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Background
Considerable effort has been devoted to the study of a reactive hydromagnetic fluid flow 
which finds numerous and wide-ranging applications in many engineering processes, 
such as polymer extrusion, nuclear reactor design, geophysics and underground storage 
of nuclear waste and energy storage systems amongst others. Reactive hydromagnetic 
fluid flows are often accompanied with heat transfer in many industrial and engineering 
applications. For instance, Makinde and Beg (2010) devoted their study to investigate 
the inherent irreversibility and thermal stability in a reactive electrically conducting fluid 
flowing steadily through a channel with isothermal walls under the influence of a trans-
versely imposed magnetic field. Recently, Hassan and Gbadeyan (2015a) investigated the 
entropy generation analysis of a reactive hydromagnetic fluid flow through a channel 
with isothermal wall temperature under different chemical kinetics without taking into 
account the effects of internal heat generation within the flow system.

A comprehensive survey of the literature (Hassan and Gbadeyan 2013; El-Amin 2004; 
Patil and Kulkarni 2008; Cortell 2005; Hassan and Gbadeyan 2015b; Saravavan and 
Kandaswamy 2004; Seddek 2005; Jawdat and Hashim 2010; Oztop and Bilgen 2006; 
Bagai and Nishad 2012; Di Marcello et  al. 2010, Chen 2010; Bartella and Nield 2012) 
observed that the effects of internal heat generation on a reactive hydromagnetic fluid 
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flow have been studied with respect to various physical properties. For example, Has-
san and Gbadeyan (2013) investigated the effect of heat generation on a variable reac-
tive hydromagnetic Couette flow under Arrhenius kinetics and El-Amin (2004) studied 
the problem of free convection with mass transfer flow in a micro polar fluid bounded 
by a vertical infinite surface with an exponentially decaying heat generation under the 
action of a transverse magnetic field. In addition to that the effects of a chemical reac-
tion of first order on a free convective flow of a polar fluid through a porous medium in 
the presence of internal heat generation was investigated by Patil and Kulkarni (2008), 
while the heat transfer in a differentially heated, partitioned and square cavity containing 
heat generating fluid has been studied numerically by Oztop and Bilgen (2006). Also, Jha 
and Ajibade (2009) investigated the free convective flow of heat generating/absorbing 
fluid between vertical parallel porous plates due to periodic heating of the porous plates. 
This analysis was performed by considering a fully developed flow and steady-periodic 
regime.

It is well known that the rate of heat transfer is temperature dependent, which 
increases the interaction of moving fluid and thus influence the internal energy of the 
flow regime. This interaction according to Frank-Kamenettski (1969), Makinde and Beg 
(2010) as well as Hassan and Gbadeyan (2014) bring about the condition of thermal 
runaway or ignition in the flow system to predict critical and unsafe situations. In addi-
tion to that, Hassan and Gbadeyan (2014) only investigated the thermal criticality of a 
reactive hydromagnetic fluid flow under different chemical kinetics. Meanwhile, in their 
study, Hassan and Gbadeyan (2014) together with Makinde and Beg (2010), Hassan and 
Gbadeyan (2015a) did not consider the effect of the internal heat generation within the 
flow system, but stated the importance of hydromagnetic reactive flows that are often 
accompanied with heat transfer, which according to them is an integral part of natural 
convection flow that belongs to the class of problems in boundary layer theory which 
occurs in various physical phenomena such as fire engineering, combustion modelling, 
nuclear reactor, heat exchangers, etc.

Hence, the present study aims to investigate the analysis of a reactive hydromagnetic 
Poiseuille fluid flow through a horizontal channel under the influence of an internal heat 
generation produced within the flow system. It is assumed that the reaction is exother-
mic under different chemical kinetics with their respective numerical exponents (m). 
The analytical solutions of the nonlinear dimensionless equations governing the fluid 
flow are obtained using the Adomian decomposition method (ADM) together with Pade 
approximation technique. Also, important properties of velocity and temperature fields 
including entropy generation analysis and thermal criticality conditions of the fluid flow 
under different chemical kinetics are discussed. More importantly, our results shall be 
of interest to industries in improving the efficiency and effectiveness of hydromagnetic 
lubricants used in engineering systems.

In the rest of this paper, the problem is formulated in “Mathematical formulation” 
section. The governing equations are solved using the ADM in “The Adomian decom-
position method (ADM)” section while the entropy generation analysis and thermal 
criticality conditions were determined in “Entropy generation” and “Thermal stability 
and the Pade approximation technique” sections respectively. Presentations of analytical 
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results of the problem are shown in tables, and graphs in “Results and discussion” sec-
tion and “Conclusion” section gives the concluding remarks.

Mathematical formulation
Let us consider the steady flow of an incompressible reactive fluid through a channel 
made up of two parallel plates with isothermal wall temperature. The fluid is electrically 
conducted under the influence of a transversely applied magnetic field (B0). The geom-
etry of the problem is shown in Fig. 1 where L is the channel characteristic length.

The x-axis is taken along the centreline of the channel and y-axis is transverse to this. 
The walls of the channel are at distance 2a apart. Neglecting the induced magnetic field 
and the consumption of the reactant, the differential equations governing the fluid 
flow in non-dimensionless form as in Makinde and Beg (2010), Hassan and Gbadeyan 
(2015b), Frank-Kamenettski (1969), Jha and Ajibade (2009) may be written as:

The flow is symmetric about the vertical x-axis. Hence the corresponding boundary con-
ditions along the channel centreline is given as:

where p is the dimensional modified pressure, µ is fluid viscosity, u is the dimensional 
axial velocity and σ0 represents electrical conductivity. Also, k represents the thermal 
conductivity coefficient, T  is the dimensional fluid temperature, Q is the heat of the reac-
tion term, C0 is the reactant species initial concentration, A is the reaction rate constant, 
ν represents vibration frequency, ℓ is Planck’s number and E is the activation energy, 
Also, R is the universal gas constant, Q0 is the dimensional heat generation coefficient 
and T0 is the wall temperature. The numerical exponents m ∈ {−2, 0, 0.5} respectively 
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Fig. 1  Geometry of the problem
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represent chemical kinetics for sensitized, Arrhenius and bimolecular kinetics. Finally, 
it should be noted that the fourth term in (2) is investigated in Makinde and Beg (2010) 
for only the Arrhenius case (where m = 0) and Hassan and Gbadeyan (2014) considered 
(2) for various kinds of chemical kinetics, but both Makinde and Beg (2010) and Hassan 
and Gbadeyan (2014) did not consider the last term in (2) which represents the effect of 
the internal heat generation within the flow system which also is similar to the model-
ling done in Hassan and Gbadeyan (2015b), Bartella and Nield (2012), Jha and Ajibade 
(2009).

Introducing the following non-dimensional quantities:

the governing boundary value problem equations (1)–(3) in dimensionless form become:

together with the boundary conditions

where the non-dimensional variables u is the axial velocity and T is the fluid tempera-
ture. Also, other parameters include G, which represent the pressure gradient, a is the 
channel half width, U is the mean velocity, H is the Hartmann number, � is the critical 
explosion parameter named after Frank-Kamenettski, Br is the Brinkman number, δ is 
the activation energy parameter, γ represents the viscous heating parameter and β is the 
heat source parameter.

The Adomian decomposition method (ADM)
As already mentioned, the non-dimensional non-linear coupled boundary value prob-
lems (5)–(7) governing the flow of a reactive magnetohydrodynamics internal heat gen-
erating Poiseuille fluid is solved in this section using the ADM (Hassan and Gbadeyan 
2013, 2014; Wazwaz and El-Sayed 2001; Hassan and Fenuga 2011; Adesanya and 
Gbadeyan 2011; Gbadeyan and Hassan 2012; Kutafina 2011).

In order to decouple the boundary value problems, Eq.  (5) is a linear second order 
non-homogeneous differential equation that can be solved by splitting it into a compli-
mentary function and a particular integral; together with appropriate boundary condi-
tions to give a general exact solution as:
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Substituting (8) into the energy equation (6), one obtains the following uncoupled 
boundary value problem composed of a second order differential equation

and the boundary conditions

We now solve the boundary value problem for various types of chemical kinetics as 
follows:

where L is a second order differential operator. Hence

Applying (12) to both sides of (11), we have

where a0 = T (0) is to be determined by using the other boundary condition. The ADM 
requires that the approximate solution is the partial sum:

of the following series

where the components T0,T1,T2, . . . ,Tk are to be determined. Thus substituting (14) 
into (13) we have
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To determine the components T0,T1,T2, . . . ,Tk, we let the non-linear term be repre-
sented by the following series:

whose components A0,A1,A2, . . . , are called Adomian polynomials. Then, (16) is 
thereby expanded such that

Also, (15) reduces to

Following Wazwaz and El-Sayed (2001), Hassan and Fenuga (2011), Adesanya and 
Gbadeyan (2011), we take the zeroth component of (18) and we obtain the following
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Equations (19)–(21) are then coded in the Mathematica software package to obtain the 
approximate solutions used and discussed in the next sections.

Entropy generation
Entropy generation is a measure of the account of irreversibility associated with the real 
process. It is a measure of disorderliness in a system. In order to preserve the quality 
of energy in a fluid flow process or at least to reduce the entropy generation, it is also 
important to study the distribution of the entropy generation within the fluid volume. 
Hence, in this section, the analysis of entropy generation of a reactive hydromagnetic 
internal heat generating fluid flow is discussed. According to Hassan and Gbadeyan 
(2015a) and Wood (1975), the general equation for the entropy generation per unit vol-
ume in the presence of the magnetic field is given as:

The first term of Sm in (23) is the irreversibility due to heat transfer, the second term is 
the entropy generation due to viscous dissipation and the third term is the local entropy 
generation due to the effect of the magnetic field. The dimensionless form of the entropy 
generation number (Sm ), using the dimensionless variables and parameters in Eq. (4) is 
obtained as:

The first term of Ns, 
(

dT
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transfer while the second term Br
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[

(

du
dy

)2
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]

, referred to as N2 is the entropy gen-

eration due to the combined effects of the viscous dissipation and the magnetic field, 
where � = RT0/E is the wall temperature parameter.

Now, we let

denote the irreversibility distribution ratio. Relation (25) shows that heat transfer domi-
nates when 0 ≤ φ < 1 and fluid friction dominates when φ > 1. This is used to deter-
mine the contribution of heat transfer in many engineering designs. As an alternative to 
the irreversibility parameter, the Bejan number (Be) is defined as

The results of the computation of the entropy analysis are shown in Table 2 as well as in 
Figs. 5 and 6. The details of the results are thereby discussed in “Results and discussion” 
section.
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Thermal stability and the Pade approximation technique
The analysis of the thermal criticality for different chemical kinetics under the influ-
ence of a magnetic intensity field and heat source is carried out in this section. Firstly, 
the expressions for the unknown constant (a0) are computed. This is done by using 
the Pade approximation technique to obtain the solutions of the non-linear boundary 
value problem equations governing the fluid flow. To this end, the diagonal form of the 
series solution (22) is evaluated respectively at y = 1 using the built-in Pade approxim-
ant procedure in the mathematica software package with the boundary condition (10).

Taking the diagonal Pade approximant of (22) at various values lead to an eigenvalue 
problem. To show that the series converges, the unknown constant (a0) is evaluated using 
values for the known parameters for any of the chemical kinetics. The critical values of 
the Frank-Kamenettski parameter (�c) for the non-existence of the solution, or the ther-
mal runaway for each chemical kinetics are presented and discussed in the next section.

Results and discussion
In this section, we compare the solutions of temperature profiles, entropy generation 
rates, solution branches and thermal criticality for different chemical kinetics under 
the influence of a heat source and magnetic intensity. However, our results shall show 
the efficiency of the ADM and the effect of internal heat generation which was not 
accounted for in Makinde and Beg (2010) where the Perturbation method (PM) was 
used to find the solutions of the governing equations. Notably, our results shall be equiv-
alent to that of Makinde and Beg (2010) when the numerical exponent (m) and internal 
heat generation term (β) in our results are both zero.

Table 1 shows the comparison of numerical results of the temperature profile between 
the ADM and the PM used in Makinde and Beg (2010). The results showed the efficiency 
of the ADM as another alternative in getting approximate solutions to differential equa-
tions with average differences of order 10−3. Also, the results showed the effect of the 
internal heat generation parameter (β) as it increases from 0 to 0.5; that is, an increase is 
noticed in the fluid temperature at both ends of the wall and the maximum temperature 
is noticed at the centreline of the fluid channel.

Table 1  Comparison of numerical results of the temperature profile

H = 1,G = 1, δ = 1, γ = 1, � = 0.5

y PM (Makinde and Beg 2010) ADM(β = 0) Absolute error ADM(β = 0.5)

−1.0 0 0.0002178316 2.1783× 10
−4 0.0003681026

−0.75 0.1556934861 0.1577379743 2.0445× 10
−3 0.1771365903

−0.50 0.2660663845 0.2691056991 3.0396× 10
−3 0.3046016196

−0.25 0.3323243479 0.3358417798 3.5177× 10
−3 0.3819272135

0 0.3544502181 0.3581076494 3.6578× 10
−3 0.4078774354

0.25 0.3323243479 0.3358417798 3.5177× 10
−3 0.3819272135

0.50 0.2660663845 0.2691056991 3.0396× 10
−3 0.3046016196

0.75 0.1556934861 0.1577379743 2.0445× 10
−3 0.1771365903

1.0 0 0.0002178316 2.1783× 10
−4 0.0003681026
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Table 2 shows the computation of the entropy generation analysis for different chemi-
cal kinetics and shows that fluid friction dominates at the core region of the flow at the 
upper and lower surfaces of the plate as φ > 1. Also Bejan numbers (Be) lie between 0 
and 1 for the three chemical kinetics. The effects of the heat source and magnetic inten-
sity are significantly compared to results where there are no heat source and magnetic 
intensity respectively.

Table 3 represents the rapid convergence of the ADM for obtaining the minimum and 
maximum temperature for sensitized chemical kinetics when (m = −2) which repre-
sents the upper and lower solutions of the flow system.

Table 4 shows the effect of viscous heating and magnetic intensity on the development 
of thermal runaway for different chemical kinetics. An increase in the viscous heating 

Table 2  Computation of the entropy analysis for different kinetics

H = 1,G = 1, Br = 10,α = 0.1,� = 0.1

N1 N2 φ =
N1

N2
Be =

1
1+φ

y m = −2 m = 0 m = 0.5 N2 m = −2 m = 0 m = 0.5 m = −2 m = 0 m = 0.5

−1 0.3366 0.6505 0.8605 0.580026 1.7234 0.8917 0.6741 0.3672 0.5286 0.5974

−0.75 0.1664 0.3703 0.5282 0.309902 1.8619 0.8368 0.5901 0.3494 0.5444 0.6289

−0.5 0.0688 0.1685 0.2499 0.186529 2.7105 1.1070 0.7465 0.2695 0.4746 0.5726

−0.25 0.0166 0.0429 0.0653 0.136751 8.2356 3.1844 2.0949 0.1083 0.2390 0.3231

0 0 0 0 0.123866 ∞ ∞ ∞ 0 0 0

0.25 0.0166 0.0429 0.0653 0.136751 8.2356 3.1844 2.0949 0.1083 0.2390 0.3231

0.5 0.0688 0.1685 0.2499 0.186529 2.7105 1.1070 0.7465 0.2695 0.4746 0.5726

0.75 0.1664 0.3703 0.5282 0.309902 1.8619 0.8368 0.5901 0.3494 0.5444 0.6289

1 0.3366 0.6505 0.8605 0.580026 1.7234 0.8917 0.6741 0.3672 0.5286 0.5974

Table 3  Numerical values of a0 for sensitized kinetics (m = −2)

Pade H � β Tlower Tupper

2 / 2 1 0.5 0.5 −0.3330 0.271173

5 / 5 1 0.5 0.5 −0.7249 0.270982

10 / 10 1 0.5 0.5 −1.8892 0.270982

15 / 15 1 0.5 0.5 −1.8715 0.270982

20 / 20 1 0.5 0.5 −1.8715 0.270982

25 / 25 1 0.5 0.5 −1.8715 0.270982

30 / 30 1 0.5 0.5 −1.8715 0.270982

50 / 50 1 0.5 0.5 −1.8715 0.270982

Table 4  Effects of different parameters on the development of thermal runaway

Pade H γ δ G β �c(m = −2) �c(m = 0) �c(m = 0.5)

2/2 1 1 1 1 0.5 −1.7811263742438508 1.0523144807452944 1.2366868184966630

2/2 1 2 1 1 0.5 −1.6241610492525835 0.9575639392658895 1.2326845092486176

2/2 1 3 1 1 0.5 −1.4923147215659487 0.8785368728933426 1.2284706885201377

2/2 1 1 1 1 0.5 −1.7811263742438508 1.0523144807452944 1.2366868184966630

2/2 2 1 1 1 0.5 −1.8283359751229398 1.0788970932308604 1.2370083898323496

2/2 3 1 1 1 0.5 −1.8785238395429784 1.1097801101901550 1.2381827113700314
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(γ ) gives an increase in the critical values (�c) of Frank-Kamenettski parameters in sensi-
tized and bimolecular kinetics whereas under Arrhenius kinetics, a reduction is noticed. 
Also, an increase in magnetic intensity (H) gives an increase in the critical values (�c) of 
Frank-Kamenettski parameters in Arrhenius and bimolecular kinetics while a reduction 
is observed in sensitized kinetics.  

 The effect of the internal heat generation on the critical values (�c) of Frank-Kamen-
ettski parameters compared with previously obtained results in Hassan and Gbadeyan 
(2014) where the impact of internal heat generation was not considered, that is, when 
β = 0 is displayed in Table 5. The new results where (β = 0.5) showed that the thermal 
critical values (�c) reduce for each chemical kinetics over the influence of internal heat 
generation parameter (β) from 0 to 0.5. Whereas, in both cases, the critical values (�c) of 
Frank-Kamenettski parameters increases as the numerical exponent m increases from 
m = −2 to m = 0.5.

Figure 2 shows the effect of pressure gradient (G) on the fluid velocity. The maximum 
velocity occurs as the pressure gradient (G) increases. This is true in the sense that, the 
more the pressure is applied in the channel, the faster the flow of the fluid. The plot of 
the velocity profile for variations in the Hartmann number (H) is shown in Fig.  3. As 
observed, the maximum velocity occurs at the minimum value of the parameter. Fur-
ther increase in (H) decreases the flow velocity maximum; this is due to the presence 
of Lorentz forces which has retarding effects on fluid flow when placed across the flow 
channel.

The maximum temperature is observed in Fig.  4 as the numerical exponent (m) 
increases with the effect of the internal heat generation (β), it is clearly seen that the heat 

Table 5  Effects of  internal heat generation on  thermal stability compared with  Hassan 
and Gbadeyan (2014)

Pade m H γ δ G �c (Hassan and Gbadeyan 2014) (β = 0) �c(β = 0.5)

2/2 −2 1 1 1 1 −0.2037 −1.7811

2/2 0 1 1 1 1 1.2960 1.0523

2/2 0.5 1 1 1 1 1.6170 1.2367

Fig. 2  Fluid velocity profile with variations in the pressure gradient
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generated internally contributes to an increase in the temperature of the fluid flow. The 
comparison of entropy generation rate for different chemical kinetics is shown in Fig. 5. 
It is observed that an increase in the numerical exponent (m) gives an increase in the 
entropy generation rate. Although, the entropy generation rate is at minimum which is 
above zero due to the effect of internal heat generation rates around the core region of 
the channel and rises to the maximum value of the plate surfaces.

Figure  6 also displays the comparison of the entropy generation rate for different 
chemical kinetics where heat transfer irreversibility dominates at both lower and upper 
plate surfaces and increase with increasing values of each numerical exponent (m) while 
fluid friction irreversibility dominates around the core region.

Figures 7, 8, and 9 show the solution branches for different chemical kinetics. These 
plots display the qualitative change in the flow system due to the effect of internal heat 
generation rates. The Frank-Kamenettski parameter (�) and each turning point (�c) 
increase with respect to the numerical exponents from −2 to 0.5.

Fig. 3  Fluid velocity profile with variations in magnetic field intensity

Fig. 4  Comparison of fluid temperature profiles for different kinetics
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Fig. 5  Comparison of entropy generation rates for different kinetics

Fig. 6  Bejan number for different chemical kinetics

Fig. 7  Solution branches for sensitized kinetics
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Conclusion
The analysis of a reactive hydromagnetic internal heat generating Poiseuille fluid flow 
through a channel is carried out. The ADM was used to obtain the analytical solutions of 
the governing equations and the Pade approximation technique was used to determine 
the thermal criticality of a reactive hydromagnetic fluid flow through a channel for dif-
ferent chemical kinetics.

The results revealed that as the numerical exponent m ∈ {−2, 0, 0.5} increases the tem-
perature also increases and that the effect of the heat source influenced the fluid flow 
by increasing the fluid temperature and that an increase in the magnetic field intensity 
increases the thermal criticality values. The entropy generation rate is observed to be at 
the minimum around the core region of the channel and rises to its maximum values at 
the plate surfaces and that an increase in the numerical exponents gives an increase in 
the entropy generation rate. It is found that among others, the thermal criticality con-
ditions and with the right combination of thermophysical parameters controlling the 
system, the thermal runaway can be prevented. These will be of interest to lubrication 
companies in improving the efficiency and effectiveness of hydromagnetic materials 
used in engineering systems.

Fig. 8  Solution branches for Arrhenius kinetics

Fig. 9  Solution branches for bimolecular kinetics
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