
An efficient method for generalized
linear multiplicative programming problem
with multiplicative constraints
Yingfeng Zhao1,2*  and Sanyang Liu1

Background
Multiplicative programming refers to a class of optimization problems which contains
products of real functions in objective and (or) constraint functions. In this study, we
consider the following generalized linear multiplicative programming problem:

where fij(x) = φij(x)ψij(x),φij(x) =
∑n

k=1 aijkxk + bij , ψij(x) =
∑n

k=1 cijkxk + dij , while
the coefficients aijk , cijk and the constant terms bij , dij are all arbitrary real numbers,
i = 0, 1, 2, . . . ,N , j = 1, 2, . . . , pi, k = 1, 2, . . . , n; A ∈ Rm×n is a matrix, b ∈ Rm is a vector,
set D is nonempty and bounded.

Generalized linear multiplicative programming (GLMP) with multiplicative objective
and constraint functions is a special case of multiplicative programming. It has attracted
considerable attention of researchers and practitioners for many years. This is mainly
because, from the practical point of view, it possesses important application foreground

(GLMP) :



























min f0(x) =
�p0

j=1
f0j(x)

s.t. fi(x) =
�pi

j=1
fij(x) ≤ 0, i = 1, 2, . . . ,M,

fi(x) =
�pi

j=1
fij(x) ≥ 0, i = M + 1,M + 2, . . . ,N ,

x ∈ D = {x ∈ Rn | Ax ≤ b, x ≥ 0},

Abstract 

We present a practical branch and bound algorithm for globally solving generalized
linear multiplicative programming problem with multiplicative constraints. To solve the
problem, a relaxation programming problem which is equivalent to a linear program-
ming is proposed by utilizing a new two-phase relaxation technique. In the algorithm,
lower and upper bounds are simultaneously obtained by solving some linear relaxation
programming problems. Global convergence has been proved and results of some
sample examples and a small random experiment show that the proposed algorithm is
feasible and efficient.

Keywords:  Generalized linear multiplicative programming, Global optimization,
Branch and bound

Mathematics Subject Classification:  90C26, 90C30

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Zhao and Liu ﻿SpringerPlus (2016) 5:1302
DOI 10.1186/s40064-016-2984-9

*Correspondence:
zhaoyingfeng6886@163.com
1 School of Mathematics
and Statistics, Xidian
University, Xi’an 710071,
China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-1581-8414
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2984-9&domain=pdf

Page 2 of 14Zhao and Liu ﻿SpringerPlus (2016) 5:1302

in various fields, including microeconomics (Henderson and Quandt 1961), multiple-
objective decision (Benson 1979; Keeney and Raiffa 1993; Geoffrion 1967), plant layout
design (Quesada and Grossmann 1996), data mining\pattern recognition (Bennett and
Mangasarian 1994), marketing and service planning (Samadi et al. 2013), robust optimi-
zation (Mulvey et al. 1995), and so on. And from the algorithmic design point of view, a
product of two affine functions, as noted in Avriel et al. (2010), need not be convex(even
not be quasi-convex), and hence problem (GLMP) is a global optimization problem
which may have multiple non-global local solutions, global solution methods for prob-
lem (GLMP) have great difficulties and challenges. Due to the facts above, design effi-
cient solution methods for globally solving the (GLMP) has important theoretical and
the practical significance.

In the past few decades, many solution methods have been devised for solving the
problem (GLMP). These methods are mainly classified as parameter-based methods
(Konno et al. 1994; Thoai 1991), outer-approximation methods (Gao et al. 2006; Kuno
et al. 1993), outcome-space cutting plane methods (Benson and Boger 2000), branch-
and-bound methods (Ryoo and Sahinidis 2003; Shen and Jiao 2006; Konno and Fukai-
shi 2000; Kuno 2001) and various heuristic methods (Benson and Boger 1997; Liu et al.
1999; Fan et al. 2016). Recently, Wang proposes a global optimization algorithm for a
kind of generalized linear multiplicative programming by using simplicial partition
techniques (Wang et al. 2012), but his method is only valid for problems in which the
constraint functions are all linear. Jiao and Liu (2015) present an effective algorithm for
solving the generalized linear multiplicative problem with generalized polynomial con-
straints by converting it into an equivalent generalized geometric programming prob-
lem, the problem they considered is more general but only valid under the assumption
φij(x) > 0,ψij(x) > 0,∀x ∈ X. There are many other solution methods not mentioned
for (GLMP) and its special case, nevertheless, most of these methods are either devel-
oped for special circumstances or can only obtain a local solution of problem (GLMP).

In this paper, we put forward a fast global optimization algorithm for generalized lin-
ear multiplicative programming problem (GLMP). Our research can be divided into
three steps. First, a well performed linear relaxation programming problem for the
(GLMP) is established by using a new two-phase relaxation technique. Second, two key
operations for developing a branch and bound algorithm for the (GLMP) are described.
Finally, global convergence property is proved and some numerical experiments are
executed to illustrate the feasibility and robustness of the proposed algorithm. Com-
pared with some existing methods, the new two-phase relaxation technique we used in
the algorithm has a very good approximation effect, and it doesn’t require the condi-
tion φij(x) > 0,ψij(x) > 0,∀x ∈ X. Further more, relative to the algorithm in Jiao (2009),
Quesada and Grossmann (1996), the proposed algorithm can be applied to a more gen-
eral case of linear multiplicative programming problem.

The reminder of this article is arranged as follows. Section "Two-phase relaxation tech-
nique" explains how the two-phase relaxation method is realized, section "Algorithm and
its convergence" introduces the branch and bound operation for deriving the presented
algorithm. The algorithm statement as well as the convergence property are described in
section "Numerical experiments". In section "Concluding remarks", the results of some

Page 3 of 14Zhao and Liu ﻿SpringerPlus (2016) 5:1302

numerical experiments appeared in recent literatures are listed and some concluding
remarks are reported in the last section.

Two‑phase relaxation technique
As is known to all, construct a well performed relaxation problem can bing great con-
venience for designing branch and bound algorithm of global optimization problems. In
this section, equivalent transformation technique and a new two-phase relaxation skill
will be used to establish a linear relaxation programming problem for underestimating
the optimal value of problem (GLMP).

First, we compute the initial variable bounds by solving the following linear program-
ming problems:

then an initial rectangle X0 =
{

x ∈ Rn | xli ≤ xi ≤ xui , i = 1, 2, . . . , n
}

 will be obtained.

To construct the first-phase relaxation programming problem of the (GLMP) over sub-
rectangle X ⊂ X0, we further solve some linear programming problems as follows:

Upon criteria (1), it is clear that

and

by taking (2) and (3) together, we have

and

For each i = 0, 1, 2, . . . ,N , by denoting

and

conclusion (4) and (5) can be expressed as

xli = min
x∈D

xi, xui = max
x∈D

xi, i = 1, 2, . . . , n,

(1)

lij = min
x∈D

⋂

X
φij(x), uij = max

x∈D
⋂

X
φij(x),

Lij = min
x∈D

⋂

X
ψij(x), Uij = max

x∈D
⋂

X
ψij(x).

(2)
(

φij(x)− lij
)(

ψij(x)− Lij
)

≥ 0,
(

φij(x)− uij
)(

ψij(x)−Uij

)

≥ 0,

(3)
(

φij(x)− lij
)(

ψij(x)− Uij

)

≤ 0,
(

φij(x)− uij
)(

ψij(x)− Lij
)

≤ 0,

(4)φij(x)ψij(x) ≥ max
{

uijψij(x)+Uijφij(x)− Uijuij , lijψij(x)+ Lijφij(x)− Lijlij
}

,

(5)φij(x)ψij(x) ≤ min
{

uijψij(x)+ Lijφij(x)− uijLij , lijψij(x)+ Uijφij(x)− Uijlij
}

.

g1
ij
(x) � uijψij(x)+Uijφij(x)− Uijuij , g2

ij
(x) � lijψij(x)+ Lijφij(x)− Lijlij ,

g1ij(x) � uijψij(x)+ Lijφij(x)− uijLij , g2ij(x) � lijψij(x)+ Uijφij(x)− Uijlij ,

(6)φij(x)ψij(x) ≤ min
{

g1ij(x), g
2
ij(x)

}

� gij(x),

Page 4 of 14Zhao and Liu ﻿SpringerPlus (2016) 5:1302

and

respectively. Then we can obtain a lower bound function g
i
(x) and upper bound func-

tion gi(x) for fi(x), which satisfy g
i
(x) ≤ fi(x) ≤ gi(x), i = 0, 1, 2, . . . ,N , where

So far, based on the above discussion, we can get the first-phase relaxation programming
problem for the (GLMP) which we formulated as follows:

To get the second-phase linear relaxation programming problem, we will once again
relax each nonlinear function appeared in problem (RMP0) according the following
conclusion:

and

With conclusion (9) and (10), the second-phase relaxation programming problem
(RMP1) of the (GLMP) can be expressed as follows:

(7)φij(x)ψij(x) ≥ max
{

g1
ij
(x), g2

ij
(x)

}

� g
ij
(x),

(8)g
i
(x) =

pi
∑

j=1

g
ij
(x), gi(x) =

pi
∑

j=1

gij(x), i = 0, 1, 2, . . . ,N .

(RMP0) :



























min g
0
(x) =

�p0
j=1

g
0j
(x)

s.t. g
i
(x) =

�pi
j=1

g
ij
(x) ≤ 0, i = 1, 2, . . . ,M,

gi(x) =
�pi

j=1
gij(x) ≥ 0, i = M + 1,M + 2, . . . ,N ,

x ∈ D
�

X = {x ∈ X | Ax ≤ b, x ≥ 0},

(9)

g
i
(x) =

pi
�

j=1

max
�

g1
ij
(x), g2

ij
(x)

�

≥ max







pi
�

j=1

g1
ij
(x),

pi
�

j=1

g2
ij
(x)







� gi(x), i = 0, 1, 2, . . . ,M,

(10)

gi(x) =

pi
�

j=1

min
�

g1
ij
(x), g2ij(x)

�

≤ min







pi
�

j=1

g1ij(x),

pi
�

j=1

g2ij(x)







� gi(x), i = M + 1,M + 2, . . . ,N .

Page 5 of 14Zhao and Liu ﻿SpringerPlus (2016) 5:1302

which is proved equivalent to the following linear programming problem:

Theorem 1  If (x∗, t) ∈ Rn+1 is a global optimal solution for the (ERMP), then x∗ ∈ Rn is
a global optimal solution for the (RMP1). Conversely, if x∗ ∈ Rn is a global optimal solu-
tion for the (RMP1), then (x∗, t) ∈ Rn+1 is a global optimal solution for the (ERMP), where
t = g0(x

∗).

Proof  The proof of this theorem can be easily followed according to the definition of
problems (RMP1) and (ERMP), therefore, it is omitted here. � �

Theorem 2  (1) For any x ∈ X, we have

and

(2) �
∣

∣gi(x)− fi(x)
∣

∣ → 0, as �Ui − Li� → 0,
∥

∥ui − li
∥

∥ → 0, where Ui = (Ui1,Ui2, . . . ,

Uipi
), Li = (Li1, Li2, . . . , Lipi) and ui = (ui1,ui2, . . . ,uipi), li = (li1, li2, . . . , lipi).

Proof  (1) can be easily verified from conclusion (4), (5), (9) and (10), thus the detailed
proof is omitted here.

For (2), according to the Cauchy–Schwarz inequality, we know that for i = 0, 1, . . . ,M,

(RMP1) :































min g0(x) = max

�

�p0
j=1

g1
0j
(x),

�p0
j=1

g2
0j
(x)

�

s.t. gi(x) = max

�

�pi
j=1

g1
ij
(x),

�pi
j=1

g2
ij
(x)

�

≤ 0, i = 1, 2, . . . ,M,

gi(x) = min

�

�pi
j=1

g1ij(x),
�pi

j=1
g2ij(x)

�

≥ 0, i = M + 1,M + 2, . . . ,N ,

x ∈ D
�

X = {x ∈ X | Ax ≤ b, x ≥ 0},

(ERMP) :







































































min t

s.t.
�p0

j=1
g1
0j
(x)− t ≤ 0,

�p0
j=1

g2
0j
(x)− t ≤ 0,

�pi
j=1

g1
ij
(x) ≤ 0, i = 1, 2, . . . ,M,

�pi
j=1

g2
ij
(x) ≤ 0, i = 1, 2, . . . ,M,

�pi
j=1

g1ij(x) ≥ 0, i = M + 1,M + 2, . . . ,N ,

�pi
j=1

g2ij(x) ≥ 0, i = M + 1,M + 2, . . . ,N ,

x ∈ D
�

X = {x ∈ X | Ax ≤ b, x ≥ 0}.

gi(x) ≤ fi(x), i = 0, 1, 2, . . . ,M,

gi(x) ≥ fi(x), i = M + 1,M + 2, . . . ,N .

Page 6 of 14Zhao and Liu ﻿SpringerPlus (2016) 5:1302

for the case i = M + 1,M + 2, . . . ,N , it can be proved with the similar method, so omit-
ted here, and thus the Proof of Theorem 2 is completed. � �

Remark 1  From Theorems 1 and 2, we only need to solve problem (ERMP) instead of
solving the (RMP1) to obtain the lower and upper bounds of the optimal value in prob-
lem (GLMP).

Remark 2  Based on the continuity of linear function, �Ui − Li� → 0 and
∥

∥ui − li
∥

∥ → 0
will hold when the diameter of X approximate to zero, this indicated that we can per-
form the branching operation in variable space X with the convergence property is
guaranteed.

Remark 3  Theorem 2 ensures that problem (ERMP) can infinitely approximate the
problem (GLMP), as �X� → 0, this will guarantee the global convergence of the pro-
posed algorithm.

Algorithm and its convergence
In this section, we will describe two key operation for designing an efficient branch
and bound algorithm for problem (GLMP), that is, branching and bounding. Then the
algorithm steps will be summarized with proof process of global convergence property
followed.

Branching and bounding

The branching operation iteratively subdivides the rectangle X into subregions accord-
ing to an exhaustive partition rule, such that any infinite iterative sequence of partition
sets shrinks to a singleton. For this, we shall adopt an standard range bisection approach,
which is adequate to insure global convergence of the proposed algorithm. Detailed pro-
cess is described as follows.

�

�gi(x)− fi(x)
�

�

=

�

�

�

�

�

�

max







pi
�

j=1

g1
ij
(x),

pi
�

j=1

g2
ij
(x)







−

pi
�

j=1

φij(x)ψij(x)

�

�

�

�

�

�

=

�

�

�

�

�

�

max







pi
�

j=1

g1
ij
(x)−

pi
�

j=1

φij(x)ψij(x),

pi
�

j=1

g2
ij
(x)−

pi
�

j=1

φij(x)ψij(x)







�

�

�

�

�

�

=

�

�

�

�

�

�

max







pi
�

j=1

�

lijψij(x)+ Lijφij(x)− lijLij − φij(x)ψij(x)
�

,

pi
�

j=1

�

uijψij(x)+Uijφij(x)− Uijuij − φij(x)ψij(x)
�







�

�

�

�

�

�

=

�

�

�

�

�

�

max







pi
�

j=1

�

ψij(x)− Lij

��

φij(x)− lij

�

,

pi
�

j=1

�

ψij(x)− Uij

��

φij − uij

�







�

�

�

�

�

�

≤ max
�

�(U − L)�
�

�(u− l)
�

�

�

,

Page 7 of 14Zhao and Liu ﻿SpringerPlus (2016) 5:1302

For any region X = [xl , xu] ⊂ X0, let r ∈ argmin{xui − xli | i = 1, 2, . . . , n} and mid =

(xlr + x
u
r)/2, then the current region X can be divided into the following two sub-regions:

and

For each partition subset X generated by the above branching operation, the bounding oper-
ation is mainly concentrate on estimating a lower bound LB(X) and a upper bound UB(X)
for the optimal value of problem (GLMP). This operation is realized by solving the linear
relaxation programming problem (ERMP) over all partition sets in the kth iteration, and the
one with the smallest optimal value will provide the lower bound for optimal value of prob-
lem (GLMP) over the initial region X0. Moreover, since any feasible solution of the relaxa-
tion programming problem will also be feasible to the (GLMP), so we can evaluate the initial
objective value and make the one with smallest value as a new upper bound if possible.

Algorithm and its convergence

Based on the former discussion, the algorithm steps can be summarized as follows:

Step 0 (Initialization) Choose convergence tolerance ǫ = 1× 10−8, set iteration counter
k := 0 and the initial partition set as �0 = X0. Solve the initial linear relaxation prob-
lem (ERMP) over region X0, if the (ERMP) is not feasible then there is no feasible solu-
tion for the initial problem. Otherwise, denote the optimal value and solution as fbar
and x0opt, respectively. Then we can obtain the initial upper and lower bound of the opti-
mal value for problem (GLMP), that is, UB := f0(x

0
opt), and LB := fbar. And then, if

UB− LB < ǫ, the algorithm can stop, and x0opt is the optimal solution of the (GLMP),
otherwise proceed to step 1.

Step 1 (Branching) Partition Xk into two new sub-rectangles according to the partition
rule described in section “Branching and bounding”. Deleting Xk and add the new nods
into the active nods set X̃k, still denote the set of new partitioned sets as X̃k.

Step 2 (Bounding) For each subregion still of interest Xkµ ⊆ X0,µ = 1, 2, obtain
the optimal solution and value for problem (RMFP) by solving the relaxation lin-
ear programming problem over Xkµ, if LB(Xk ,µ) > UB, delete Xkµ from X̃k. Other-
wise, we can update the lower and upper bounds: LB = min{LB(Xk ,µ) | µ = 1, 2} and
UB = min{UB, f (xk ,µ) | µ = 1, 2}.

Step 3 (Termination) If UB− LB ≤ ǫ, the algorithm can be stopped, UB is the global
optimal value for (GLMP). Otherwise, set k := k + 1, and select the node with the small-
est optimal value as the current active node, and return to Step 1.

Theorem 3  The proposed algorithm either terminates within finite iterations with an
optimal solution for (GLMP) be found, or generates an infinite sequence of iterations such
that along any infinite branches of the branch-and-bound tree, any accumulation point of
the sequence {xk} will be the global optimal solution of the (GLMP).

X̄ =
{

x ∈ Rn | xli ≤ xi ≤ xui , i �= r, xlr ≤ xr ≤ mid
}

,

¯̄X =
{

x ∈ Rn | xli ≤ xi ≤ xui , i �= r,mid ≤ xr ≤ xur

}

.

Page 8 of 14Zhao and Liu ﻿SpringerPlus (2016) 5:1302

Proof  (1) If the proposed algorithm is finite, assume it stops at the kth iteration, k ≥ 0.
From the termination criteria, we know that

Based on the upper bounding technique described in Step 3, it implies that

Let vopt be the optimal value of problem (GLMP), then by section “Branching and
bounding” and Step 3 above, we known that

Hence, taken together, it implies that

and thus the proof of part (1) is completed.
(2) If the algorithm doesn’t terminate within finite iterations and generates an infinite

feasible solution sequence {xk} for the (GLMP) via solving the (RMP1). According to the
structure of the proposed algorithm, we have

assume that:

Horst (1998) has proved that LBk is non-decrease and bounded above by minx∈X f0(x),
thus the existence of the limit LB := limk→∞ LBk ≤ minx∈X f0(x) can be guaran-
teed. Further more, since xk is a sequence on a compact set, it must have a convergent
subsequence. For any accumulation point x̂ of {xk}, there exists a subsequence of {xk}
which, without loss of generality, we might still denote as {xk} satisfied limk→∞ xk = x̂ .
With similar method in Tuy (1991), we can easily follow that the subdivision of parti-
tion sets in step 1 is exhaustive on X0, and the selection of elements to be partitioned
is bound improving, thus there exists a decreasing subsequence Xr ⊂ Xk where
Xr ∈ �r with xr ∈ Xr, LBr = LB(Xr) = g0(x

r), limr→∞ xr = x̂. Based on the con-
struction process of the relaxation problem, we know that the linear relaxation func-
tions gi(x)(i = 0, 1, . . . ,N) used in problem (RMP1)(and thus for (ERMP)) are strongly
consistent on X0, hence it follows that limk→∞ LBk = LB = g0(x̂). Since x̂ is feasible
to (GLMP) and combining with (11) we can deduce that x̂ is a global solution for the
(GLMP). � �

Numerical experiments
To verify the performance of the proposed algorithm, we solve some test problems in recent
literatures (Thoai 1991; Wang et al. 2012; Jiao and Liu 2015; Wang and Liang 2005; Gao et al.
2010; Chen and Jiao 2009; Shen et al. 2008; Shen and Jiao 2006; Jiao 2009) and construct a

UB− LB ≤ ǫ.

f (xk)− LB ≤ ǫ.

UB = f (xk) ≥ vopt ≥ LB.

vopt + ǫ ≥ LB+ ǫ ≥ f (xk) ≥ vopt ,

(11)LBk ≤ min
x∈X

f0(x),

(12)Xk ∈ arg min
X∈�k

LB(X), xk = x(Xk) ∈ Xk � X0.

Page 9 of 14Zhao and Liu ﻿SpringerPlus (2016) 5:1302

problem to illustrate the nature that (GLMP) may have multiple local optimal solutions (see
Fig. 1), computational results are given in Table 1, where the following notations have been
used in row headers: Exa.: the serial number of experiments; Ref.: reference which we con-
trast with; Opt.Val.: optimal value; Opt.Sol.: optimal solution; Iter: numbers of iterations;
Time: CPU time in seconds; Pre.: precision we used in the algorithm. We used the TPRM to
represent the two-phase relaxation method given in this paper.

We coded the algorithms in Matlab 2014a, and ran the tests in a micro computer with
Intel(R) Xeon(R) processor of 2.4 GHz, 4 GB of RAM memory, under the Win10 opera-
tional system. We used linprog solver to solve all linear programming problems.

Table 1 shows that our algorithm performs more efficient than that in references Ryoo
and Sahinidis (2003), Shen and Jiao (2006), Thoai (1991), Tuy (1991), Wang et al. (2012)
and Wang and Liang (2005). Especially for Examples 1, 2, 5, 6, 8 and 10, our algorithm
only need one iteration to determine the global optimal solutions, this indicates that our
new relaxation technique is so efficient that the global optimal solution can be founded
in the initialization step. Further more, we constructed an example (Example 11 and
Fig. 1) with multiple local optimum to test our algorithm.

Example 1  (Refs. Wang and Liang 2005; Jiao 2009).






















min x
2
1
+ x

2
2

s.t. 0.3x1x2 ≥ 1,

2 ≤ x1 ≤ 5,

1 ≤ x2 ≥ 3,

Fig. 1  3-D surface and contour plot over [−5, 5; −5, 5] of the objective function in Example 11. From this
figure we can see that the objective function in Example 11 may have multiple local optimal solutions over
the feasible region

Page 10 of 14Zhao and Liu ﻿SpringerPlus (2016) 5:1302

Example 2  (Refs. Jiao 2009).

Example 3  (Refs. Gao et al. 2010; Chen and Jiao 2009).



































min x
2
1
+ x

2
2
− x

2
3

s.t. 0.3x1x2 + 0.3x2x3 + 0.6x1x3 ≥ 4,

2 ≤ x1 ≤ 5,

1 ≤ x2 ≥ 3,

1 ≤ x3 ≤ 3,















































min (x1 + x2)(x1 − x2 + 7)
s.t. 2x1 + x2 ≤ 14,

x1 + x2 ≤ 10,
− 4x1 + x2 ≤ 0,
2x1 + x2 ≥ 6,
x1 + x2 ≥ 6,
x1 ≤ 5,
x1 + x2 ≥ 0,
x1 − x2 + 7 ≥ 0.

Table 1  Results of the numerical contrast experiments 1–11

Exa. Ref. Opt. val. Opt. sol. Iter Time Pre.

1 Wang and Liang (2005) 6.7780 (2.00003, 1.66665) 44 0.18 10−4

Jiao (2009) 6.77778 (2.0, 1.666667) 58 <1 10−8

TPRM 6.77778 (2.0000, 1.6667) 1 0.027 10−8

2 Jiao (2009) −4.0 (2.0, 1.0, 3.0) 43 – 10−8

TPRM −4.0 (2.0000, 1.0000, 3.0000) 1 0.054 10−8

3 Gao et al. (2010) 10.0042 (2.0003, 7.9999) 27 10.83 10−3

Chen and Jiao (2009) 10.00009 (1.999998, 7.9999988) 41 0.02 10−5

TPRM 10.0 (2.0000,8.0000) 2 0.0407 10−8

4 Gao et al. (2010) 0.0000 (0.0002, 0.0001, 0, 0, 0, 0, 0, 0, 0, 0, 0) 36 16.03 10−3

TPRM 0.0000 (0.00, 2.3453, 0.0000, 6.4121, 1.9434,

0.00, 2.4858, 8.4448, 6.9770, 5.8001, 5.1340)

13 1.2758 10−8

5 Thoai (1991) 0.8902 (1.314792, 1.39555, 0, 0.42329) 6 0.1880 10−6

TPRM 0.89019 (1.3148, 0.1396, 0.0000, 0.4233) 1 0.00355 10−8

6 Shen et al. (2008) 11.475 (0.61824, 0.0000) 29 0.01 10−3

TPRM 4.0000 (0.0000, 0.0000) 1 0.022 10−8

7 Chen and Jiao (2009) −15.000 (2.0, 1) 1657 120.58 10−6

TPRM −15.0000 (2.0000, 1.0000) 110 57.224 10−8

8 Shen and Jiao (2006) 0.0000 (2.00, 1.00) 24 – 10−3

Jiao and Liu (2015) 0.00000003 (2.0000061, 1.0) 16 0.018 10−8

TPRM 0.0000 (2.0000, 1.0000) 1 0.05406 10−8

9 Shen and Jiao (2006) 1.1771 (1.17709, 2.1772) 434 1 10−3

Jiao and Liu (2015) 1.17708 (1.17709, 2.1772) 189 0.226 10−6

TPRM 1.1770 (1.177088, 2.17718) 3 0.66936 10−8

10 Jiao and Liu (2015) 3.0000 (0.0000,4.0000) 25 0.750 10−8

TPRM 3.0000 (0.0000,4.0000) 1 0.02456 10−8

11 TPRM −25.0000 (0.0000, −5.0000) 47 22.64563 10−8

Page 11 of 14Zhao and Liu ﻿SpringerPlus (2016) 5:1302

Example 4  (Refs. Gao et al. 2010; Chen and Jiao 2009).

where

Example 5  (Refs. Wang et al. 2012; Thoai 1991).

Example 6  (Refs. Chen and Jiao 2009).

Example 7  (Refs. Shen et al. 2008).

{

min (cT1 x + d1)(c
T
2 x + d2)

s.t. Ax ≤ b,

b = (81, 72, 72, 9, 9, 9, 8, 8)T , d1 = 0, d2 = 0,

c1 =

�

1, 0,
1

9
, 0, 0, 0, 0, 0, 0, 0, 0

�T

, c2 =

�

0, 1,
1

9
, 0, 0, 0, 0, 0, 0, 0, 0

�T

.

A =























9 9 2 1 0 0 0 0 0 0 0
8 1 8 0 1 0 0 0 0 0 0
1 8 8 0 1 0 0 0 0 0 0
7 1 1 0 0 0 − 1 0 0 0 0
1 7 1 0 0 0 0 − 1 0 0 0
1 1 7 0 0 0 0 0 − 1 0 0
1 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1























,































































min (0.813396x1 + 0.67440x2 + 0.305038x3 + 0.129742x4 + 0.217796)
× (0.224508x1 + 0.063458x2+ 0.932230x3+ 0.528736x4 + 0.091947)

s.t. 0.488509x1 + 0.063565x2 + 0.945686x3 + 0.210704x4 ≤ 3.562809,
− 0.324014x1 − 0.501754x2 − 0.719204x3 + 0.099562x4 ≤ −0.052215,
0.445225x1 − 0.346896x2 + 0.637939x3 − 0.257623x4 ≤ 0.427920,
− 0.202821x1 + 0.647361x2 + 0.920135x3 − 0.983091x4 ≤ 0.840950,
− 0.886420x1 − 0.802444x2 − 0.305441x3 − 0.180123x4 ≤ −1.353686,
− 0.515399x1 − 0.424820x2 + 0.897498x3 + 0.187268x4 ≤ 2.137251,
− 0.591515x1 + 0.060581x2 − 0.427365x3 + 0.579388x4 ≤ −0.290987,
0.423524x1 + 0.940496x2 − 0.437944x3 − 0.742941x4 ≤ 0.373620,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.



















min (6x1 + x2 + 1)(x1 + 2x2 + 1)+ (−x1 + 3)(x1 + x2 + 1)
s.t. − 2x1 + x2 ≤ 0,

x1 + x2 ≤ 8,
0 ≤ x1 ≤ 2.5,
x2 ≥ 0.















































min − 4x2
1
− 5x2

2
+ x1x2 + 2x1

s.t. x1 − x2 ≥ 0,

1

3
x
2
1
− 1

3
x
2
2
≤ 1,

1
2
x1x2 ≤ 1,

0 ≤ x1 ≤ 3,

x2 ≥ 0.

Page 12 of 14Zhao and Liu ﻿SpringerPlus (2016) 5:1302

Example 8  (Refs. Shen and Jiao 2006; Jiao and Liu 2015).

Example 9  (Refs. Shen and Jiao 2006; Jiao and Liu 2015).

Example 10  (Refs. Jiao and Liu 2015).

Example 11  Figure 1.

Example 12 



















min x1x2 − 2x1 + x2 + 1

s.t. 8x22 − 6x1 − 16x2 ≤ −11,

− x22 + 3x1 + 2x2 ≤ 7,
1 ≤ x1 ≤ 2.5,
1 ≤ x2 ≤ 2.225.







































min x1

s.t.
1

4
x1 +

1

2
x2 −

1

16
x
2
1
− 1

16

2
x2 ≤ 1,

1
14
x
2
1
+ 1

14
x
2
2
− 3

7
x1 −

3

7
x2 ≤ −1,

1 ≤ x1 ≤ 5.5,

1 ≤ x2 ≤ 5.5.























































min x1 + (2x1 − 3x2 + 13)(x1 + x2 − 1)

s.t. − x1 + 2x2 ≤ 8,

− x2 ≤ −3,

x1 + 2x2 ≤ 12,

x1 − 2x2 ≤ −5,

x1 ≥ 0,

x2 ≥ 0.



























































min 6x2
1
− x

2
2

s.t. − 2x1 + x2 ≤ 0,

x1 + x2 ≤ 8,

1
64
x
2
1
− 1

64
x1x2 ≤ 1,

1

4
x1x2 −

1

8
x
2
2
≤ 1,

− 5 ≤ x1 ≤ 5,

− 5 ≤ x2 ≤ 5.



























min f (x) =
�p

i=1
(aT

0ix + d0i)(c
T
0ix + e0i)

s.t.
�p

i=1
(aT

1ix + b1i)(c
T
1ix + d1i) ≤ 0,

�p
i=1

(aT
2ix + b2i)(c

T
2ix + d2i) ≥ 0,

x ∈ D = {x ∈ Rn | Ax ≤ b}.

Page 13 of 14Zhao and Liu ﻿SpringerPlus (2016) 5:1302

where the real numbers aij , cij , dij and eij are randomly generated in the range [−1, 1], the
real elements of A and b are randomly generated in the range [0, 1]. For this problem, we
tested twenty different random instances and listed the computational results in Table 2,
where the notations used in the head line have the following means: Iter:average num-
bers of iterations in the algorithm; Time: average CPU time in seconds; m and n denote
the number of linear constraints and variables, respectively.

Concluding remarks
In this study, a new global optimization algorithm is presented for solving generalized
linear multiplicative programming problem with multiplicative constraints. This method
has three main features. First, the relaxation problem performs well in approximation
effect. Second, to obtain the lower and upper bounds of the optimal value, we only
need to solve some linear programming problems. Finally, the problem we investigated
is more general than those in many other literatures and results of numerical contrast
experiments show that our method performs better than those methods.

Authors’ contributions
Both authors contributed equally to the manuscript. Both authors read and approved the final manuscript.

Author details
1 School of Mathematics and Statistics, Xidian University, Xi’an 710071, China. 2 School of Mathematical Science, Henan
Institute of Science and Technology, Xinxiang 453003, China.

Acknowledgments
This paper is supported by the National Natural Science Foundation of China (61373174); the Science and Technology
Key Project of Education Department of Henan Province (14A110024), (15A110023) and (16A110030); the natural science
foundation of Henan Province (152300410097); the Major Scientific Research Projects of Henan Institute of Science and
Technology (2015ZD07).

Competing interests
The authors declare that they have no competing interests.

Received: 23 April 2016 Accepted: 2 August 2016

References
Avriel M, Diewert WE, Schaible S, Zhang I (2010) Generalized concavity. Plenum Press, New York
Bennett KF, Mangasarian OL (1994) Bilinear separation of two sets in n-space. Comput Optim Appl 2:207–227
Benson HP (1979) Vector maximization with two objective functions. J Optim Theory Appl 28:253–257
Benson HP, Boger GM (1997) Multiplicative programming problems: analysis and efficient point search heuristic. J Optim

Theory Appl 94(2):487–510
Benson HP, Boger GM (2000) Outcome-space cutting-plane algorithm for linear multiplicative programming. J Optim

Theory Appl 104(2):301–22
Chen YQ, Jiao HW (2009) A nonisolated optimal solution of general linear multiplicative programming problems. Comput

Oper Res 36:2573–2579

Table 2  Numerical results of Example 12

p m n Iter Time

5 10 10 8.8 5.0245

5 10 20 10.3 7.2315

5 10 30 28.0 45.1347

10 10 20 37.4 65.0159

10 20 40 49.2 75.1032

Page 14 of 14Zhao and Liu ﻿SpringerPlus (2016) 5:1302

Fan QW, Wu W, Zurada JM (2016) Convergence of batch gradient learning with smoothing regularization and adaptive
momentum for neural networks. SpringerPlus 5(295):1–17

Gao YL, Xu CY, Yang YJ (2006) An outcome-space finite algorithm for solving linear multiplicative programming. Appl
Math Comput 179:494–505

Gao YL, Wu GR, Ma WM (2010) A new global optimization approach for convex multiplicative programming. Appl Math
Comput 216:1206–1218

Geoffrion M (1967) Solving bicriterion mathematical programs. Oper Res 5:39–54
Henderson JM, Quandt RE (1961) Microeconomic theory. McGraw-Hill, New York
Horst R (1998) Deterministic global optimization with partition sets whose feasibility is not known: application to con-

cave minimization, reverse convex constraints, dc-programming, and lipschitzian optimization. J Optim Theory Appl
58(1):11–37

Jiao HW (2009) A branch and bound algorithm for globally solving a class of nonconvex programming problems. Nonlin-
ear Anal 70:1113–1123

Jiao HW, Liu SY, Zhao YF (2015) Effective algorithm for solving the generalized linear multiplicative problem with general-
ized polynomial constraints. Appl Math Model 39:7568–7582

Keeney RL, Raiffa H (1993) Decisions with multiple objective. Cambridge University Press, Cambridge
Konno H, Kuno T, Yajima Y (1994) Global minimization of a generalized convex multiplicative function. J Glob Optim

4:47–62
Konno H, Fukaishi K (2000) A branch-and-bound algorithm for solving low rank linear multiplicative and fractional pro-

gramming problems. J Glob Optim 18:283–299
Kuno T, Yajima Y, Konno H (1993) An outer approximation method for minimizing the product of several convex func-

tions on a convex set. J Glob Optim 3:325–335
Kuno T (2001) A finite branch-and-bound algorithm for linear multiplicative programming. Comput Optim Appl

20:119–135
Liu XJ, Umegaki T, Yamamoto Y (1999) Heuristic methods for linear multiplicative programming. J Glob Optim

4(15):433–447
Mulvey JM, Vanderbei RJ, Zenios SA (1995) Robust optimization of large-scale systems. Oper Res 43:264–81
Quesada I, Grossmann IE (1996) Alternative bounding approximations for the global optimization of various engineering

design. Springer, US
Ryoo HS, Sahinidis NV (2003) Global optimization of multiplicative programs. J Glob Optim 26:387–418
Samadi F, Mirzazadeh A, Pedram MM (2013) Fuzzy pricing, marketing and service planning in a fuzzy inventory model: a

geometric programming approach. Appl Math Model 37:6683–6694
Shen PP, Duan YP, Ma Y (2008) A robust solution approach for nonconvex quadratic programs with additional multiplica-

tive constraints. Appl Math Comput 201:514–526
Shen PP, Jiao HW (2006) Linearization method for a class of multiplicative programming with exponent. Appl Math

Comput 183:328–336
Shen PP, Jiao HW (2006) A new rectangle branch and pruning approach for generalized geometric programming. Appl

Math 183:1027–1038
Thoai NV (1991) A global optimization approach for solving the convex multiplicative programming problem. J Glob

Optim 1:341–357
Tuy H (1991) Effect of the subdivision strategy on convergence and efficiency of some global optimization algorithms. J

Glob Optim 1:23–26
Wang CF, Liu SY, Shen PP (2012) Global minimization of a generalized linear multiplicative programming. Appl Math

Model 36:2446–2451
Wang YJ, Liang ZA (2005) A deterministic global optimization algorithm for generalized geometric programming. Appl

Math Comput 168:722–737

	An efficient method for generalized linear multiplicative programming problem with multiplicative constraints
	Abstract
	Background
	Two-phase relaxation technique
	Algorithm and its convergence
	Branching and bounding
	Algorithm and its convergence

	Numerical experiments
	Concluding remarks
	Authors’ contributions
	References

