
Performance analysis of CRF‑based
learning for processing WoT application
requests expressed in natural language
Young Yoon* 

Background
IFTTT is a platform that hosts Web of Things (WoT) entities that are referred to as
channels.1 These channels offer functionalities such as triggers and actions which are
ingredients for event-driven applications called recipes. For example, a user can manu-
ally compose an application that consists of ESPN breaking news service as a trigger and
a text-messaging service as an action. Once the user activates this application, the user
will start to receive text notifications whenever any ESPN breaking news gets published.
In Hyun et al. (2015), we presented the ultimate goal of enhancing user experience by
demonstrating a conceptual system that automatically composes and executes an IFTTT
recipe given a user request issued entirely in natural language.

1  IFTTT Web of Things Application Platform. http://www.ifttt.com.

Abstract 

Background:  In this paper, we investigate the effectiveness of a CRF-based learning
method for identifying necessary Web of Things (WoT) application components that
would satisfy the users’ requests issued in natural language. For instance, a user request
such as “archive all sports breaking news” can be satisfied by composing a WoT applica-
tion that consists of ESPN breaking news service and Dropbox as a storage service.

Findings:  We built an engine that can identify the necessary application compo-
nents by recognizing a main act (MA) or named entities (NEs) from a given request.
We trained this engine with the descriptions of WoT applications (called recipes) that
were collected from IFTTT WoT platform. IFTTT hosts over 300 WoT entities that offer
thousands of functions referred to as triggers and actions. There are more than 270,000
publicly-available recipes composed with those functions by real users. Therefore,
the set of these recipes is well-qualified for the training of our MA and NE recognition
engine.

Conlusions:  We share our unique experience of generating the training and test set
from these recipe descriptions and assess the performance of the CRF-based lan-
guage method. Based on the performance evaluation, we introduce further research
directions.

Keywords:  Web of Things, Natural language processing, Conditional random fields,
Application composition

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

SHORT REPORT

Yoon ﻿SpringerPlus (2016) 5:1324
DOI 10.1186/s40064-016-3012-9

*Correspondence: young.
yoon@hongik.ac.kr
Department of Computer
Engineering, Hongik
University, 94, Wowsan‑ro,
Mapo‑gu, Seoul, South Korea

http://orcid.org/0000-0002-5249-2823
http://www.ifttt.com
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3012-9&domain=pdf

Page 2 of 6Yoon ﻿SpringerPlus (2016) 5:1324

However, this system fell short in correctly identifying the intention behind the
requests that are oftentimes ambiguous and irregular. For instance, suppose a user issues
a request such as “Let me know whenever any breaking news in sports gets published”. In
this request, the exact news source is not specified, and the request can be expressed
quite differently such as “If I receive a breaking sports news, notify me”. It was also difficult
for our system to recognize which parts of the sentence relates to a desired trigger or an
action. This shortcoming prompted us to investigate the feasibility of devising an engine
that can learn what triggers and actions are actually asked for in the requests issued in
natural language. Specifically, we employ a CRF-based learning method (Dafferty et al.
2001) that has been successful in natural language processing (NLP) operations such as
part-of-speech (POS) tagging and named entity recognition (NER). The details of the
learning procedure is presented in the following section.

Methods
In this section, we first present a CRF-based learning framework. Then, we explain train-
ing set generation and evaluation methods.

The learning framework

In Fig. 1, we illustrate the overall framework for learning the best-matching IFTTT trig-
gers and actions for user requests. We explain the supervised learning procedure as fol-
lows. We collect recipe descriptions and label them with either a main act or named
entities so that they can be used as training data. A main act (MA) is a sequence of a
trigger ID and an action ID, which is associated with the whole recipe description. A
named entity (NE) is either a trigger ID or an action ID. Each noun or verb in a rec-
ipe description is labeled with a named entity. After the labeling, we extract the feature
of the recipe description which is a sequence of POS tagged tokens. We used Stanford

CRF-based Supervised Learning

L-BFGS Parameter
Es�ma�on

Feature
Extrac�on

Training Data
Labeling

Main Act (MA):
Trigger = ESPN Breaking News
Ac�on = Text-Messaging

Named En��es (NE):
Triggers = {ESPN breaking News :

breaking, news, sports}
Ac�ons = {Text-Messaging: no�fy}

Elas�cSearch

Recipe Descrip�on (Training Data):
Ex) “No�fy me any breaking news in sports”

Main Act Named En��es

FeatureTraining

MA-NE Recogni�on Engine

Test Data:
Ex)“If sports breaking news is published, no�fy me”

NE: Triggers = {breaking, news, sports, published}
Ac�ons = {no�fy}

MA: Trigger = ESPN Breaking News
Ac�on = Text-Messaging

Tes�ng

Feature Extrac�on

Fig. 1  Illustration of the CRF-based IFTTT recipe description learning framework

Page 3 of 6Yoon ﻿SpringerPlus (2016) 5:1324

NLP for POS tagging (Kristina et al. 2003). The feature set along with the MA and NE
labels is fed into the CRF-based learning engine (Dafferty et al. 2001). We used L-BFGS
parameter estimation algorithm (Andrew and Gao 2007) in order to iteratively search
for a function that can find the most-likely correlation between features and MAs/NEs.
This function is used in the engine that recognizes a MA and NEs of a new given recipe
description. As the first step of testing the MA and NE recognition engine, we POS tag
every recipe description in a test set to extract features. Given a feature as an input, the
MA and NE recognition engine outputs a MA or a sequence of NE-labeled tokens.

Training & testing and evaluation method

We collected more than 270,000 publicly available recipe web pages from IFTTT in a
non-invasive way using Crawler4J.2 Every recipe web page has a description of the recipe
and the IDs of the trigger and the action that were actually used for the recipe. We
scrapped these information all together using JSoup3 and Selenium4 and then stored
them into ElasticSearch5 as a single document. We randomly sampled 1000–9000 recipe
descriptions according to uniform distribution, and labeled them with MAs and NEs so
that these can be used as training data. Labeling each verb and noun in the recipe
description with a NE was challenging, because the recipe information does not tell
exactly which verb or noun in the description is associated with which trigger ID or
action ID. Instead of manually labeling the tokens with a NE, we exploited the search
functionality of ElasticSearch as follows. We match a token in a recipe description
against the two sets of documents in ElasticSearch, one indexed by the trigger ID and
the other indexed by the action ID. We picked a set that retrieves documents with higher
average relevancy score. Then we labeled the given token with the index (trigger ID or
action ID) of the selected document set.

We generated two sets of randomly selected recipes, in order to test the effectiveness
of our MA and NE recognition engine that was trained with the aforementioned training
set. One test set contains 200 recipes, and the other contains 7000 recipes. Note that we
only included recipe descriptions expressed in English. We excluded recipe descriptions
that contain jargons that were not recognizable by Stanford NLP. We also excluded any
recipe description that contained less than 2 words, as it would be too terse to convey
any information. Some of the recipes under popular channels such as Facebook contained
meaningless advertisements in the recipe description, and these were ruled out as well.
This rigorous filtering was necessary to control the quality of the training and test data.

Training and testing were conducted on an Ubuntu 14.04 server with Intel i5 3.2 GHz
CPU and 4 GB of memory. We measured how accurately our recognition engine can
identify the trigger ID and the action ID. If the engine correctly yields both trigger ID
and action ID then its accuracy is 100 % for the given test recipe description. If only one
ID is correctly identified, the accuracy is 50 %, and if no correct ID is identified then its
accuracy is 0 %. We computed the average accuracy of all test data. We also measured

2  Crawler4J. https://github.com/yasserg/crawler4j.
3  Jsoup, Java HTML Parser. http://jsoup.org/.
4  Selenium, Web Brower Automation. https://github.com/yasserg/crawler4j.
5  ElasticSearch. https://www.elastic.co/products/elasticsearch.

https://github.com/yasserg/crawler4j
http://jsoup.org/
https://github.com/yasserg/crawler4j
https://www.elastic.co/products/elasticsearch

Page 4 of 6Yoon ﻿SpringerPlus (2016) 5:1324

the time it took to train the recognition engine. We provide the analysis of the evaluation
results in the following section.

Results and discussions
As shown in Table 1, the MA recognition was more effective than the NE recognition
in identifying the correct trigger ID and action ID. NE recognition showed accuracy up
to 32.7 % which is 57 % less than the maximum accuracy of MA recognition. The poor
performance of NE recognition is due to imperfect NE labeling which was done auto-
matically using ElasticSearch. Also, we could not account for any context of a token that
we labeled with a NE. For instance, the word “light” can be used in a condition phrase
such as “If light is turned on”, or in an action phrase such as “turn on the light”. Since
our method is context-aware, the token “light” can be labeled with a wrong NE tag. We
plan to employ techniques for phrase-level tokenization and grammar parsing in order
to improve accuracy of identifying a correct trigger or action for a given phrase.

Although the MA recognition seems relatively more promising, we observed little gain
in the accuracy when the training set size increased to more than 5000 recipe descrip-
tions. This was due to the characteristics of the training set that a small set of triggers
and actions were used frequently in the recipes. In fact, top-10 triggers and actions were
used in up to 75 and 48 % of the recipes in the training set. This biased learning actually
caused an overfitting problem. To remove the bias, we collected the same number of
recipe descriptions per trigger and action. However, the training data collection method
worsen the accuracy of MA recognition. It turned out that the number of features to
learn a MA was too small.

As shown in Table 2, the training time was excessively long especially when there were
a large number of features to learn. Despite the lengthy training time, only a small frac-
tion of MAs or NEs were learned. There are m× n MAs, where m and n are the numbers
of triggers and actions, respectively. Learning all possible MAs is infeasible considering
the fact that there are currently over 2000 triggers and actions. Learning NEs would be
more feasible as the total number of NEs equal to the number of triggers plus the num-
ber of actions. However, as mentioned above, we have to first resolve the issue with the
imperfect NE labeling during the automatic generation of training data. Also, the cur-
rent approach of attempting to learn all MAs and NEs all at once is impractical, as the
number of things (channels) hosted on IFTTT is constantly growing. Therefore, at any

Table 1  Accuracy (%) MA and NE recognition

MA recognition is relatively more promising in identifying triggers and actions

Size of training data MA recognition NE recognition

Test set Test set

200 7000 200 7000

1000 38.8 41.4 28.1 26.9

3000 42.8 45.8 29.1 29.9

5000 49.3 51.1 29.4 31.3

7000 42.0 51.3 29.4 30.2

9000 44.5 51.6 32.8 32.7

Page 5 of 6Yoon ﻿SpringerPlus (2016) 5:1324

time the MA and NE recognition engine created through our framework can become
obsolete.

We plan to revise the current learning framework as follows. Instead of randomly sam-
pling recipe descriptions, we can group recipe descriptions by channels. We train each
group and create a separate MA and NE recognition engine per channel. Given a new
request, we first select the most relevant channel and then query the associated MA and
NE recognition engine to identify triggers and actions that would satisfy the request.
We expect this two-phase approach to improve the accuracy. In addition, we can reduce
the training time by parallelizing the procedure of creating the MA and NE recognition
engine per channel. Furthermore, we can incrementally generate a separate MA and NE
recognition engine for a newly introduced channel without changing other recognition
engines.

Conclusions
We devised a CRF-based learning framework to generate an engine that can recognize
desired triggers and actions for user requests specified in natural language. We created
training data from a set of carefully selected publicly-available IFTTT recipe descrip-
tions. Given the training data, the CRF-based learning engine takes the POS-tagged
tokens in the recipe descriptions as features and learned a main act (a pair of trigger
and action) for a whole recipe description and named entities (a trigger or an action) for
every token in a recipe description. The MA recognition approach was more promising
in finding the desired triggers and actions compared to the NE recognition approach.
However, both MAs and NEs were insufficiently learned despite excessive training time.
Considering the excessive training time and the fact that the number of things (channels)
hosted on IFTTT is constantly growing, we cannot recommend the currently approach
of learning all MAs and NEs all at once. As a future work, we plan to devise a frame-
work that allows parallel and incremental learning that can achieve higher accuracy and
reduce learning time.

Acknowledgements
This work was supported by 2016 Hongik University Research Fund.

Competing interests
The author declares that he has no competing interests.

Table 2  Training time (min.) and the number of learned MAs, NEs and features MAs
and NEs are insufficiently learned despite the long training time

MAs and NEs are insufficiently learned despite the long training time

Size of training
data

MA recognition NE recognition

Test set Test set

of MAs # of features Training time # of MAs # of features Training time

1000 392 1453 0.4 117 28,715 1.3

3000 773 3302 51.3 138 699,932 186.5

5000 1139 4702 340 180 108,099 745.3

7000 1494 6326 586.6 200 152,983 1123.2

9000 1839 7704 962.2 231 203,145 2100.7

Page 6 of 6Yoon ﻿SpringerPlus (2016) 5:1324

Received: 4 February 2016 Accepted: 5 August 2016

References
Andrew G, Gao J (2007) Scalable training of l1-regularized log-linear models. In: Machine learning, proceedings of the

twenty-fourth international conference (ICML 2007), Corvallis, Oregon, USA, 20–24 June 2007. ACM, pp 33–40
Dafferty JD, McAllum A, Pereira F (2001) Conditional random fields: probabilistic models for segmenting and labeling

sequence data. In: Proceedings of the eighteenth international conference on machine learning (ICML 2001), 28
June–1 July 2001. Williams College, Williamstown, MA, USA, pp 282–289

Hyun L, Kang S, Yoon J, Yoon Y (2015) A system for the specification and execution of conditional WoT applications over
voice. In: Proceedings of the posters and demos session of the 16th international middleware conference, middle-
ware posters and demos 2015, Vancouver, BC, Canada, 7–11 Dec 2015. ACM, pp 1–2

Kristina T, Klein D, Manning CD, Singer Y (2003) Feature-rich part-of-speech tagging with a cyclic dependency network.
In: HLT-NAACL 2003, human language technology conference of the North American Chapter of the Association for
Computational Linguistics, 27 May–1 June 2003, Edmonton, Canada

	Performance analysis of CRF-based learning for processing WoT application requests expressed in natural language
	Abstract
	Background:
	Findings:
	Conlusions:

	Background
	Methods
	The learning framework
	Training & testing and evaluation method

	Results and discussions
	Conclusions
	Acknowledgements
	References

