
In this paper, we apply Carleman linearization to the problem of constructing the Poin-
caré normal form for non-autonomous differential equations with quasi-periodic coef-
ficients. We obtain a recursive algorithm for computing the normalizing transformation 
and the normal form of the differential system. We also provide a rigorous proof of the 
validity of the matrix representation of the normalization.
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