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Background

It is well-known that many real life phenomena in physics and engineering can be mod-
elled by systems of linear and nonlinear differential equations. One class of these systems
is of second order boundary value problems. The existence of solution to such system
was studied in Chen et al. (2005), Cheng and Zhong (2005), Thompson and Tisdell
(2002). Consider the following linear system of second-order boundary value problems:

u” (%) + a1 (0)u' (%) + ax(R)u(x) + az ()" (x) + as(x)V' (%) + as(x)v(x) = fi(x)
V(%) + bi(x)V' (%) + ba(x)v(x) + b3(x)u” (%) + ba(X)u' (%) + bs()ux) = fo(x) (1)
u(0) =u(1) =0,v(0) =v(1) =0,

where a <x < b, fi(x) and f(x) are continuous functions, and a;(x) and b;(x), for
i=1,2,3,4,5, are real-valued functions of x that are smooth enough.

There are many studies on the solutions of linear and nonlinear systems of second-
order boundary value problems approximately. Amongst others are variational iteration,
reproducing kernel, sinc-collocation, modified homotopy analysis, continuous genetic
algorithm, He’s homotopy perturbation, Laplace homotopy analysis, homotopy pertur-
bation-reproducing kernel, and local radial basis function based differential quadrature
methods (Lu 2007; Geng and Cui 2007; Dehghan and Saadatmandi 2007; Bataineh et al.
2009; Arqub and Abo-Hammour 2014; Saadatmandi et al. 2009; Ogunlaran and Ade-
mola 2015; Geng and Cui 2011; Dehghan and Nikpour 2013). The main purpose of our
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present study is to apply a spline function in solving Eq. (1). This equation had already
been treated using cubic B-spline, cubic B-spline scaling functions, sinc-collocation, and
spline collocation approaches (Caglar and Caglar 2009; Dehghan and Lakestani 2008; El-
Gamel 2012; Khuri and Sayfy 2009).

In 2003, Han and Liu proposed an extension of cubic B-spline of degree four with
one free parameter, 4. This parameter is introduced within the basis function in order
to increase the flexibility of the spline curve (Han and Liu 2003). Then, Xu and Wang
generalized the extension to degree five and six (Gang and Guo-Zhao 2008). Our goal
is to apply the simplest B-spline extension, that is, extended cubic B-spline of degree
four, in solving Eq. (1). Linear and singular boundary value problems has already been
solved using extended cubic B-spline of degree four and an approach of optimizing 4 has
been proposed (Hamid et al. 2011; Goh et al. 2011). The results are promising and thus
become the motivation of this study.

In this paper, extended cubic B-spline will be discussed along with the extended cubic
B-spline method (ECBM). Optimization of the free parameters and calculations on the
truncation error will follow. Three examples will be presented and comparisons with
other methods will be made.

Extended cubic B-spline method

Extended cubic B-spline is an extension of B-spline Gang and Guo-Zhao (2008). One
free parameter, /, is introduced within the basis function where this parameter can be
used to alter the shape of the generated curve. The value of 4 can be varied to obtain dif-
ferent numerical results. In this study, this value is optimized to produce approximate
solutions with the least error.

Extended cubic B-spline

Suppose that {x;}?_, is a uniform partition of a finite interval [a, b] with #n € Z7F such
thata =xp < x; < -+ < x, = b. The partition can be extended using & = b;n“, X0 = d,
x; = x0 + ih, and i € Z. Extended cubic B-spline basis function is established from a lin-
ear combination of the cubic B-spline basis function (Gang and Guo-Zhao 2008). Here,
the blending function of degree four, £}, as shown in (2), is used.

4h(1 — 2)(x — %)% + 32(x — x;)%, x € [xi,%i11],

(4 — Dh* + 1213 (x — xi41) + 6H2(2 4+ D) (x — x111)>

Ef(x, ) —12h(x — xi41)° — 3A(x — xi41)%, x € [Xir1, Xig2],

i WA=

24h* | (4 — Dk* + 1213 (xi 13 — %) + 6H2(2 + 2) (K3 — X)>

—12h(xi13 — %)% — 3A(xip3 — %)%, x € [%iy2,%iv3],

4h(1 — 2)(xira — %)° + 3A(xita — %)%, % € [%it3, Xital,

(2)

Extended cubic B-spline basis will degenerate into cubic B-spline basis when 4 = 0. For
—8 < 4 <1, cubic B-spline and extended cubic B-spline share the same properties: par-
tition of unity, non-negativity, C? continuity, and local suport Hamid (2010). Figure 1
displays a family of extended cubic B-spline bases with different values of 4.
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Fig. 1 Extended cubic B-spline basis, Ef‘(x, ), when 4 = —10,-5,0,5,10

From the basis function, an arbitrary spline curve can be generated by the following

formula:
n—1
U, 1) = Z CiE}(x,2),% € [x0,%,], Ci€R.
i=—3

As a result, U(x, 1) is a piecewise polynomial functions of degree 4. Similarly, for
—8 < 1 <1, cubic B-spline and extended cubic B-spline curves have the same proper-
ties: symmetry, geometric invariability, and convex hull Goh et al. (2011). The values of
E;and its derivatives E, E/' at the nodal points are tabulated in Table. 1.

Extended cubic B-spline interpolation
Suppose that the spline curves U (x, A1) and V (x, /3) are the approximation to the exact
solutions, u(x) and v(x), respectively, defined as follows:

n—1
U(x; ;Ll) = Z CLE;L(x, /11)7 X € [xO:xn], Ci eR
i=—3

n—1
V(x, /) = Y. DiE}x,22), x€lx0,x4], Di€R
i=—3

3)

Therefore, from Table 1, the values of U (x, A1) ,U ' (x, 21), U" (x, 1), V(x,22) , V' (x, )2),
and V" (x, A2) at knot x; can be simplified into Egs. (4) and (5).

Table 1 Coefficient of E;, E}, and E;’

X Xi Xi+1 Xi+2 Xi+3 Xi+4
Ei 0 4=7 8+4 4=7 0
24 12 24
’ -1 o a1
£ 0 2h h 2h 0
E’ 0 247 —2-/ 24/ 0

N
>
ol
>
&
N
>
ol
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U(xi, J1) = Ci_s ( )+CL 2(s+zl)+q 1(4;:1)
U'(xi, 1) = Ci—B( )—I—C, 2( )+CL 1G5 @
i =) 6 3) i (3)

D
Dl«_z(%) +Di_1<ﬂ) 5)

Equations (4) and (5) will be used in simplifying the terms in the system of boundary
value problems.

Solution of system of second order boundary value problem

In this part, a collocation approach based on extended cubic B-spline basis functions
is used to obtain the numerical solutions of a class of systems of linear second order
boundary value problems (1). The approximate solution (3) should satisfy the differential
equation at points x;. This can be done by putting (3) into (1) resulting in Egs. (6)—(9).

U" (i 21) + a1 (x) U (x5, 1) + az () U (xi, A1)
+ a3(xi)v//(xi7 /12) + a4(x,') V/(xiv /12) + ﬂ5(xi)v(xi7 /12) =f1 (xl')! i=0, 1) 2¢ e n
(6)

V" (%, A2) + b1(x) V' (%4, A2) + ba(xi) V (x4, A2)
+ by (x)U" (xi, 21) + ba(x)U' (x5, 1) + bs(x)U (x5, 1) = folxi), i=0,1,2,...,n

(7)
U(xi,21) =0, x=0,n (8)
V(xir /ALZ) =0, x=0,n (9)

Equations (4)—(5) are substituted into Egs. (6)—(9) resulting in a linear system of 2(n + 3)
equations with 2(# 4 3) unknowns, C_3,C_»,...,Cy_1, D_3, D_y,...,D;,_1. This system

can be written in the matrix-vector
XY =7, (10)

where Y =[C_3,C_y,...,Cy-1,D-3,D3,...,Dy 11", Z =10,/i(x0), ..., fi(x4), 0,0,
Fo(%0)s - - 1 f2(x,),0]7, and X is a 2(n + 3) x 2(n + 3) matrix given by

The four sub-matrices My, My, M3, and M, are calculated as follows:

Page 4 of 18
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4—21

011(960)
0
My =

0

as(xo)
0

4—79

%
a3(xo)
0

0

a4(xo)
0

The elements of these sub-matrices are specified below fori = 0,1, .. .,

844 4—;.1 0
iw)
B1(x0) y1 (xo) 0

a1(x1) Prx1) yi(x1)

0 0

0 0 0
B2(x0) y2(xo) O
az(x1) Ba(x1) yalx1)

0 0
8+ 44— 0

W) %
B3(x0) v3(xo) O
as(x1) B3x1) ys(x1)

0 0

0 0 0
Ba(xo) yalxo) O
ag(x1) Ba(x1) ya(x1)

0 0

oo
coo

0

a1(xy) B1(xn) y1(xn)
4—1q 8+41 4—1q

24 12 24
0 0
0 0
0 0

w2 (tn) Ban) V2 (tn)
0 0 0

0
0

(=]

[eNe]

0

OlS(xn) ﬁB(xn) yB(xn)
4—y 8+)2 4—y

24 24
0 0
0 0
0 0

s(in) Baxn) yaEn)
0 0 0

2+ M4 1 4 — 1
ar(x;) = B ﬂl(xz)ﬂ +a2(x,)7
(50) = a3 222 gy~ + () E22
(X} —agle ﬂ4xlﬂ 6159@7
2+ A — A
az(x;) = 72 b1<xl> +bz<xl> 2 2
244 4— 1
a4(xt)—b3(xz)7 b4(xl) +b5(xl) 2%
—2—-A 8+
B1(x;) = T +ﬂ1(xi)* +“2(xi)T1
+/L2
ﬂ2(xl)_a3(xl) +a4(xz)*+ﬂs(xz) B
0 8+ A
ﬁ3<xi>=h—+b1<x,) + by(x) 122
-2 — 8+ 4
Balx;) = ba(xi)h— + b4<xl~> +bs(a) 5 !
)= 2 )+ e T
y1(xi) = 2 ay (x; T as(x; 74
(60) = a3 22 4 ag(x) L + ag () =22
)’2%—“3%7 ﬂ4xth ﬂssz
24 Ay 1 A2
v3(xi) = ——— T + b1 (x;) h+bz(xl)7
2+ 4 4 — A
yala) = b (i) 5 i + batxi) o +bs(xi>71

(n+3) x (n+3)

(n+3) % (n+3)

(n+3) x (n+3)

(n43)x (n+3)

n.
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Equation (10) can be solved for values of C/s and D/’s in terms of 4; and Ay by taking
Y = X~1Z. Lastly, the numerical solution can be calculated after obtaining the values of

A1 or /3 either by optimization or trial and error (Hamid et al. 2011).

Optimizing the i1and /i,
The approximate analytical solution is of the form

n—1
U, 1) = > CE}x, /1),x € [x0,%4], C;€R

i=—3

o (11)
V(xr )“2) - Z DIE;L(x’ )LZ)vx € [x01xn]; Di S R7

i=—3

where C/s and D;’s are obtained by solving a linear system of order 2(n 4 3) x 2(n + 3).
Cis and Dy’s are functions of x, /1, and 4y. The approach used is adopted from Hamid et al.
(2011, 2010). Equation (11) has three free parameters, x, A1, and . So, U(x) and V(x)
can be written as U (x, 41, 42) and V' (x, 41, 42) respectively. U (x, A1, A2) and V (x, 41, A2) are
piecewise polynomials with # intervals, as in equation (12) and (13). Each U;(x, 41, 42)
and V;(x, A1, A2), fori = 1,2, ..., nare polynomials of degree four.

Uy (x, A1, 42), % € [x0,%1],

U (x, A1, 42), % € [x1,%2],

Ux, 21, 72) =1 . : (12)

U, (x,21,42),x € [x,_1,%,].

Vi(x, A1, 42), % € [x0,%1],

VZ(x) )le j-Z)rx € [xl’ x2];
V(% 21, 22) =4 . : (13)

Vn(x: /11» /12))7‘: € [xn—lx xn]'

From the general form of the problem in (1), fi(x) and f>(x) are moved to the left-hand
side of the equations, as in (14).

u” (%) + a1 (®)u' (%) + ax(®)u(x) + az )V (x) + aa(x)V' (%) + as(x)v(x) — fi(x) =0
V(%) + bix)V (%) + ba(x)v(x) + b3(x)u” (%) + ba(x)ud' (%) + bs(®)u(x) — fo(x) =0
(14)

Substituting the approximate solutions, U (x, 41, 42) and V' (x, 41, 42) and its derivatives
into (14), we have
U’ (x, 21, A2) + a1 (U (x, A1, 12) + as(x)U (x, A1, A2) + az(x) V" (x, A1, A2)
+as(x)V'(x, 21, 12) + as(x)V (x, A1, 12) — fi(x) =~ 0,

V" (%, 21, 22) + b1(x) V' (%, A1, A2) + ba (%) V (x, A1, A2) + b3 (x)U" (x, A1, A2)+
ba(x)U' (%, A1, 22) + bs(x)U (%, /1, 22) — fo(x) ~ 0.

15)

Equation (15) is like a version of error formula. From this equation, we have
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Dy(x, A1, 42) = U" (%, A1, 72) + a1 () U’ (%, A1, 72) + az () U (x, /1, A2)
+ asz(x) V”(x, A1, A2)
+as(x)V'(x, 21, 22) + as®)V(x, A1, 42) — fi(x), x € [x0,%4],

Da(x, A1, 42) = V" (%, 21, 72) + b1(x) V' (x, /1, 22) + ba(0) V (%, A1, A2) + b () U" (x, 11, A2)
+ ba()U' (x, 21, 22) + bs()U (x, 11, 22) — fo(x), % € [0, %n],

which can be expanded into Egs. (16) and (17).

Uf(x, Ay A2) +ar (x)LI{ (x, A1, 42)
Fax () Ui (x, /1, A2) + az(x) V] (x, A1, A2)
Fas(x) V] (x, 21, A2) + as () Vi(x, A1, A2) — fi(x), % € [x0,%1],

Uy (x, 21, 42) + a1 (x) Uy (x, A1, A2)

Dr(x o o) — +ay () Uz (x, 1, A2) + az(x) V) (%, A1, 22)
106, A1, Ag) = +as (%) Vy(x, 21, 42) + as®) Va(x, A1, 22) — fi(x), x € [x1,%2],

U, (x, 21, 72) + a1 (x)U, (%, A1, 42)
+ap () Uy (%, A1, A2) + az(x) V)] (%, A1, A2)
+a4(x) Vy/l(x, ;Ll’ /12) + a5(x) Vn(x’ ;L'li j~2) _fl (x)r X € [xnfl) xn]'

(16)

Vi (%, A1, 22) + b1(x) V] (%, A1, A2)

+ba(x) V1 (%, A1, A2) + b3 () U7 (%, 21, A2)

+ba(X) U (%, A1, A2) + bs(X) U1 (%, A1, A2) — fo(x), % € [x0,%1],
VZ”(x) /'il; )“2) + bl (x) VZI(X, )Lli 22)

Do I o) — +b2(x) Vo (%, A1, 42) + b3 (x) Uy (x, 11, A2)
20641, 42) =4 by () LY (x, A1, J2) + bs @) Un(x, 1, Ja) — fo(x), & € [0, %2,

V,/,/(x, A1, 22) + b1(x) Vy,z (x, A1, 42)
+by (%) Viu(x, A1, 22) + b3(x) U, (%, A1, A2)
+ba (U, (%, A1, A2) + bs () U (%, A1, A2) — fo(%), % € [Xp—1,%u].

a7

Since Dj (x, 41, 42) and Dy (x, 41, A2) are piecewise functions with # equations, it is wise to
have some representatives from every sub-interval. The representative is taken to be the
midpoint of every sub-interval. Therefore, xl* = %, fori=0,1,...,n — 1 Evaluating
D1 (x, A1, A2) and Dy (x, A1, A2) at {x;"}::ol would produce a sequence of 2n expressions
containing 4; and Ay,

Dl(xz)k’ /:Ll) j~2);
Dl(xikr ALy 12)’
. (18)

Dl(x;k,_lr ;Llr /12);
Dz(xgr /ll) /'{2);

Dz(xikr /11) 12);
. (19)

Dz(x:_l, /111 ;LZ);
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By handling Eqgs. (18) and (19) as the error at collocation points, the expressions are
combined using the two-norm formula resulting equation (20). This equation measures
the accuracy of the approximated solution, U (x, 1, 42) and V (x, 1, 42) without including

the exact solution.

n—1 n—1
di(dn,72) = \| Y [D1(f, 21, )P+ Y (Do, da, 7)1 (20)
i=0 i=0

Also, from Eq. (20) we can obtain dy(4;, A42) which is assumed to be easier to calculate

than the former.

n—1 n—1
dy(n, ) = Y [D1(xf, A, A)1* + Y [Da(xf, Ar, )T 1)
i=0 i=0

On the other hand, we can combine the expressions using one-norm formula, as in (22).

n—1 n—1
d3(1,/2) = Z |D1(x}, A1, 22)| + Z |Da (%, 21, 72) | (22)
i=0 i=0

This is done to make comparisons between results of d; (11, 42), d2(21, 42), and d3 (41, A2)
in terms of computational time and accuracy. d3(4;, A2) is significantly more simpli-
fied that the other two. Finally, we can substitute the optimized value of 4; and 4 in the

approximate solution for the problems.

Error estimation

The technique for finding the error estimate as in Kadalbajoo and Kumar (2007) is
extended to the system of linear second order differential equations. In this part, a trun-
cation error for the present method in the interval [0, 1] is presented. Suppose that u(x)
and v(x) are functions with continuous derivatives in [0, 1]. By using the formulas of u(x)
in (4), the following relationship can be obtained.

4 — ) 8+ 4 4 — )
hKM 1>U/(xi1,),1) + ( 2 l)u/(xi:)vl) + < 4 1>U/(xi+1:)~1)}

1 (23)
= E[U(xi+1: A1) — U(xi—1, 1))

Similarly, Eqs. (24)—(26) can be derived, where U" (x;1, A1) and U" (x;—, A1) represent
U" (x;, 21) in (x;, x;41) and (x;_1, %;), respectively.

4— 1

.
RAU" (x5, 21) = 61U (X141, 1) — U (%1, 71)] — 20 K%) U'(xi, 1) + ( )U/(xi+1, 21)}

(24)
WU (xiy, 21) =12[U (%1, A1) — U (K141, 21)] + 6h[U (x5, 1) + (U (xi41, 7)1 (25)

WU (xi—, 21) =12[U (-1, 1) — U (%3, 21)] + 6h[U (xi-1,21) + U’ (xi, 1)1 (26)
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By using the operator notation E(U(x;)) = U(xi+1), Eq. (23) can be written as Sastry
(2012)

4—21\ . 8+ /41 4 -4 o 1 . |
h{( 24 >E +( 12 >+( Y )E}U(xl,)vl)—z(E—E Yu(x;).

By expanding E = ¢"” in powers of 1D, we get

8+ 1 4—11 n*D?>  niD* ,
f(B52) + (52) (1 2 L Y

WBD® WD

3!+5!

Upon simplification, we have

h2D3 h4D5
3! + 5!

-7
(5 - (5
X

L 4— 1\ /HD> HD*  WSDS\]7!
U (xj, 1) = <D+ D) > ( o + 2 + ol )} u(x;)
H2D? ) (oA 2/ p2p? . 2 .
2 T 12 o o) |

22 (4= \,ara (=20 4,4 ‘
h*D <7288 WD oot 56 WD* + ... ux;)

S S——
—
-
+

|
ol
o~ — ~—— ——

h2D3 h4D9 4— ) J2—6)1+8
D . 1—( —=— |W*D? s L L)) LT i
+ ) o ) + =6 + .| ux)
— 641 +8 1 4 —
D— DP 4+ | T2 |\ . 4+ ZH2DP — WD+ | ux
[ ( 576 > tets 144 1(xi)

Therefore,

A 511 — 10/ — 16
U' (xiy A1) = ' (x;) + <2:L)h2u’”(xi> + <A1 22801 >h4u(5)(xi) +0MH®. (27

Similar approach is applied on Egs. (24)—(26) that results in relations (28)—(30).

7" _ A1 ” ;{% —4 2. (4) 4
) 2 D)
U (xi, 01) = (1 + A;) W () + (W) 12 (x;) + O(hY) (29)
UM (xy, 11) = ( + )2 ) u® () + (“1’;)112 © (x;) + Oh*) (30)

By using e; (x) = U(x, A1) — u(x) and substituting relations (27)—(30) in the Taylor series
expansion of e; (x; + 6/1), we obtain
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24 24
N <z§ +20%; — 4

622 14202
el(xi+0h)=< 1>h2u”(xi)+< + )9)~1h3u’”(xi)

9 )92h4u<4)(xi) +OUP).

Similarly, we can use the definition ex(x) = V'(x, 42) — v(x) to have

622 1 + 262
ex(x; +0h) = <M2>h2v”(x,«)+< +24 >9zzh3v’”(xi)

72 2
26049 — 4
+ (2220 2@ () + 00).
96
Therefore, the extended cubic B-spline has a truncation error of order 4% Apparently,

the value of 11 and /5 have influences on the order.

Results and discussions

Several examples are discussed to demonstrate the efficiency of the proposed method.
The results are compared with that of variational iteration, analytical approximation,
sinc-collocation, reproducing kernel, He’s homotopy perturbation, Laplace homotopy
analysis, and B-spline methods (Lu 2007; Geng and Cui 2007; Dehghan and Saadat-
mandi 2007; Saadatmandi et al. 2009; Ogunlaran and Ademola 2015; Caglar and Caglar
2009). The results are also presented with different values of #. Calculations were carried
out using Wolfram Mathematica 10 with Intel(R) Core(TM) i5 CPU 3GHz processor,
4.00 GB RAM. The optimization can only be done for n < 5 due to the computational
limit of the computer. Numerical errors are calculated using infinite and two norms, as

respectively follows:

Loo = max | u(x;) — U(x;) | or Loo = max | v(x;) — V(x;) |
l 1

Ly= | Y () —U@))? orLy= |y ((x)— V(x))>

i=1 i=1

Example 1 Consider the following system Lu (2007),

u’(x) + 2x — D/ (x) + cos(mx)v' (x) = fi(x)
V' (%) + xu(x) = fo(x) (31)
u(0) =u(1) =0,v(0) =v(1) =0,

where 0<x <1, fi(x) = —n?sin(wx) + (2x — 1)7 cos(wx) + (2x — 1) cos(wx), and
fo(x) = 2 + xsin(rx). The exact solutions are u(x) = sin(zx) and v(x) = x> — «.

Table 2 displays the values of /11 and /12 when dl (}vl, /12), dz (/11, /12), and dg ()»1, /12) are
minimized for n = 5. The Ly and Ly for each pair are also presented. From the table,
it can be deduced that minimizing ds(41,42) is the best option because the results
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are comparable and the computational time is significantly less than that of d; (41, 42)
and dy(A1,A2). Therefore, the chosen values of 4; and Ay are —6.639145E—02 and
1.161882E—06, respectively. Also, it can be observed that minimizing dy(41, 42) gives
similar results with minimizing d; (1, /2) with significantly less computational time.

The approximate and exact solutions at the nodal points are displayed in Table 3. From
the table, the approximate solutions agree with the exact solutions. Hence, for this exam-
ple, the results are acceptable and accurate. The plots of the numerical results are shown
in Figs. 2 and 3. Comparisons between the Lo, of ECBM, He’s homotopy perturbation
method (Saadatmandi et al. 2009), and Laplace homotopy analysis method (Ogunlaran
and Ademola 2015) were made in Table 4. ECBM produced more accurate results than
both methods except for the results of u(x) generated by the Laplace homotopy analysis
method (Ogunlaran and Ademola 2015). Moreover, the numerical results for Example

Table 2 Computational time and norms for different optimization equations d; (i1, 42),
dy (A1, A2), and d3 (41, A2) withn =5

Minimization values dy(Aq,42) dy (A1, 42) d3(41,42)

A1 —6.639979E—02 —6.639979E—02 —6.639145E—02
A —1.230437E—06 —1.230522E-06 1.161882E—06
Computational time (s) 1.306340E+4-04 2.728410E+03 2.230830E+00
Loo 1.377934E—-04 1.377934E—04 1.413576E—04
Ly 2.306527E—04 2.306527E—04 2.364995E—04

Table 3 Comparison of ECBM results with the exact solution for Example 1
when 11 = —6.639145E—02, /> = 1.161882E—06,andn = 5

x  Exact Approx. Absolute error Exact Approx. Absolute error
solution u(x) solutionU(x) |U(x) —u(x)| solution v(x) solution V(x) V(x) —v(x)|
0.2 0587785 0.587696 8.897274E—05 —0.160000 —0.160004 3.641560E—06
04 0951057 0.950915 1413501E—04  —0.240000 —0.240006 6.478141E—06
0.6 0951057 0.950915 1.413576E—04  —0.240000 —0.240007 7.169404E—06
08 0587785 0.587696 8.891932E—05  —0.160000 —0.160005 4.793718E—06

0.0 0.2 04 0.6 0.8 1.0

X
Fig. 2 Numerical solution U(x) and exact solution u(x) for Example 1 with 41 = —6.639145F-02,
Ao = 1.161882£-06,andn =5
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1 when /1 = —1.0E—03, A2 = 0, and # = 41 are shown in Tables 5 and 6. In this case,
the values of 4; and Ay were obtained by trial and error. From the table, the ECBM pro-
duced more accurate results than variational iteration method (VIM) and cubic B-spline
method (CBM). The norms for both # are shown in Table 7. It can be observed that
ECBM improves the accuracy of CBM significantly.

Example 2 Consider the following equations Khuri and Sayfy (2009),

' (x) + ' (x) + xu(x) + vV (x) + 2xv(x) = fi(x)
V(%) + v(x) + 20/ () + x2u(x) = fo(x) (32)
u0) =u(l) =0,v(0) =v(1) =0

0.00

-0.05

-0.10

-0.15

-0.20

-0.25

0.0 0.2 0.4 0.6 0.8 1.0
X

Fig. 3 Numerical solution V(x) and exact solution v(x) for Example 1 with 2; = —6.639145£—-02,

2o = 1.161882E—06,andn =5

Table 4 L, of He's homotopy perturbation method Saadatmandi et al. (2009), Laplace
homotopy analysis method Ogunlaran and Ademola (2015), and ECBM for Example 1

whenn =5
He’s homotopy Laplace homotopy ECBM
perturbation method analysis method (A1 = —6.639145E-02,
A2 = 1.161882E—06)
U ) 2.1E—-04 2.2E—-05 1.4E—04
V(x) 3.2E-04 1.1E—05 7.2E—-06

Table 5 Absolute errors of VIM Lu (2007), CBM Caglar and Caglar (2009), and ECBM results
for Example 1 with n = 41for u(x)

X VIM CBM ECBM (41 =4, =0) ECBM
(A = —=1.0E-03,/; = 0)

0.1 3.30E-04 1.40E—-04 1.30E—04 2.83E-06
0.2 2.51E-03 2.80E—-04 2.56E—-04 5.55E—06
0.3 7.84E—-03 3.90E—-04 3.60E—-04 781E-06
04 1.66E—02 4.60E—04 4.28E—04 9.30E—06
0.5 2.77E—02 4.80E—04 4.52E—04 9.82E—06
0.6 3.87E-02 4.60E—04 4.28E—04 9.30E—-06
0.7 4.59E—-02 3.90E—-04 3.60E—-04 781E—06
0.8 4.49E—-02 2.80E—-04 2.56E—-04 5.56E—06

0.9 3.09E—-02 1.50E—-04 1.30E—-04 2.83E-06

Page 12 0f 18
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Table 6 Absolute errors of CBM Caglar and Caglar (2009) and ECBM results for Example 1
with n = 41for v(x)

X CBM ECBM ECBM
(M =4=0) (A1 = =1.0E—03, 4, = 0)

0.1 5.74E—-06 5.74E—06 1.25E—-07
0.2 1.13E—-05 1.13E-05 246E—07
0.3 1.64E—05 1.64E—05 3.56E—-07
04 2.03E—05 2.03E—05 4.42E—07
0.5 2.26E-05 2.26E—05 491E-07
0.6 2.26E—05 2.26E—05 4.92E—07
0.7 201E-05 2.01E-05 437E-07
0.8 1.51E—05 1.51E—-05 3.29E-07
0.9 8.14E—-06 8.14E—06 1.76E—07

Table 7 L, and L, of ECBM results for Example 1

n 5 5 a1 a1

A1 0.000000 —6.639145E—02 0.000000 —1.000000E—03
A2 0.000000 1.161882E—-06 0.000000 0.000000

Loo Of U(X) 2.791929E—-02 1.413576E—04 4.518529E—-04 9.817274E—-06
Lo Of V(X) 1.423849E—-03 7.169404E—06 2.263578E—05 4.917602E—07
Ly of Ulx) 4.600584E—02 2.362253E-04 9.969665E—04 2.165970E—05
Ly of V(x) 2.262625E—-03 1.138452E—-05 5.066609E—05 1.100638E—06

Table 8 Computational time and norms for different optimization equations di (41, 42),
dy (A1, A2), and d3 (41, A2) withn =5

Minimization values d1 (}q,lz) dz()q,lz) d3(l1,lz)

A —1.273122E-02 —1.273121E-02 —1.269208E—02
A —6.634562E—02 —6.634562E—02 —6.634523E—02
Computational time (s) 5.517106E+02 5.196057E4+02 2.959325E401
Leo 1.750978E—04 1.750978E—04 1.750618E—04
Ly 2913261E—-04 2.913260E—-04 2.926986E—04

where0 < x < 1, fi(x) = —2(x + 1) cos(x) + 7 cos(rx) + 2x sin(rx) + (dx — 2x% — 4) sin(x),
and fo(x) = —4(x — 1) cos(x) — 2(2 — x% + &%) sin(x) — (2 — 1) sin(wrx). The exact
solutions are u(x) = 2(1 — x) sin(x), and v(x) = sin(wx).

Table 8 displays the values of 4; and A2 when d (41, 42), d2(41, 22), and d3(41, 42) are
minimized for n = 5, with their respective Lo, and Ly. Again, minimizing d3(41, 42) is
the best option because the results are comparable and the computational time is signifi-
cantly less than that of dq (41, A2) and da (41, A2). Therefore, the chosen values of 4; and
/2 are —1.269208E—02 and —6.634523E—02, respectively. For this example, minimizing
da (A1, 22) gives similar results with minimizing d; (41, A2) with almost similar computa-
tional time.

The approximate and exact solutions at the nodal points are displayed in Table 9. Again,
from the table, the approximate solutions agree with the exact solutions. The plots of the
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numerical results are shown in Figs. 4 and 5. The numerical results for A; = 1 = —1.0E—03
and # = 25 are shown in Tables 10 and 11 and compared with reproducing kernel and sinc
methods (Geng and Cui 2007; Dehghan and Saadatmandi 2007). The values of 1 and A3 were
obtained by trial and error. It can be seen that ECBM produced results with significantly
higher accuracy than the other two. The infinite and two norms are shown in Table 12. For
this example, ECBM improves the accuracy of CBM for u(x) and gives out similar results for
v(x).

Table9 Comparison of ECBM results with the exact solution for Example 2
when 41 = —0.012692, 1, = —0.066345,andn =5

x  Exact Approx. Absolute error Exact Approx. Absolute error
solution u(x) solutionU(x) [U(x) — u(x)| solution v(x) solution V(x) IV(x) —v(x)]
02 0317871 0317853 1.769288E—05  0.587785 0.587676 1.093618E—-04
04 0467302 0467284 1.800318E—05  0.951057 0.950881 1.750618E—04
06 0451714 0451696 1.804713E—05 0951057 0.950882 1.744319E—04
0.8 0.286942 0.286926 1.603373E—05  0.587785 0.587678 1.068617E—04

00gf v o e
0.0 0.2 0.4 0.6 0.8 1.0

X
Fig. 4 Numerical solution U(x) and exact solution u(x) for Example 2 with 21 = —0.012692, 1, = —0.066345,
andn=>5

P S T TS |
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X
Fig. 5 Numerical solution V(x) and exact solution v(x) for Example 2 with 2; = —0.012692, 1, = —0.066345,
andn=>5

Page 14 0of 18
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Table 10 Maximum errors of reproducing kernel Geng and Cui (2007), Sinc method
Dehghan and Saadatmandi (2007), and ECBM results for Example 2 with n = 25 for u(x)

X Reproducing Sinc method ECBM ECBM
kernel (A1 =42=0) (A1 = A2 = —1.0E-03)

0.08 3.3E-03 3.2E-03 1.3E—04 1.4E—05
0.24 7.7E-03 94E—-04 2.7E—-04 1.1E—05
0.40 9.7E—03 2.0E—03 2.7E—04 2.1E-05
0.56 9.5E—03 22E-04 2.0E—04 5.9E—05
0.72 7.3E-03 4.1E-03 9.4E—05 7.8E—05
0.88 34E-03 1.0E—02 1.6E—05 5.6E—05
0.96 1.1E-03 2.1E-03 3.6E—08 2.3E-05

Table 11 Maximum errors of reproducing kernel Geng and Cui (2007), Sinc method
Dehghan and Saadatmandi (2007), and ECBM results for Example 2 with n = 25 for v(x)

X Reproducing Sinc method ECBM ECBM
kernel (A1 =42=0) (A1 = A2 = —1.0E-03)

0.08 7.7E—03 1.5E—03 3.8E—04 2.2E—04
0.24 22E-02 7.0E—03 9.9E—-04 6.0E—04
0.40 2.7E—02 74E—-03 13E-03 8.3E—04
0.56 2.7E-02 1.0E—-02 14E—-03 8.6E—04
0.72 2.0E—-02 44E-03 1.1E-03 6.8E—04
0.88 94E—03 2.1E-02 5.0E—04 33E-04
0.96 3.1E-03 6.9E—03 1.7E—04 1.1E—04

Example 3  Finally, we consider the system Caglar and Caglar (2009),

u (x) + xu(x) +xv(x) =2
V(%) + 2xv(x) + 2xu(x) = —2 (33)
u(0) =u(l) =0,v(0) =v(1) =0

where 0 < x < 1. The exact solutions are u(x) = > —x and v(x) = x — x>

Table 13 displays the values of 1; and 13 when d1 (11, 42), da(Z1, A2), and d3(41, A2) are
minimized for #n = 5 together with the values of Ly, and Ly. Minimizing d3 (41, A2) is the
best option because the computational time is significantly less than that of dj (41, A2)
and d» (11, 42). However, the minimizing values of 4; and /3 are equivalent to CBM. It

Table 12 L, and L, of ECBM results for Example 2

n 5 5 25 25

A1 0.000000 —1.269208E—-02 0.000000 —1.000000E—03
A2 0.000000 —6.634523E—02 0.000000 —1.000000E—03
Loo Of U(X) 2.086834E—-03 1.804713E—-05 2.720423E-04 7.798961E-05
Loo Of V(X) 1.750618E—04 1.750618E—04 1.364287E—-03 8.604698E—-04
Ly of U(x) 2.087051E—03 3.492752E-05 4.590374E—04 1.179224E—04

Ly of V(x) 2.906072E—-04 2.906072E—-04 2491362E-03 1.556034E—03
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can also be observed that minimizing dy(41, 42) gives similar results with minimizing
dy (21, 22) with a little less computational time.

The approximate and exact solutions at the nodal points are displayed in Table 14.
The plots of the numerical results are shown in Figs. 6 and 7. The numerical results for
n=2land 4; = A2 = 1.25E—14 are shown in Table 15 and compared with CBM Caglar
and Caglar (2009). The values of 4; and /5 were obtained by trial and error. It can be
seen that ECBM produced slightly more accurate results than CBM. The infinite and two
norms are shown in Table 16.

Conclusions

In this research, a new method for finding approximate solutions for a system of sec-
ond order boundary value problems based on extended cubic B-spline was proposed.
This method is called extended cubic B-spline method. The error estimation was carried

Table 13 Computational time and norms for different optimization equations dq (41, 42),
dz(l1, lz), and d3 (11, Az) withn=5

Minimization values dq(A1,42) da (41, 42) ds (41, 42)

M 0.000000 0.000000 0.000000

A 0.000000 0.000000 0.000000
Computational time (s) 7.314018E4-01 6.738385E+01 4.973284E+00
Loo 3.691492E—15 3.691492E—15 3.691492E—15
Ly 6.058413E—15 6.058413E—15 6.058413E—15

Table 14 Comparison of ECBM results with the exact solution for Example 3
when 4; = 0.000000, i, = 0.000000, andn = 5

X Exact Approx. Absolute error Exact Approx. Absolute error
solutionu(x)  solutionU(x) |U(x) — u(x)| solutionv(x)  solution V(x) |V (x) —v(x)|
0.2 —0.160000 —0.160000 4.163336E—16 0.160000 0.160000 4.718448E—16
04  —0.240000 —0.240000 2.775558E—17 0.240000 0.240000 6.106227E—16
0.6 —0.240000 —0.240000 9.992007E—16 0.240000 0.240000 2.775558E—16
08  —0.160000 —0.160000 3.469447E—15 0.160000 0.160000 3.691492E—15

0.00 F
-0.05
-0.10
-0.15
-0.20

-0.25}

Fig. 6 Numerical solution U(x) and exact solution u(x) for Example 3 with 4; = 0.000000, A, = 0.000000, and
n=>5
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Fig. 7 Numerical solution V(x) and exact solution v(x) for Example 3 with 4; = 0.000000, A, = 0.000000, and
n=>5

Table 15 Comparison of norms of CBM and ECBM for Example 3 when n = 21 for u(x)

and v(x)
Errors ECBM (41 = 4> =0) ECBM (41 = 4> = 1.25E—14)
u(x) v(x) u(x) v(x)
Loo 3.720357E-13 2.531308E—13 1.725009E—13 1.668943E—13
L2 4.367056E—13 4.365110E—13 2.930975E—13 2.223093E—-13

Table 16 L., and L, of ECBM results for Example 3

n 5 21 21

A 0.000000 0.000000 1.250000£—14
A 0.000000 0.000000 1.250000£—-14
Loo Of U(X) 3.469447E—-15 3.720357E—-13 1.725009E—13
Loo Of V(X) 3.691492E-15 2.530308E—13 1.668943E—13
Ly of U(x) 3.634497E—-15 4.367056E—13 2.930975E-13
Ly of V(x) 3.781487E-15 4.365110E—13 2.223093E-13

out and the truncation error was found to be of order /2, whereby the values of the free
parameters 41 and A3 have influence on the order. This method improved the accuracy of
its predecessor, CBM, and produced more accurate results than some other numerical
methods. It is also found that minimizing the one-norm term, d3(4;, 42) is sufficient to
obtain the optimized values of Z; and 4y. More work can be done in the optimizing tech-
nique to improve the computational time.
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