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Background
The description of strain hardening behavior of materials using mathematical expres-
sion has been the subject of numerous investigations for many years. Strain hardening 
response of materials is usually characterized indirectly by the true stress–strain curves 
obtained from tensile tests. Typically, the strain hardening rate can be calculated numer-
ically from the curves and plotted against strain (or stress). It is now well established that 
the hardening rate of crystals may be divided into various distinct stages (Nabarro et al. 
1964; Asgari et al. 1997; Chinh et al. 2004), typically three stages, labeled Stage I, Stage 
II and Stage III (Kuhlmann-Wilsdorf 1985). The stages of polycrystalline steels are much 
less evident than those of the single crystal (Reedhill et al. 1973). Therefore, some forms 
of analysis are normally to describe the strain hardening behavior of steels. For this pur-
pose, the Ramberg–Osgood formula (Ramberg and Osgood 1943) has been used widely 
for steels in various engineering fields. However, this formula is inherently deficient to 
describe the strain hardening behavior of steels in the full range.

Distinct stages strain hardening behavior has been observed in various types of steels 
(Jha et  al. 1987; Nie et  al. 2012; Umemoto et  al. 2000; Tomita and Okabayashi 1985; 
Atkinson 1979; Kalidindi 1998; Saha et  al. 2007). Many formulas were designed to 
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describe the full-range hardening and some material-specific formulas have been pro-
posed for stainless steels (Rasmussen 2003; Gardner and Nethercot 2004a, b; Abdella 
2006; Quach et al. 2008; Arrayago et al. 2015), TRIP steels (Tomita and Iwamoto 1995), 
high strength steels (Gardner and Ashraf 2006) and pipeline steels (Hertelé et al. 2012a, 
b). Although excellent agreement has been provided for specific materials, the formulas 
have difficulty being adopted for other materials. Additionally, it should be noted that 
the strain hardening behavior involves a complex interaction among various factors. At 
the microscale, this aspect of plastic deformation is intrinsically coupled with all other 
aspects of plastic deformation such as development of preferred lattice orientations, 
formation of sub-grains, and formation of local shear bands (Wilson 1974). For auste-
nitic steels and TRIP steels, the microstructural phase transformation from austenite to 
martensite also has a great effect on the plastic deformation. (Leblond et  al. 1986a, b; 
Hallberg et al. 2007; Santacreu et al. 2006; Post et al. 2008; Stringfellow et al. 1992; Bhat-
tacharyya and Weng 1994; Diani et al. 1995; Miller and McDowell 1996; Papatriantafil-
lou et al. 2006; Turteltaub and Suiker 2005; Beese and Mohr 2012; Iwamoto and Tsuta 
2000). This has been actively studied for decades. Therefore, it is virtually impossible to 
develop a complete understanding (Chinh et  al. 2004) of the behavior, and no unified 
theory on the physically based functional description has been found (Cleri 2005). Most 
of these formulas to describe the strain hardening behavior of steel are purely empirical 
descriptions.

The purpose of this paper is to present a mathematical description of the full-range 
strain hardening behavior for steels with smooth, gradual onset of yielding. Note that 
many mathematical descriptions have already existed, an overview of existing stress–
strain formulas and an expression of the new formula are provided in “Formulas char-
acterizing stress strain curves” section. Test data of various types of steels were referred 
to in “Test data” section. “Validation and comparison” section validated the proposed 
formula with test data and comparisons with other formulas were also listed. Then, a 
limitation of the proposed formula is discussed in “Discussion” section. Finally principal 
conclusions are drawn in “Conclusion” section.

Formulas characterizing stress strain curves
Overview of existing formulas

The description of the stress–strain curves of metals by mathematical expressions has 
been a topic of research since the origin of classical mechanics. Numerous formulas have 
been proposed to describe the stress–strain curves. Osgood (1946) summarized 17 for-
mulas used in the early age of study. Kleemola and Nieminen (1974) discussed the com-
putational method of parameters for some commonly used formulas. Recently, existing 
common formulas have been reviewed and discussed by Hertelé et al. (2011).

The most well-known formulas are a series of simple formulas with a power function 
(Ludwik 1909; Ramberg and Osgood 1943; Hollomon 1945; Swift 1952; Hoffelner 2013). 
Among them, the Ramberg–Osgood formula (1943) has been widely accepted in the 
engineering field:

(1)εp =

( σ

K

)
1
m
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Thus, the true stress–strain relationship can be expressed explicitly:

where σ is the true stress, ε is the true strain, εp is the plastic strain, E is the elastic modu-
lus, and K, m are material parameters.

The convenience of this formula is that it can be easily linearized by taking logarithms 
of the true stress–plastic strain coordinates. Thus, the parameters can be obtained 
through linear regression analysis.

The deficiency of this formula is that it cannot characterize many materials in the full 
range exhibiting various distinct strain hardening stages, which have been observed in 
various types of steels (Quach et al. 2008; Rasmussen 2003; Abdella 2006; Bowen and 
Partridge 2002; Gardner and Nethercot 2004a, b) and other metals (Monteiro and Reed-
Hill 1973; Markandeya et al. 2006). Therefore, many other types of formulas have been 
proposed (Ludwigson 1971; Voce 1948; Chinh et al. 2004). Ludwigson (1971) proposed 
such a formula, which accounts for the deviations at low strains by adding a second term 
to the Ludwik power law formula (Ludwik 1909):

where K1, m1, K2, m2 are material parameters.
Compared to the Ramberg–Osgood formula, there is no single direct expression that 

shows a straight line in logarithmic or non-logarithmic coordinates. The formula shows 
a tendency toward linear behavior for large strains in a double-logarithmic stress–strain 
diagram. Therefore K1 and m1 can be obtained through linear regression of large strains. 
Thus, ∆ is defined as:

K2, m2 can be obtained through linear regression analysis of ln ∆ − εp:

The deficiency of this formula is also very clear: it cannot provide an explicit expres-
sion of σ − ε and could have difficulties in describing the smooth, gradual onset of yield-
ing observed in many metallic materials (Hertelé et al. 2011).

Therefore, other formulas were proposed to characterize the full-range strain harden-
ing behavior more accurately with segmented functions (Abdella 2006; Rasmussen 2003; 
Saab and Nethercot 1991; Hertelé et al. 2011; Real et al. 2014). Most of these formulas 
are material specific. Recently, Hertelé (2012a, b) proposed such an UGent formula to 
characterize the plastic behavior of pipeline steels.

(2)ε =
σ
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(3)m · log εp + logK = log σ

(4)σ = K1 · ε
m1
p + eK2 · em2εp

(5)� = σ − K1 · ε
m1
p

(6)ln� = K2 + m2 · εp
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where σ0.2, σ1, σ2, n1, n2 are fitting parameters.
The UGent stress–strain model was developed to describe the strain hardening behav-

ior of pipeline steels with two distinct stages. As listed in Eq. (7), for small plastic regions 
σ ≤ σ1, the UGent model respects a Ramberg–Osgood equation with a true 0.2 % proof 
stress σ0.2 and a first strain-hardening exponent n1; for large plastic region σ ≥ σ2, the 
UGent model respects a Ramberg–Osgood equation with the same 0.2 % proof stress 
σ0.2, but a possibly different strain-hardeing exponent n2; Between these two regions, 
there is a smooth transition where the curve shape gradually changes.

The deficiency of the UGent formula is that it is too complicated to apply in practice 
and the parameters are difficult to obtain.

Proposed stress–strain formula

In order to deal with the deficiencies mentioned above, a new empirical formula is devel-
oped to describe the full-range strain hardening behavior of steels. The formula is based 
on the assumption that the real stress–strain curve tends to two different Ramberg–
Osgood curves following the relationship of Eq.  (8). It tends to the Ramberg–Osgood 
εp1 − σ curve 1 by Eq. (9) in the small plastic strain region and Ramberg–Osgood εp2–σ 
curve 2 by Eq. (10) in the large plastic strain region, respectively.

K1, K2, m1, m2, A, B are material fitting parameters.
The optimal parameter values of the proposed formula can be obtained through least-

squares fitting method as depicted in Fig. 1 in following procedure:

• • In the small scale yielding plastic area, a Ramberg–Osgood formula with m1, k1 is 
assumed to be followed, defined as εp1-σ line in Fig. 1a. The parameters can be easily 
obtained through a linear regression analysis as Eq. (9) in the log(εp) − log(σ) coor-
dinate.
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• • In the large scale yielding plastic area, a Ramberg–Osgood formula with m2, k2 
should be followed, defined as εp2 − σ line in Fig. 1a. The parameters can also be eas-
ily obtained through a linear regression analysis in the same way through Eq. (10):

• • In the transition between these two curves mentioned above, the ratio value of εp − εp1 
to εp2 − ε against stress shows a linear relation of Eq. (13), in the coordinate depicted in 
Fig. 1b. The parameters A, B can be obtained through a linear regression analysis directly.

Test data
To validate the proposed formula, tensile tests at ambient temperature have been performed 
on three high strength steels. A strain rate of 5 × 10−4 s−1 was kept in loading to avoid any 
stress wave effect and to keep in a quasi-static mode. Test data of other steels done by Hertelé 
et al. (2011) were also selected. The basic tensile characteristics of the steels are summarized 
in Table 1. PCrNi3MoVA, G4335V, 32CrNi3MoVA are three high strength steels in China 
used for gun barrels, known as gun steels; API X70 is used for pipeline; TRIP 690 is a high 
strength Transformation Induced Plasticity steel; DIN 1.4462 is a stainless steel alloy.

Figure 2 depicts the engineering and true stress–strain curves. The parts of the engineer-
ing stress–strain curves after necking were ignored and the true stress–strain curves were 
obtained through the well-known converting formulas ɛ = ln (1 + ɛe) and σ = σe(1 + ɛe).

(12)m2 · log εp + logK2 = log σ

(13)ln
εp − εp1

εp2 − εp
= Aσ + B
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p
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Fig. 1  Graphical fitting procedure of the proposed formula. a Fitting procedure of m​1, A1 and m2, A​2.  b Fit-
ting procedure of A, B

Table 1  Tensile characteristics of the steels

Materials Brand Elastic  
modulus  
(MPa)

Yielding 
strength Rp0.2 
(MPa)

Tensile 
strength Rm 
(MPa)

Rp0.2/Rm Uniform 
elongation

Gun steels PCrNi3MoVA 215,000 962 1081 0.890 0.066

G4335V 212,000 972 1160 0.838 0.068

32CrNi3MoVA 201,000 985 1115 0.883 0.069

Pipeline steel API X70 203,700 521 606 0.860 0.085

TRIP steel TRIP 690 204,900 493 719 0.686 0.196

Stainless steel DIN 1.4662 208,100 490 728 0.673 0.181
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Validation and comparison
The proposed formula has been applied to the test data of all the six steels. The opti-
mal parameter values for each steel were obtained through the fitting procedure men-
tioned above (“Proposed stress–strain formula” section). The general Ramberg–Osgood 
formula (Ramberg and Osgood 1943), Ludwigson formula (Ludwigson 1971), UGent 
formula (Hertelé et  al. 2011) and a material-specific Gardner formula (Gardner and 
Nethercot 2004a, b) have also been applied to the data for comparison.

Additionally, a difference approximation was conducted on the test data to obtain the 
strain hardening rate:

Parameters of the proposed formula for all steels are summarized in Table 3 and other 
formulas in Table 2. Furthermore, Fig. 3 depicts the graphical fitting procedures for three 
gun steels. The strain hardening rate-strain curves and stress–strain curves for three gun 

(14)

(

dσ

dε

)

i

=
σi+1 − σi

εi+1 − εi

Table 2  Fitting parameters of other formulas

Formula Parameters/
dimension

G4335V PCrNi-
3MoVA

32CrNi-
3MoVA

Pipeline 
steel

TRIP 
steel

Stainless 
steel

Ramberg–
Osgood

K/MPa 1375 1293 1361 763 1015 1011

m 0.0433 0.0482 0.0545 0.0642 0.1223 0.1234

Ludwigson K1/MPa 1550 1467 1534 832 1180 1260

m1 0.079 0.085 0.090 0.0915 0.181 0.212

K2 5.010 5.39 4.540 4.42 5.12 4.80

m2 −202.4 −296.3 −584.7 −230 −155 −38.1

Ugent σ0.2/MPa – – – 521 493 490

n1 – – – 26.5 12.4 5.11

n2 – – – 15.5 8.0 10.7

σ1/MPa – – – 536 535 490

σ2/MPa – – – 579 670 460

Gardner n – – – 15.1 16.5 4.43

E0.2/103 MPa – – – 15.9 13.9 44.2

n′
0.2,1.0 – – – 1.55 2.20 3.05
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Fig. 2  Measured stress–strain curves of the steels. a Gun steels. b Other steels
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steels are shown in Fig. 4. Figures 5, 6 and 7 depict the graphical fitting procedures (a, 
b), strain hardening rate-stress curves (c) and stress–strain curves (d) for pipeline steel, 
TRIP steel and stainless steel, respectively.

Table 3  Parameters of the proposed formula

Materials Parameters of the proposed formula

A B K1 (MPa) m1 K2 (MPa) m2

G4335V 0.0715 −78.544 1429.39 0.0446 1549.67 0.0789

PCrNi3MoVA 0.0801 −80.675 1301.3 0.0457 1466.5 0.0845

32CrNi3MoVA 0.0631 −64.759 1630.76 0.0749 1534.41 0.0899

Pipeline steel 0.1414 −77.722 700.49 0.0471 815.27 0.0849

TRIP steel 0.0491 −27.643 897.02 0.0931 1173.82 0.1785

Stainless steel 0.0391 −24.016 1274.68 0.1558 1247.96 0.2088
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Fig. 3  Graphical fitting procedure of the proposed formula for gun steels. a Fitting procedure of m​1, A1 and 
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for PCrNi3MoVa steel. d Fitting procedure of A, B for PCrNi3MoVa steel. e Fitting procedure of m​1, A1 and m2, 
A​2 for 32CrNi3MoVA steel. f Fitting procedure of A, B for 32CrNi3MoVA steel



Page 8 of 12Li et al. SpringerPlus  (2016) 5:1316 

It can be observed from those figures that: First, test data of all the steels show a three-
stage hardening behavior which can be seen clearly in the strain hardening rate-strain 
coordinate. Stage I ends at approximately ε = 0.02 for stainless steel and ε = 0.01 for oth-
ers; Stage II ends at roughly at ε = 0.06 for stainless steel and ε = 0.02 for others.

The difference in the strain hardening rate can be attributed to the operation of differ-
ent deformation mechanisms (Kocks and Mecking 2003; Montazeri-Pour and Parsa 2016): 
Stage I exhibits a distinct decline hardening rate. The sudden drop of hardening rate is asso-
ciated with cross-slip of dislocations bypassing the heads of piled up dislocations (Hockauf 
and Meyer 2010). After passing the initial Stage I, hardening rate decreases to another 
region with a constant value defined as Stage II. Stage II exhibits an almost constant hard-
ening rate behavior which is contributed to a steady state for storage and annihilation of 
dislocations (Zehetbauer and Seumer 1993). After Stage II, the hardening rate decreases 
continuously into a separate Stage III up to necking point (Kocks and Mecking 2003). Fea-
tures of Stage III are analogous to Stage I and are considered to be connected with point 
defect generation and absorption (Zehetbauer and Seumer 1993).
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Second, linear relationship assumed in the fitting procedure of the proposed formula 
is verified for all the test data. The proposed formula provides satisfactory representa-
tions of the test data for all the six steels in the full range. It can characterize excellently 
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the three-stage strain hardening behavior of steels observed in the test. Six parameters 
of the formula, all of which are easy to understand and interpret in an intuitive way, can 
be obtained directly and easily through linear regression.

Third, for other formulas, it can be found that: The Ludwigson formula generally seems 
to provide accurate description of all curves for large plastic strain, e.g. Stage III, but lacks 
accuracy at a lower strain, below 0.02 for gun steels and stainless steel. This formula also 
cannot be utilized directly because there is no explicit expression of strain. The Gardner 
formula, on the other hand, seems to provide an accurate description of the full range 
curve for stainless steel and the lower strain parts for pipeline steel up to 0.035 and TRIP 
steel up to 0.07. The UGent formula provides an accurate description of pipeline steel and 
TRIP steel up to plastic regions near necking but lack accuracy for stainless steel. The fit-
ting procedure of UGent formula is cumbersome and some parameters are arbitrary.

Discussion
Limitations of the proposed formula are discussed in this section. First, obviously the 
proposed formulas cannot be utilized to describe the strain hardening behavior of steels 
with a sharp or specific yielding strength, which can be observed in some carbon steels.

Second, as mentioned in “Test data” section, in this paper the strain hardening 
response of materials is characterized by the stress–strain curves documented in tensile 
tests. The parts of the engineering stress–strain curves after necking were ignored due 
to the local necking effect. However, when extremely large deformation was mentioned, 
this procedure is not quite enough.
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Third, to simplify the loading condition, quasi-static loading mode is considered in 
this paper. However, it is well known that temperature and strain rate have great effect 
on the plastic deformation behavior. More works are needed on these issues.

Conclusion
In the present paper, a new formula has been proposed to describe the full range strain 
hardening behavior of steels. The test results demonstrate that the test data of all the 
six steels observed have a three-stage hardening behavior. The proposed formula, based 
on two different Ramberg–Osgood formulas, can characterize such behavior in the full 
range using a single expression. The parameters of the formula can be easily and directly 
obtained through linear regression analysis. The fitting curves and test results were iden-
tified to have excellent agreement for all the six steels.
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