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Background
The classic logistic model

was first proposed by Verhulst in 1838. It can be utilized to describe the single–species 
growth and has been the basis of varieties of models in population ecology and epidemi-
ology. For system (1) and its generalized forms, the significant results involve the asymp-
totic properties (Berezansky et al. 2004; Röst 2011), permanence and stability (Fan and 
Wang 2010; Chen et al. 2006), periodicity (Sun and Chen 2007) and almost periodicity 
(Yang and Yuan 2008) of solutions, Hopf bifurcation (Sun et  al. 2007; Song and Yuan 
2007; Song and Peng 2006; Chen and Shi 2012), traveling wave front (Zhang and Sun 
2014), free boundary problem (Gu and Lin 2014), and so on. In addition, the Hopf bifur-
cation analyses for some diffusive predator–prey systems were also done (see Yang 2015; 
Yang and Zhang 2016a, b).

In particular, Gopalsamy (1993) considered the controlled delay system in the follow-
ing form

(1)
dN (t)

dt
= rN (t)

[

1−
N (t)

K

]

, r, k ∈ (0,+∞)

(2)

{

dN (t)
dt

= rN (t)
[

1− a1N (t)+a2N (t−τ)
K − cu(t)

]

,

du(t)
dt

= bN (t − τ )− au(t),
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where all the coefficients and time delay τ are positive constants, N(t) is the number of 
individuals at time t, and variable u(t) denotes an indirect control variable (see Aizerman 
and Gantmacher 1964; Lefschetz 1965). They have derived the sufficient conditions to 
guarantee that the positive equilibrium solution is globally asymptotical stable.

Strictly speaking, spatial diffusion can not be ignored in studying the natural biologi-
cal system (Murray 2003; Ghergu and Radulescu 2012). In the real world, most popula-
tions are moving and the densities are dependent of time and space. Therefore, diffusion 
should be taken into account in studying the basic logistic equation. However, there have 
been very few results on the influence of time delay on the reaction–diffusion logistic 
model with feedback control.

Inspired by the previous discussions, we mainly consider the reaction–diffusion sys-
tem as follows:

where (x, t) ∈ Ω × [0,+∞), Ω = (0, lπ).
The model (3) is considered with the initial value conditions as follows

We also assume that the model (3) is closed and there is no emigration or immigration 
across the boundary. Hence, the boundary conditions are considered as

where ∂/∂ν represents the outward normal derivative on the boundary ∂Ω.
In this paper, we develop a reaction–diffusion logistic model with time delay and dif-

fusion, which makes up perfectly for the deficiencies of the previous literatures. The 
main objective is to explore the dynamics of system (3) by regarding τ as the bifurcation 
parameter. The structure of this paper is arranged as follows. In section “Preliminaries”, 
we derive the well–posedness of solutions and the permanence of the system. In section 
“Occurrence of the Hopf bifurcation”, we establish the existence of Hopf bifurcation. In 
section “Bifurcation properties”, we get the formulae for determining the Hopf bifurca-
tion properties. In section “Numerical simulations”, we illustrate our theoretical results 
by some numerical simulations. Finally, we give some discussions and conclusions.

Preliminaries
As we know, spatial diffusion and time delay do not change the number and locations 
of constant equilibria because of no-flux boundary conditions. Then system (3) has two 
nonnegative equlibria E0 = (0, 0) and E∗ = (N ∗,u∗), where

(3)

{

∂N (x,t)
∂t = d1∆N (x, t)+ rN (x, t)

[

1− a1N (x,t)+a2N (x,t−τ)
K − cu(x, t)

]

,
∂u(x,t)

∂t = d2∆u(x, t)+ bN (x, t − τ )− au(x, t),

(4)N (x, t) = η1(x, t) ≥ 0, u(x, t) = η2(x, t) ≥ 0, x ∈ [0, lπ ] × [−τ , 0].

(5)
∂N

∂ν
=

∂u

∂ν
= 0, (x, t) ∈ ∂Ω × [0,+∞),

N ∗ =
aK

a(a1 + a2)+ bcK
, u∗ =

b

a
N ∗ =

bK

a(a1 + a2)+ bcK
.
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Well–posedness of solutions

Here, for problem (3)–(5), we devote ourselves to the existence, uniqueness, nonnegativ-
ity and boundedness of solutions.

Theorem 1 For any given initial data satisfying the conditions (4) and boundary con-
ditions (5), system (3) has a unique global solution of system and the solution maintains 
nonnegative and uniformly bounded for all t ≥ 0.

Proof Using the similar methods in Hattaf and Yousfi (2015), Hattaf and Yousfi (2015), 
we can get the local existence and uniqueness of solution (N(x, t), u(x, t)) with x ∈ Ω̄ and 
t ∈ [0,T ), where T is the maximal existence time of solution.

It is easy to find that 0 = (0, 0) and M = (M1,M2) are a pair of coupled lower–upper 
solutions to problem (3)–(5), where

By means of the comparison theorem, we can obtain that 0 ≤ N (x, t) ≤ M1 and 
0 ≤ u(x, t) ≤ M2 for x ∈ Ω̄ and t ∈ [0,T ). It is obvious that the upper bound of solu-
tion is independent of the maximal existence interval [0, T). It follows from the standard 
theory for semilinear parabolic systems (Wu 1996; Henry 1993) that the solution glob-
ally exists. The proof is complete  �

Dissipativeness and permanence

In the following, we will show that system (3) is permanent, which means that any non-
negative solution of (3) is bounded as t → +∞ for all x ∈ Ω.

Theorem 2 (Dissipativeness) The nonnegative solution (N, u) of system (3) satisfies

Proof Based on the first equation in system (3), we get

Then from the standard comparison principle of parabolic equations, we can easily get

For an arbitrary ε1 > 0, we could get a positive constant T1 such that for any t ≥ T1,

M1 = max

{

K

a1
, sup
−τ≤s≤0

�ϕ1(·, s)�C(Ω̄ ,R)

}

,

M2 = max

{

bM1

a
, sup
−τ≤s≤0

�ϕ2(·, s)�C(Ω̄ ,R)

}

.

lim sup
t→+∞

N (x, t) ≤
K

a1
, lim sup

t→+∞

u(x, t) ≤
bK

aa1
.

∂N (x, t)

∂t
− d1∆N (x, t) ≤ rN (x, t)

(

1−
a1

K
N (x, t)

)

for (x, t) ∈ Ω × [0,+∞).

lim sup
t→+∞

N (x, t) ≤
K

a1
.

N (x, t) ≤
K

a1
+ ε1.
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Thus, for any T ∈ [T1 + τ ,+∞), we have

This implies

by comparison principle of parabolic equations and the arbitrariness of ε1. �

Theorem 3 If aa1 > aa2 + bcK , then system (3) is permanent.

Proof From Theorem 2, for an arbitrary ε2 > 0, we can find a constant T > T1 + T2, 
such that

in Ω × [T2,+∞). Moreover, we can obtain

the comparison principle shows that

due to the continuity as ε1 → 0 and ε2 → 0.
Similarly, we can also have

Combining the results in Theorem  2, we can easily conclude that system (3) is 
permanent.

Occurrence of the Hopf bifurcation
For system (3), we shall study the local stability of two constant steady states and the 
occurrence of Hopf bifurcation phenomenon through discussing the distribution of 
characteristic values.

Denote

By defining the phase space C = C([−τ , 0],X), we can rewritten system (3) as the semi-
linear functional differential equation:

∂u(x, t)

∂t
− d2∆u(x, t) ≤ b

(

K

a1
+ ε1

)

− au(x, t).

lim sup
t→+∞

u(x, t) ≤
bK

aa1

u(x, t) ≤
bK

aa1
+ ε2

∂N (x, t)

∂t
− d1∆N (x, t)

≥ rN (x, t)

[

1−
a2

K

(

K

a1
+ ε1

)

− c

(

bK

aa1
+ ε2

)

−
a1

K
N (x, t)

]

,

lim inf
t→+∞

N (x, t) ≥
K

a1

aa1 − aa2 − bcK

aa1
> 0

lim inf
t→+∞

u(x, t) ≥
bK

aa1

aa1 − aa2 − bcK

aa1
> 0.

u1(t) = N (x, t), u2(t) = u(x, t), U(t) = (u1(t),u2(t))
T .
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where X = {(u, v) ∈ H2(0, lπ)×H2(0, lπ)|ux = vx = 0, x = 0, lπ}, Ut(·) = U(t + ·), 
D = diag {d1, d2}, ∆ = diag {∂2/∂x2, ∂2/∂x2}, and G(Ut) : C → X is defined by

The linear system of (6) at E0(0, 0) is

where

for ϕ(θ) = Ut(θ), ϕ = (ϕ1,ϕ2)
T ∈ C. The characteristic equation of (7) is

where y ∈ dom (∆)\{0}, dom∆ ⊂ X and e�·(θ)y = e�θy for θ ∈ [−τ , 0]. We know that 
the operator ∆ in Ω with homogeneous Neumann boundary condition has the eigen-
values −n2/l2 and the corresponding eigenfunctions cos(nx/l), n ∈ N0 = {0, 1, 2, . . .}. By 
using the Fourier expansion in (8),

where αn, γn ∈ C. Therefore, the characteristic equation (8) can be transferred into

We then obtain the characteristic values as follows

It is obvious that �1,0 = r > 0, and we can establish the instability of E0.

Theorem 4 The trivial equilibrium E0 of system (3) is always unstable.

Next, we will focus on the occurrence of Hopf bifurcation phenomenon.
Linearizing system (3) at E∗ = (N ∗,u∗), we get

where L : C → X is given by

(6)U̇(t) = D∆U(t)+ G(Ut),

G(Ut) =

(

ru1(t)
(

1− a1u1(t)+a2u1(t−τ)
K − cu2(t)

)

bu1(t − τ )− au2(t)

)

.

(7)U̇(t) = D∆U(t)+ LE0(Ut),

LE0(ϕ) =

(

rϕ1(0) 0
bϕ1(−τ ) − aϕ2(0)

)

(8)�y− D∆y− LE0(e
�·y) = 0,

y =

∞
∑

n=0

(

αn
γn

)

cos(nx/l),

∣

∣

∣

∣

∣

�+ d1
n2

l2
− r 0

−be−�τ
�+ d2

n2

l2
+ a

∣

∣

∣

∣

∣

= 0, n ∈ N0.

�1,n = −d1
n2

l2
+ r, �2,n = −d2

n2

l2
− a, n ∈ N0.

(9)U̇(t) = D∆U(t)+ L(Ut),

L(ϕ) =

(

− ra1
K N ∗ϕ1(0)−

ra2
K N ∗ϕ1(−τ ) − cN ∗ϕ2(0)

bϕ1(−τ ) − aϕ2(0)

)
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with ϕ(θ) = Ut(θ), ϕ = (ϕ1,ϕ2)
T ∈ C. Similar to the previous discussion, we can obtain 

the characteristic equation

where

For τ = 0, Eq. (10) can be reduced to

with An + C > 0 and Bn + D > 0. On the basis of Routh–Hurwitz stability criterion, we 
can obtain the local stability of E∗ when τ = 0.

Lemma 1 The positive equilibrium is always locally asymptotically stable without time 
delay.

Remark 1 From Lemma 1, we can find that there is no Turing instability without time 
delay.

For τ �= 0, let us suppose that � = iω(ω > 0) satisfies Eq. (10).
First, plugging � = iω into Eq. (10) and then segregating the real and imaginary com-

ponents with the help of Euler’s formula, we can get the following two equations of ω

Second, solving these equations, we can obtain

Third, squaring both sides of those two equations and then adding them up, we get the 
following equation

(10)�
2 + An�+ Bn + e−�τ (C�+ Dn) = 0, n ∈ N0,

An = (d1 + d2)
n2

l2
+ a+

ra1

K
N ∗ > 0,

Bn = d1d2
n4

l4
+

(

a+
ra1

K
N ∗

)

d1
n2

l2
+

raa1

K
N ∗ > 0,

C =
ra2

K
N ∗ > 0,

Dn =
ra2

K
N ∗d1

n2

l2
+

raa2

K
N ∗ + bcN ∗ > 0.

�
2 + (An + C)�+ Bn + Dn = 0

{

ω2 − Bn = Dn cosωτ + Cω sinωτ ,
−ωAn = Cω cosωτ − Dn sinωτ .

(11)







cosωτ = (Dn−AnC)ω
2−BnDn

C2ω2+D2
n

,

sinωτ = Cω3+(AnDn−BnC)ω
C2ω2+D2

n
.

(12)ω4 +
(

A2
n − 2Bn − C2

)

ω2 + B2
n − D2

n = 0,
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where

Lemma 2 For τ > 0, we have

(i) If a1 > a2 +
bcK
ar , then Eq. (10) does not have purely imaginary root.

(ii) If a2 < a1 < a2 +
bcK
ar , then there exists N0 ∈ N0, such that Eq. (10) does not have 

purely imaginary root when n > N0, and has a pair of conjugate purely imaginary eigen-
values when 0 ≤ n ≤ N0.

Proof We can easily verify that A2
n − 2Bn − C2 > 0 and B2

n − D2
n > 0 when 

a1 > a2 +
bcK
ar . This means that Eq. (12) has no positive root. In other words, there could 

be no purely imaginary root in Eq. (10) for any τ > 0.

On the contrary, if a2 < a1 < a2 +
bcK
ar , then B2

0 − D2
0 < 0 and there exists N ∈ N0 

such that

That is to say, Eq. (12) has no positive root when n > N0 and has the unique positive 
root ωn when 0 ≤ n ≤ N0, where

By direct computation, we have

Moreover, Eq. (10) has characteristic values ±iωn with

where

A2
n − 2Bn − C2 =

(

d21 + d22

)n4

l4
+ 2

( ra1

K
N ∗d1 + ad2

)n2

l2
+

r2
(

a21 − a22
)

K 2
N ∗2,

B2
n − D2

n = (Bn + Dn)

(

d1d2
n4

l4
+

(

a+
ra1

K
N ∗

)

d1
n2

l2
+

raa1

K
N ∗ −

ra2

K
N ∗d1

n2

l2

−
raa2

K
N ∗ − bcN ∗

)

.

{

B2
n − D2

n < 0, n = 0, 1, 2, . . . ,N0,

B2
n − D2

n ≥ 0, n = N0 + 1,N0 + 2, . . . .

ωn =

(

−(A2
n − 2Bn − C2)+

√

(A2
n − 2Bn − C2)2 − 4(B2

n − D2
n)

2

)
1
2

.

AnDn − BnC =
ra2

K
N ∗d22

n4

l4
+

(

bcN ∗d1 +
2ra2

K
N ∗d2 + bcN ∗d2

)

n2

l2

+
ra2a2

K
N ∗ + abcN ∗ +

ra1bc

K
N ∗2

> 0.

τ
(n)
j = τ

(n)
0 +

2jπ

ωn
, 0 ≤ n ≤ N0, j = 0, 1, 2, . . . ,

τ
(n)
0 =

1

ωn
arccos

(Dn − AnC)ω
2
n − BnDn

D2
n + C2ω2

n

.



Page 8 of 15Zhuang and Jia  SpringerPlus  (2016) 5:1303 

This completes the proof. �
We now check the transversality condition.

Lemma 3 If a2 < a1 < a2 +
bcK
ar , then dRe (�)

dτ

∣

∣

∣

τ=τ
(n)
j

> 0 for j ∈ N0 and 
n ∈ {0, 1, 2, . . . ,N0} .

Proof By taking the derivatives on both sides of (10) with respect to τ, we can get

and

On the basis of (11) and (12), we get

Further simplification will lead to

The proof is complete. �

According to Lemmas 1–3 and the Hopf bifurcation theory developed by Wu (1996), 
the following conclusions can be drawn.

Theorem 5 Define

2�
d�

dτ
+ An

d�

dτ
+ Ce−�τ d�

dτ
+ (C�+ Dn)e

−�τ

(

−�− τ
d�

dτ

)

= 0,

(

d�

dτ

)−1

=
2�+ An + Ce−�τ − τe−�τ (C�+ Dn)

�e−�τ (C�+ Dn)

=
(2�+ An)e

�τ + C

�(C�+ Dn)
−

τ

�
.

(

d�

dτ

)−1

τ=τ
(n)
j

=
(2iωn + An)

(

cosωnτ
(n)
j + i sinωnτ

(n)
j

)

+ C

iωn(iCωn + Dn)
−

τ
(n)
j

iωn

=
C + An cosωnτ

(n)
j − 2ωn sinωnτ

(n)
j

−Cω2
n + iDnωn

−
τ
(n)
j

iωn

+
i
(

2ωn cosωnτ
(n)
j + An sinωnτ

(n)
j

)

−Cω2
n + iDnωn

.

Re

(

d�

dτ

)−1

τ=τ
(n)
j

=
Dnωn

(

2ωn cosωnτ
(n)
j + An sinωnτ

(n)
j

)

(

Cω2
n

)2
+ (Dnωn)2

−
Cω2

n

(

C + An cosωnτ
(n)
j − 2ωn sinωnτ

(n)
j

)

(

Cω2
n

)2
+ (Dnωn)2

=
ω4
n + D2

n − B2
n

(

Cω2
n

)2
+ (Dnωn)

2

> 0.

τ0 = min
n∈{0,1,2,...,N0},j∈N0

{

τ
(n)
j

}

.
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(i) If a1 > a2 +
bcK
ar

, then for any τ > 0, the positive equilibrium E∗ is always locally 
asymptotically stable.

(ii) If a2 < a1 < a2 +
bcK
ar , then E∗ is locally asymptotically stable when τ ∈ [0, τ0), and 

is unstable when τ ∈ (τ0,+∞).
(iii) System (3) has a Hopf bifurcation from E∗ at τ (n)j  with n ∈ {0, 1, 2, . . . ,N0} and 

j ∈ N0. If n = 0, the periodic solutions bifurcating positive equilibrium are all spa-
tially homogeneous. Otherwise, these bifurcating periodic solutions are spatially 
inhomogeneous.

Bifurcation properties
In Theorem  5, we have demonstrated that there exist some spatially homogeneous or 
inhomogeneous periodic solutions when time delay crosses through some particular val-
ues. We are now in the position to investigate the bifurcation properties.

In general, we use τ ∗ to denote an arbitrary value of τ (n)j  with j ∈ N0 and 
n ∈ {0, 1, 2, . . . ,N0}. And we also use ±iω∗ to denote the corresponding simply purely 
imaginary roots ±iωn.

Set Ñ (·, t) = N (·, τ t), ũ(·, t) = u(·, τ t), Ũ(t) = (Ñ (·, t), ũ(·, t)), and τ = τ ∗ + α with 
α ∈ R. For simplicity we drop the tilde and rewrite system (3) as follows,

where ϕ = (ϕ1,ϕ2)
T ∈ C, L(α)(·) : C → X and f : C × R → X are respectively denoted 

by

and

Note that α = τ − τ ∗, we can find that system (13) may causes a Hopf bifurcation 
when α = 0.

For the following linear differential equation:

we can easily deduce that the corresponding characteristic equation has characteristic 
values ± i ω∗τ ∗ when α = 0.

Next, we discuss the following differential equation:

We can use Riesz representation theorem here, which tells us that there is a 2× 2 matrix 
function η(θ ,α) (−1 ≤ θ ≤ 0) with bounded variation elements satisfying

(13)
dU(t)

dt
= τD∆U(t)+ L(α)(Ut)+ f (Ut ,α),

L(α)(ϕ) = (τ ∗ + α)

(

− ra1
K N ∗ϕ1(0)+

ra2
K N ∗ϕ1(−1)− cN ∗ϕ2(0)

bϕ1(−1)− aϕ2(0)

)

f (ϕ,α) = (τ ∗ + α)

(

− 2ra1
K ϕ2

1(0)−
ra2
K ϕ1(0)ϕ1(−1)− rcϕ1(0)ϕ2(0)

0

)

.

(14)U̇(t) = τD∆U(t)+ L(α)(Ut),

(15)Ẏ (t) = −τDn2Y (t)+ L(α)(Yt).

−τD
n2

l2
ϕ(0)+ L(α)(ϕ) =

∫ 0

−1
d[η(θ ,α)]ϕ(θ),



Page 10 of 15Zhuang and Jia  SpringerPlus  (2016) 5:1303 

where

For Φ ∈ C1([−1, 0],R2), Ψ ∈ C1([0, 1],R2), we define

Then the formal adjoint, A∗
1, of A1 is given by

By calculation, we can find that q(θ) = (1, ξ)T eiω
∗θτ∗ and q∗(s) = M(1, η)eiω

∗sτ∗ are 
eigenvectors of A1 and A∗

1 associated with iω∗τ ∗, respectively, where

and

Then P = span{q(θ), q(θ)}, P∗ = span{q∗(s), q∗(s)} are the center subspace of system 
(3).

Define h · fn = h1β
1
n + h2β

2
n, fn =

(

β1
n ,β

2
n

)

 and β1
n =

(

cos nx
l
, 0
)T , β2

n =
(

0, cos nx
l

)T . 
The complex-valued L2 inner product on Hilbert space XC are

for U1 = (u1,u2),U2 = (v1, v2) ∈ XC. And �β i
0,β

i
0� = 1, �β i

n,β
i
n� =

1
2, i = 1, 2, n = 1, 2, . . .,

where Φ ∈ C([−1, 0],X). We can establish the center subspace of system (14) at α = 0 as 
follows

η(θ ,α) =



























(τ ∗ + α)

�

−d1
n2

l2
− ra1

K N ∗ − cN ∗

0 − d2
n2

l2
− a

�

, θ = 0,

0, θ ∈ (−1, 0),

(τ ∗ + α)

�

− ra2
K N ∗ 0
b 0

�

, θ = −1.

A1(Φ(θ)) =







dΦ(θ)
dθ

, θ ∈ [−1, 0),

� 0

−1
[dη0(θ)]Φ(θ), θ = 0,

A
∗
1(Ψ (s)) =







−dΨ (s)
ds

, s ∈ (0, 1],

� 0

−1
[dη0(θ)]Ψ (−θ), s = 0.

(Ψ ,Φ)0 = Ψ (0)Φ(0)−

∫ 0

−1

∫ θ

ζ=0
Ψ (ζ − θ)d[η(θ , 0)]Φ(ζ)dζ

= Ψ (0)Φ(0)+ τ ∗
∫ 0

−1
Ψ (ζ + 1)

(

− ra2
K N ∗ 0
b 0

)

Φ(ζ)dζ .

θ ∈ [−1, 0], s ∈ [0, 1],

ξ =
be−iω∗τ∗

iω∗ + a
, η =

cN ∗

iω∗ + a
, M =

[

1+ ξη + τ ∗
(

bη −
ra2

K
N ∗

)

eiω
∗τ∗

]−1
.

(16)�U1,U2� =
1

lπ

∫ lπ

0
(u1v1 + u2v2)dx,

(17)�Φ , fn� =
(

�Φ ,β1
n�, �Φ ,β2

n�
)

,

(18)PCNL =
{

(q(θ)z + q(θ)z̄) · fn, z ∈ C
}

.
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Based on the conclusions drawn by Wu (1996) and Hassard et al. (1981), the solutions of 
(13) are

where

Moreover, for Ut ∈ C0 of (13) at τ = τ ∗, we have ż = iω∗τ ∗z + g(z, z̄), where

By (16)–(20), we can compute

Then we should compute W20(θ) and W11(θ) to determine g21. Following the formulas 
in Wu (1996), We can obtain that

and

Ut = (q(θ)z(t)+ q(θ)z̄(t)) · fn +W (z(t), z̄(t), θ),

(19)W (z, z̄, θ) = W20
z2

2
+W11zz̄ +W02

z̄2

2
+ · · · .

(20)g(z, z̄) = q∗(0)�f (Ut , 0), fn� = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .

g20 =

{

0, n = 1, 2, . . . ,

−2τ ∗M
{

ra1
K + ra2

K e−iω∗τ∗ + rcξ
}

, n = 0,

g11 =

{

0, n = 1, 2, . . . ,

−2τ ∗M
{

ra1
K + rc Re {ξ} + ra2

K Re {eiω
∗τ∗}

}

, n = 0,

g02 = g20,

g21 = −2
Mτ ∗

lπ

{

∫ lπ

0

2ra1

K
(W

(1)
11 (0)+W

(1)
20 (0)) cos2

nx

l
dx

+

∫ lπ

0
rc

(

W
(2)
11 (0)+

1

2
W

(2)
20 (0)+

1

2
ξ̄W

(1)
20 (0)+ ξW

(1)
11 (0)

)

cos2
nx

l
dx

+

∫ lπ

0

ra2

K

(

e−iω∗τ∗W
(2)
11 (0)+

1

2
eiω

∗τ∗W
(2)
20 (0)+

1

2
ξ̄W

(1)
20 (−1)

)

cos2
nx

l
dx

+

∫ lπ

0

ra2

K
ξW

(11)
11 (−1) cos2

nx

l
dx

}

.

W20(θ) =

(

ig20

ω∗τ ∗
q(θ)+

ig02

3ω∗τ ∗
q(θ)

)

· fn + E1e
2iω∗τ∗θ ,

W11(θ) =

(

−
ig11

ω∗τ ∗
1(θ)+

ig11q(θ)

ω∗τ ∗

)

· fn + E2,

E1 = E′
1 ×

(

− 2ra1
K − 2ra2

K e−iω∗τ∗ − 2rcξ
0

)

cos2
nx

l
,

E′
1 =

(

2iω∗ + d1
n2

l2
+ ra1

K N ∗ + ra2
K N ∗e−2iω∗τ∗ cN ∗

−be−2iω∗τ∗ 2iω∗ + a+ d2
n2

l2

)−1

,
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From the previous expressions of g20, g11, g02 and g21, we can further compute

On account of preceding calculations, we arrive at the following conclusion on the bifur-
cation properties.

Theorem 6 The bifurcation direction is supercritical if µ2 > 0, which means that the 
periodic solution exists for τ > τ0. On the contrary, the bifurcation direction is subcritical 
if µ2 < 0, which means that the periodic solution exists for τ < τ0.

Moreover, the periodic solution is orbitally asymptotically stable if β2 < 0, or unstable 
if β2 > 0. The period of periodic solution is monotonically increasing at the time delay τ 
when T2 > 0, or is monotonically decreasing at the time delay τ when T2 < 0.

Numerical simulations
In this section, we give some numerical examples to test the preceding results with assis-
tance of MATLAB.

For system (3), let Ω = (0, 2π) and choose

and the initial values N (x, 0) = 0.5 and u(x, 0) = 0.9. Then we can get the positive equi-
librium E∗ = (0.2, 0.2). By direct computation, we have N0 = 0, ω0 ≈ 0.348266, and 
τ
(0)
0 ≈ 5.81966, then the Hopf bifurcation values are given by

Concretely, τ0 = τ
(0)
0 ≈ 5.81966, τ (0)1 ≈ 23.861, τ (0)2 ≈ 41.9024, ... From Fig.  1, we 

can see the asymptotical stability of positive equilibrium E∗ when time delay is slightly 
smaller than the first bifurcation value τ0.

Moreover, we can obtain c1(0) ≈ −1.4328+ 1.53343i. From Theorem  6, the Hopf 
bifurcation is supercritical, that is, the periodic solutions exist for τ > τ0, and they are 
orbitally asymptotically stable (see Fig. 2).

E2 = E′
2 ×

(

− 2ra1
K − 2rc Re {ξ} − 2ra2

K Re {eiω
∗τ∗}

0

)

cos2
nx

l
,

E′
2 =

(

d1
n2

l2
+ ra1

K N ∗ + ra2
K N ∗ cN ∗

−b a+ d2
n2

l2

)−1

.

c1(0) =
i

2ω∗τ ∗

(

g20g11 − 2|g11|
2 −

1

3
|g02|

2

)

+
g21

2
,

µ2 = −
Re (c1(0))

Re (�′(τ ∗))
,

β2 = 2 Re (c1(0)),

T2 = −
1

ω∗τ ∗
( Im (c1(0))+ µ2 Im (�′(τ ∗))).

d1 = 1, d2 = 0.5, r = 0.6, a = b = c = 1, a1 = a2 = 2, K = 1,

τ
(n)
j = τ

(0)
j = τ

(0)
0 +

2jπ

ω0
, j = 0, 1, 2, . . .



Page 13 of 15Zhuang and Jia  SpringerPlus  (2016) 5:1303 

Fig. 1 The equilibrium E∗ is stable when τ = 2 < τ0

Fig. 2 Spatially periodic solution exists when τ = 10

Fig. 3 The spatially periodic solution still exists when τ = 50

Fig. 4 The spatially periodic solution still exists even when τ = 130
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In the light of these simulations, we can find that spatially periodic solutions still exist 
even when τ = 50 ∈ (τ

(0)
2 , τ

(0)
3 ) and τ = 130 ∈ (τ

(0)
6 , τ

(0)
7 ) (see Figs. 3, 4).

Discussions and conclusions
In this paper, we considered the reaction–diffusion regulated logistic growth model. We 
have investigated the basic properties and Hopf bifurcation under the Neumann bound-
ary conditions. It is shown that the logistic model may undergo Hopf bifurcation when 
time delay varies. We further give the formulae for determining the bifurcation proper-
ties, such as the direction of bifurcation, the stability of periodic solution and the mono-
tonicity of period of periodic solution.

Here, we only discussed the single–species diffusive model with feedback control. In 
fact, how spatial diffusion and time delay affect the dynamic behaviors of multi–species 
controlled model remains unclear. We will focus on these novel and interesting models 
in the future.

Furthermore, from the numerical simulations in section “Numerical simulations”, we 
conjecture that the Hopf bifurcation induced by time delay is global. This means that the 
periodic solutions due to Hopf bifurcation still exist even if the time delay is sufficiently 
large.
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