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Background
Risk measures for stochastic processes have been a popular research topic over the last 
decade. In this literature, time consistency has been an important property required for 
multiperiod risk measures on top of the properties of one period risk measures. Given 
a sequence of one period (conditional) risk measures, a time consistent multiperiod risk 
measure can be constructed easily in a recursive way:

Consider a stochastic loss process {Lt : t ∈ {1, . . . ,T }} defined on a filtered probabil-
ity space 

{

�,F , {Ft}t∈{1,...,T },P
}

 and a sequence Rα1 , . . . , RαT of one period risk meas-
ures (not necessarily coherent) with parameters αt, such that Rαt maps Ft-measurable 
random variables to Ft−1 measurable random variables (expressing conditional risk). As 
an example, parameters would be confidence levels when R is Value at Risk (VaR) or 
Expected Shortfall. We assume that F0 is the trivial σ-algebra, i.e. F0 = {�,∅}. In this 
setup one may define the multiperiod risk MRα1,...,αT of the process Lt recursively by

Under weak technical assumptions this construction guarantees that MRα1,...,αT is time 
consistent, see Cheridito et al. (2006) and Kovacevic and Pflug (2009, [Proposition 3.3.5]).

In this paper we introduce time unit invariance as another requirement for time con-
sistent process risk measures: If one calculates the risk of an i.i.d. process of losses that 

(1)
MRαT (LT |FT−1) := RαT (LT |FT−1),

MRαt ,...,αT (Lt , . . . , LT |Ft−1) := Rαt

(

Lt +MRαt+1,...,αT (Lt+1, . . . , LT |Ft−1)
)

.

Abstract 

Time unit invariance is introduced as an additional requirement for multiperiod risk 
measures: for a constant portfolio under an i.i.d. risk factor process, the multiperiod risk 
should equal the one period risk of the aggregated loss, for an appropriate choice of 
parameters and independent of the portfolio and its distribution. Multiperiod Maxi‑
mum Loss over a sequence of Kullback–Leibler balls is time unit invariant. This is also 
the case for the entropic risk measure. On the other hand, multiperiod Value at Risk and 
multiperiod Expected Shortfall are not time unit invariant.
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add to a total loss recursively (using 1) with identical parameters αt = α) and compares 
with the one period risk of the sum, the result is the same, if the parameter for the whole 
time horizon is chosen appropriately. If the correct parameter value does not depend on 
the underlying loss distribution, we say that the risk measure is time unit invariant. We 
do not think risk factor changes are necessarily i.i.d. in applications. But if this were the 
case, a multiperiod risk of the loss process should be equal to one-period risk of aggre-
gated losses, whatever the portfolio happens to be.

More formally:

Definition 1  We call a time consistent multiperiod risk measure MR, where MRis 
defined as in (1), time unit invariant if there exists a parameter value ᾱ, such that for any 
iid sequence of losses L1, . . . , LT

holds, and the parameter ᾱ is independent of the distribution of Lt.
The intuition behind requiring the same ᾱ for all loss processes is that the passage of 

time does not depend on the portfolio someone may hold.
We analyze time unit invariance for time consistent multiperiod risk measures, based 

on several underlying one period risk measures, namely value at risk, expected short-
fall, entropic risk measures and Maximum Loss. The main emphasis is on the introduc-
tion and analysis of a time consistent multiperiod extension of Maximum Loss, which 
is a one-period risk measure analyzed in Breuer and Csiszár (2013), see also Breuer and 
Csiszár (2010), Breuer and Csiszár (2016) and Kovacevic (2011).

The paper is structured in the following way: In “Multiperiod Maximum Loss” section 
we recapitulate basic facts about Maximum Loss and introduce the multiperiod version of 
Maximum Loss. “Main results” section proves the main results about time unit invariance 
of Maximum Loss. In “Examples and counterexamples” section we give an example with 
multiperiod Maximum Loss applied to linear and quadratic portfolios and analyze time 
unit invariance for further risk measures. Finally, “Conclusions” section summarizes the 
findings.

Multiperiod Maximum Loss
In the single period case consider a measurable space (�,F), a random vector 
r(·) : � → R

k, representing risk factors, and a measurable real-valued loss function L(·) . 
Conditions on L will be specified below. We may shortly write L = L(r), or even L when 
the dependence on r is not in the foreground.

The true probability measure P is not known, but it is assumed that an estimated 
measure, P, is available. Furthermore, in order to account for model uncertainty it is 
assumed that the true probability measure lies within the “ball” of all probability meas-
ures Q whose I-divergence (also called relative entropy or Kullback–Leibler divergence)

(2)
MRα,...,α(L1, . . . , LT |F0) = Rᾱ

(

T
∑

t=1

Lt |F0

)

(3)D(Q||P) :=
∫

log
dQ

dP
(r)dQ(r)
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from P is not larger than some fixed threshold k > 0.
Relative entropy appears to be a versatile measure of divergence for distributions, with 

many applications in statistics, information theory, statistical physics see e.g. Kullback 
(1959), Csiszár and Körner (1981), Cover and Thomas (2006), Jaynes (1968, 1982). More-
over, relative entropy balls are a popular choice for describing model uncertainty in port-
folio selection, asset pricing, and contingent claim pricing, see e.g. Friedman (2002a, b), 
Calafiore (2007), Barillas et al. (2009), Hansen and Sargent (2008), and others cited there.

Maximum Loss of the loss function L (introduced and analyzed in Breuer and Csiszár 
(2013), see also Kovacevic (2011)) then is defined as the expected loss in the worst of the 
plausible distributions Q with density Z = dQ

dP
, i.e.

Note that

Maximum Loss is a coherent risk measure (see Artzner et al. 1999; Föllmer and Schied 
2004) and a decision maker, trying to minimize it, is ambiguity averse in the sense of Gil-
boa and Schmeidler (1989). Special instances of Maximum Loss have been used already 
in Friedman (2002a) and Hansen and Sargent (2008), who considered linear and quad-
ratic portfolios depending on normally distributed risk factors.

Loss L is not assumed to be essentially bounded. Instead, given k in (4) we require L to 
satisfy conditions (i–iii) below. Maximum Loss is different from the entropic risk meas-
ure (Föllmer and Schied 2004), which describes divergence preferences (Maccheroni 
et al. 2006), and whose dual representation also uses I-divergence, but as a penalty term. 
Still the two can be evaluated with the same techniques, see Breuer and Csiszár (2016).

The loss maximisation problem occuring in the definition (4) of MaxLoss has a regular 
solution when L and k meet three conditions (see Breuer and Csiszár 2013):

(i) 		� If ess sup(L) is finite, then k should be smaller than kmax := − log(P({r : L(r) =
ess sup(L)})),

(ii) 	� θmax(L) := sup{θ : �(θ) < +∞} should be positive,
(iii) 	� If θmax,�(θmax), �′(θmax) are finite, then k should be smaller than kmax(L) :=

θmax�
′(θmax)−�(θmax).

Here the function �, in fact the cumulant generating function of the loss distribution, is 
defined as

(4)

MLk(L) := sup
Q:D(Q||P)≤k

EQ(L)

= sup
{

EP[LZ] : Z ≥ 0,EP[Z] = 1,EP[Z log (Z)] ≤ k
}

.

(5)

EP[Z log (Z)] =

∫

dQ

dP
log

(

dQ

dP

)

dP

=

∫

log

(

dQ

dP

)

dQ

= D(Q||P).

(6)�(θ , L) := log

(∫

eθL(r)dP(r)

)

,
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where θ is a positive real number. For fixed L, it can be shown that � as a func-
tion of θ is convex and lower semicontinuous on R. Its essential domain of defini-
tion D� := {θ : �(θ) < ∞} is a finite or infinite interval, excluding the trivial case 
D� = {0}. In the interval D�, the function �(θ) is continuous and has derivative 
�′(θ) =

∫

L(r) exp(θL(r)−�(θ))dP(r). At an endpoint of D� that belongs to D�, this 
derivative is understood as one-sided and is not necessarily finite. Moreover, �′(θ) is 
strictly increasing in D� (unless L(r) is constant P-almost surely). If supD� = ∞ then 
�′(θ) → ess sup(L) as θ → ∞.

Under assumptions (i), (ii), (iii) the equation

where �′(θ , L) denotes the derivative w.r.t. θ, has a unique positive solution θ . The Maxi-
mum Loss then is achieved and is given by

The pathological cases where some of the assumptions (i–iii) are violated can be solved 
with different methods, see Breuer and Csiszár (2013). In the sequel (i–iii) are standing 
assumptions.

Extending (4), conditional versions of one-period Maximum Loss can easily be intro-
duced. Given some σ-field F ′ ⊂ F , define the conditional Maximum Loss ML for 
L ∈ Lexp(�,F ,P) by

The sup here denotes the supremum of functions, with respect to almost sure order-
ing. The random variables Z can be interpreted as densities of feasible probability 
Q with respect to P. Furthermore (9) implies that ML is convex, homogeneous, and 
law-invariant.

If the losses L(rt) are independent of information F0, . . . ,Ft−1 for all t, this is called 
the independence assumption in the following. Clearly, conditional risk measures as the 
conditional Maximum Loss are almost surely constant under the independence assump-
tion, which is used in the following section.

Finally, we can apply the generic definitions (1) to a sequence of conditional Maximum 
Loss mappings, which leads to the multiperiod Maximum Loss, MML:

The notion of time unit invariance (2) then can also be applied to the multiperiod 
Maximum Loss. In fact, we will show in the following that MML is time unit invariant.

Main results
Let us first look at the situation where a Kullback–Leibler radius K > 0 for the long 
period [0, T] is given. Maximum cumulated loss over the whole period then is given by 
MLK

(

∑T
t=1 Lt

)

. The following Lemma analyzes the connection between MLK  and the 

(7)θ�′(θ , L)−�(θ , L) = k ,

(8)MLk(L) = �′(θ , L).

(9)MLk(L|F ′) := sup
{

E[LZ|F ′] : Z ≥ 0,E[Z|F ′] = 1,E[Z log(Z)|F ′] ≤ k
}

.

(10)

MMLαT (LT |FT−1) := MLαT (LT |FT−1),

MMLαt ,...,αT (Lt , . . . , LT |Ft−1) := MLαt
(

Lt +MMLαt+1,...,αT (Lt+1, . . . , LT |Ft−1)
)

.
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valuation by multiperiod Maximum Loss MML, in particular the related one-period 
parameters kt.

Lemma 1  (Disaggregation) Under the independence assumption, assuming (i) to (iii) for 
�(θ ,

∑T
t=1 Lt) and a given K > 0, the equation

has a unique solution θ . Choose

for t = 1, . . . ,T . With this choice we have

and

Proof  We prove this by induction in the number T of time steps. For T = 1 the result is 
trivial. In what follows, choose θ  and the related kt according to the assumptions of the 
Lemma and Eq. (12). Summation leads to 

∑T
t=2 kt = θ ·

∑T
t=2�

′(θ , Lt)−
∑T

t=2�(θ , Lt) . 
� is the logarithm of a moment-generating function applied to a sum of independent 
random variables, hence

Assume now that the Lemma holds up to T − 1 (induction hypothesis). Then–by renum-
bering—it holds also for losses L2, . . . , LT. Now, (15) shows that θ  and the kt are suitable 
for applying the Lemma to losses L2, . . . , LT if one uses ML with radius 

∑T
t=2 kt. Hence 

we have

By assumption and by (15) the relevant parameter is θ  for both ML in (17), therefore

(11)

θ ·�′
(

θ ,

T
∑

t=1

Lt

)

−�

(

θ ,

T
∑

t=1

Lt

)

= K

(12)kt := θ ·�′(θ , Lt)−�(θ , Lt)

(13)MMLk1,...,kT (L1, . . . , LT ) = MLK

(

T
∑

t=1

Lt

)

,

(14)K =
T
∑

t=1

kt .

(15)
T
∑

t=2

kt = θ ·�′
(

θ ,

T
∑

t=2

Lt

)

−�

(

θ ,

T
∑

t=2

Lt

)

.

(16)MMLk1,...,kT (L1, . . . , LT ) = MLk1
(

L1 +MMLk2,...,kT (L2, . . . , LT )
)

(17)= MLk1(L1)+ML∑T
t=2 kt

(

T
∑

t=2

Lt

)

.

(18)MMLk1,...,kT (L1, . . . , LT ) = �′(θ , L1
)

+�′
(

θ ,

T
∑

t=2

Lt

)
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which shows (13). Finally, to establish (14) sum up Eq. (12) over t.�  �

Now let us assume that positive real radii k1, . . . , kT for the individual periods are 
known. We give a characterization of the suitable parameter K for a valuation with ML 
over the full horizon.

Lemma 2  (Aggregation) Under the independence assumption and requiring (i–iii) for 
each given kt, there exists a unique θ  such that

where each θt is the unique solution of θt ·�′(θt , Lt)−�(θt , Lt) = kt. Define K by

With this choice of K we have

Proof  Since all �′(·, Lt) are strictly increasing and continuous, �′(·,
∑T

t=1 Lt) is 
also strictly increasing and continuous, taking values in the interval [�′(min(θt), 
∑T

t=1 Lt),�
′(max(θt),

∑T
t=1 Lt)]. Therefore, for any point in this interval there is a 

unique θ  in [min(θt), max(θt)] such that �′(θ ,
∑T

t=1 Lt) takes this value. Observing that 
under the independence assumption the right hand side of (20) equals MML and the left 
hand side is the ML of the summed loss variables with K given by (21), this establishes 
(22) and thus the lemma. � �

If in addition to the independence assumption the losses Lt are identically distributed 
and αt ≡ α, we can show that the properties of Definition 1 is fulfilled, i.e. Maximum 
Loss is time unit invariant.

Proposition 1  (Time unit invariance) Assume i.i.d. risk factors and a time independent 
loss function L, which leads to i.i.d. losses Lt. Then under assumptions (i–iii):

Proof  Under the assumptions the losses Lt are i.i.d. with the same distribution as some 
random variable L. By Lemma 2, there is unique (θ ,K ) such that (22) holds. Putting θ  
into (12) leads to kt = k and Lemma 1 gives K = kT . Equation (23) follows easily.�  �

(19)
�′

(

θ ,

T
∑

t=1

Lt

)

= MLK

(

T
∑

t=1

Lt

)

,

(20)
T
∑

t=1

�′(θ , Lt
)

=
T
∑

t=1

�′(θt , Lt),

(21)K := θ ·�′
(

θ ,

T
∑

t=1

Lt

)

−�

(

θ ,

T
∑

t=1

Lt

)

.

(22)MLK

(

T
∑

t=1

Lt

)

= MMLk1,...,kT (L1, . . . , LT ) =
T
∑

t=1

MLkt (Lt).

(23)MLkT

(

T
∑

t=1

Lt

)

= MMLk ,...,k(L1, . . . , LT ) = T ·MLk(L).
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As required for time unit invariance, the one period parameter k leads to the multi-
period parameter kT, independently of the actual loss function or of the risk factor 
distribution.

Examples and counterexamples
In this section we discuss several examples and counterexamples for the property of time 
unit invariance. We start with an illustration of Proposition  1 by applying multiperiod 
Maximum Loss to linear and quadratic financial portfolios. After that, several other risk 
measures are discussed as building blocks for time consistent multiperiod risk measures. 
It turns out that multiperiod Maximum Loss is not the only time unit invariant risk meas-
ure: entropic risk measures (and as a special case the expectation) also has this property. 
On the other hand, two important risk measures, value at risk (which is not a risk meas-
ure in the strict sense, but widely used in industry) and expected shortfall (see e.g. Rockaf-
ellar and Uryasev 2000) are not time unit invariant, which is shown by counterexamples.

Multiperiod Maximum Loss: linear portfolio, normal i.i.d. risk factors

Consider a non-constant linear portfolio over two periods, depending on one normal 
risk factor whose distributions at different times are independent. At each time t the risk 
factor takes a value rt ∼ N (0, σ 2

t ). The loss of the portfolio at time t is Lt(rt) = −lt rt . 
One period unconditional Maximum Loss at radius kt can be calculated directly (see 
Breuer and Csiszár 2013 [Proposition 1]): �(θ , Lt) = θ2σ 2

t l
2
t /2, θ =

√
2kt/(σt |lt |) and 

the Maximum Loss is �′(θ , Lt) =
√
2ktσt |lt |. Two period Maximum Loss then is

On the other hand Maximum Loss of the portfolio L1 + L2 over the long period [0, 2] 
equals

The equality MLK (L1 + L2) = MMLk1,k2(L1, L2) does not hold for K = k1 + k2 but for

If, however, the portfolio is constant over the two time periods, l1 = l2, the risk fac-
tor distributions at different times are identical, σ1 = σ2, and the radii are equal, 
k1 = k2 =: k, then K = 2k, in agreement with Proposition 1.

The same holds for T periods and if the portfolio loss at time t is given by a linear 
function of n risk factors, Lt(rt) = lt · (µt − rt), which are independent and normally 
distributed with mean µt and covariance matrix �t, rt ∼ Pt = N (µt ,�t). In this case one 
period Maximum Loss for radius k equals 

√
2k

√

l
T
t �t lt  (see Breuer and Csiszár 2013, 

[Proposition 2]). This implies

MMLk1,k2(L1, L2) =
√

2k1σ1|l1| +
√

2k2σ2|l2|.

MLK (L1 + L2) =
√
2K

√

σ 2
1 l

2
1 + σ 2

2 l
2
2 .

K =
(√

k1σ1|l1| +
√
k2σ2|l2|

)2

2
(

σ 2
1 l

2
1 + σ 2

2 l
2
2

) .

MMLk1,...,kT (L1, . . . , LT ) =
T
∑

t=1

√

2kt

√

l
T
t �t lt .
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MaxLoss at radius K over one long period [0, T] of the aggregated cash flows equals

The two are equal if

In general K is not equal to 
∑

kt. But in the special case of a constant linear portfolio, 
lt = l, and iid normal risk factors, �t = � and µt = µ, we have equality if

If all kt are equal to k, then

ensures the equality MLK (
∑

Lt) = MMLk ,...,k(L1, . . . , LT ), in agreement with Proposi-
tion 1. Maximum Loss at level K over the long period [0, T] equals multiperiod Maxi-
mum Loss, each at level k, if K grows linearly in T.

Multiperiod entropic risk measures are time unit invariant

The loss expectation is time unit invariant in a trivial way: We have 
E(L1 + L2) = E(L1 + E(L2)|F1), which is true for any specification of L1, L2 and F  and 
hence also holds for i.i.d. variables.

We will see now that time unit invariance can be shown for a larger family of risk 
measures, which contains the expectation as a special case.

Entropic acceptability functionals ENTγ with parameter γ > 0 can be defined for 
losses L by

with continuous extension ENT0[L] = E[L]. Hence, the expectation is a special case—
the entropic risk measure with γ = 0. Here �(·, L) again denotes the cumulant generat-
ing function of L. Conditional entropic measures then can be introduced as

with ENT0[L|F ] = E[L|F ]. Entropic risk functionals were introduced in Föllmer and 
Schied (2002) and further studied in e.g. Detlefsen and Scandolo (2005). Note that usu-
ally they are defined in terms of gains X = −L, instead of losses. It has been shown in 

MLK

(

T
∑

t=1

Lt

)

=
√
2K

√

√

√

√

T
∑

t=1

l
T
t �t lt .

K =

(

∑T
t=1

√
2kt

√

l
T
t �t lt

)2

2
∑T

t=1 l
T
t �t lt

.

K =

(

∑T
t=1

√
kt

)2

T
.

K = Tk

(24)ENTγ [L] =
1

γ
· log

(

E
[

eγ ·L
])

=
1

γ
·�(γ , L)

(25)ENTγ [L|F ] =
1

γ
· log

(

E
[

eγ ·L
]

|F
)
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Kupper and Schachermayer (2009) that the only convex, law invariant, time consistent, 
“relevant” risk measures for processes are the entropic risk measures.

Conditional entropic risk measures can be concatenated according to (1), which leads 
to a multiperiod risk entropic risk measure, MENTγ1,...,γT.

It turns out that multiperiod entropic risk measures MENTγ ,...,γ are time unit invari-
ant. A full proof, using the properties of cumulant generating functions �, again can be 
furnished by induction. In fact, by definitions (25) and (24), this is even simpler than in 
the case of Maximum Loss. For simplicity, we demonstrate here the case of two losses.

Consider L1, L2, two i.i.d. losses at time 1 and 2, and the (conditional) entropic risk 
measure with parameter γ. The multiperiod entropic risk measure then is given by

where the third equality is implied by the general fact 
log

(

E
[

eγX+a
])

= log
(

E
[

eγX
])

+ γ a, which holds for any suitable random variable X 
and real number a.

On the other hand we have

Altogether we have

which holds independently of the loss distribution. This ensures time unit invariance. 
Compared to Maximum Loss the parameter over both periods actually equals the 
parameter over the shorter periods.

Multiperiod value at risk is not time unit invariant

For a constant linear portfolio with loss function Lt(rt) = −lrt whose loss equals a con-
stant −l times the value of a normally distributed risk factor rt ∼ N (0, σ 2). Value at Risk 
at level α equals �−1(α) · σ · l, where �−1 is the inverse of the standard normal distribu-
tion function. For a sequence of confidence levels α1,α2, . . . ,αT, a time consistent mul-
tiperiod version MVaR of VaR may be defined by a procedure similar to (1) with VaRα in 
the role of Rα. For two time steps we get

(26)

MENTγ ,γ (L1, L2) = ENTγ

(

L1 + ENTγ (L2)
)

=
1

γ
�

(

γ , L1 +
1

γ
�(γ , L2)

)

=
1

γ
�(γ , L1)+

1

γ
�(γ , L2)

=
2

γ
�(γ , L1),

(27)

ENTγ (L1 + L2) =
1

γ
�(L1 + L2)

=
1

γ
�(γ , L1)+

1

γ
�(γ , L2)

=
2

γ
�(γ , L1).

(28)MENTγ ,γ (L1, L2) = ENTγ (L1 + L2),

MVaRα1,α2(−lr1,−lr2) =
(

�−1(α1)+�−1(α2)

)

· σ · l.
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Aggregated VaR at level ᾱ over the period [0, 2] equals

MVaRα,α equals one period VaR at level ᾱ if

This condition guarantees equality for all constant linear portfolios.
Consider now quadratic portfolios with loss function −l2r2. VaRα equals F−1

1 (α)l2σ 2 , 
where F−1

1  is the inverse of the distribution function of the χ2-distribution with one 
degree of freedom. Multiperiod VaR for the parameter sequence (α1,α2) is

Aggregated VaR at level ᾱ over the period [0, 2] is

where F−1
2  is the inverse of the distribution function of the χ2-distribution with two 

degrees of freedom. Multiperiod MVaRα1,α2(−l2r21 ,−l2r22) equals VaRᾱ(−l2r21 − l2r22) if

This guarantees equality for all constant quadratic portfolios. But (30) is different from 
(29), hence time unit invariance is not fulfilled for MVaR.

Multiperiod expected shortfall is not time unit invariant

Assume that losses Li are i.i.d. with a standard normal distribution. (Conditional) 
expected shortfall of L2 at level q therefore is

The multiperiod expected shortfall over two periods then is given by

On the other hand the expected shortfall over two periods at level q′ is given by the 
expected shortfall of the random variable L1 + L2, which has a normal distribution with 
mean zero and a variance of two. This leads to

To find a level q′ such that ESM and ESS are equal, one has to solve

VaRᾱ(−lr1 − lr2) =
√
2�−1(ᾱ) · σ · l.

(29)ᾱ = �

((

�−1(α1)+�−1(α2)

)

/
√
2
)

.

MVaRα1,α2

(

−l2r21 ,−l2r22

)

=
(

F−1
1 (α1)+ F−1

1 (α2)

)

σ 2l2.

VaRᾱ

(

−l2r21 − l2r22

)

= F−1
2 (ᾱ)l2σ 2,

(30)ᾱ = F2

(

F−1
1 (α1)+ F−1

1 (α2)

)

.

ES1[L2] = ES[L2] =
φ
(

�−1(q)
)

1− q
.

ESM(q) = ES[L1 + ES1[L2]] = ES[L1]+
φ
(

�−1(q)
)

1− q
= 2 ·

φ
(

�−1(q)
)

1− q
.

ESS(q′) =
√
2 ·

φ
(

�−1(q′)
)

1− q′
.

(31)
φ
(

�−1(q′)
)

1− q′
=

√
2 ·

φ
(

�−1(q)
)

1− q
.
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Consider now the quadratic portfolio: Mi = L2i  are i.i.d. χ2-distributed with one degree 
of freedom. Here we have

and

where F−1
1 (q) denotes the q-quantile of the χ2 distribution with one degree of freedom.

The expected shortfall over two periods is calculated for M1 +M2, which is χ2-distrib-
uted with two degrees of freedom:

where F−1
2 (q) denotes the q-quantile of the χ2 distribution with two degrees of freedom.

Again we have to solve ESM(q) = ESS(q′). Because of

this leads to

which is not in general a solution to (31).

Conclusions
We introduced the process risk measure MML and analyzed under which conditions it 
equals one period Maximum Loss of the aggregated losses. Assuming losses at time t are 
independent of information at time t − 1 we arrived at the following results.

(1) Given a radius K for the maximum aggregated losses over [0, T], it is possible to 
find radii kt for each time step, such that MML equals one period Maximum Loss with 
the given radius K. Here, 

∑

kt = K  holds.
(2) Given radii kt for each t, it is possible to calculate an overall radius K such that 

MML equals the one period maximum aggregated loss at radius K. Under this condi-
tions 

∑

kt = K  does not hold in general.
(3) If in situation (2) risk factors are identically distributed and the portfolio composi-

tion does not change, the relation kt = K
n

 holds for all distributions of the rt and for all 
loss functions L. This is invariance under changes of time units as defined in Definition 1.

In addition it turned out that concatenations of entropic risk measures are also time 
unit invariant. In particular the expectation is time unit invariant. On the other hand, 

ES1[M2] = ES[M2] = 1+
√
2

√

F−1
1 (q) exp

(

− 1
2F

−1
1 (q)

)

1− q
,

ESM(q) = ES[M1 + ES1[M2]] = 2+ 2
√
2

√

F−1
1 (q) exp

(

− 1
2F

−1
1 (q)

)

1− q
,

ESS(q′) =
exp

(

− 1
2F

−1
2 (q′)

)

·
(

F−1
2 (q)+ 2

)

1− q
,

F−1
2 (q′) = −2 ln

(

1− q′
)

,

q′ = 1− exp









1

2
+

√
2

2

�

F−1
1 (q) exp

�

− 1
2F

−1
1 (q)

�

1− q









,
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time consistent multiperiod versions of Value at Risk and do not own this property. The 
same is true for concatenations of Expected Shortfall.
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