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Background
Salinity is an ecological factor with considerable importance for teleosts. A change 
in salinity can alter the osmotic pressure between medium and body fluid, causing 
osmoregulation directly in teleosts. Na+–K+-ATPase (NKA) is a membrane-spanning 
enzyme that actively transports Na+ out of ionocytes and K+ into ionocytes; this enzyme 
maintains osmotic equilibrium by providing a driving force for other ion-transporting 
systems (Marshall and Bryson 1998; Hirose et  al. 2003; Hwang and Lee 2007). Thus, 
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This study aims to evaluate the effects of adding salt to water on the physiological 
parameters of the blood parrot cichlid (Cichlasoma synspilum ♀ × Cichlasoma citrinel-
lum ♂). The blood parrot cichlid is a popular species in the aquarium trade because of 
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portation of this fish. However, the manner by which the fish adjusts its physiological 
responses to salinity change is unclear. The effects of salinity on serum osmolality, 
immune-related enzyme activities, Na+–K+-ATPase activities in the gill, skin carotenoid 
content and oxygen consumption were analysed. Blood parrotfish individuals were 
transferred from freshwater to water with four salinity levels (0.16, 2.5, 5 and 7.5 ‰) 
for 168 h, and physiological responses were evaluated at 0, 6, 12, 24 and 168 h. Results 
showed no significant differences in serum acid phosphatase and alkaline phosphatase 
activities, skin carotenoid content and oxygen consumption rate among the different 
groups. However, the serum osmolality at 6 h was significantly elevated. Moreover, 
salinity increase stimulated superoxide dismutase (SOD) activity from 0 to 6 h. SOD 
activity increased from 6 to 24 h but significantly reduced at 168 h when the fish were 
exposed to salt water. The SOD activity in the salinity 2.5 ‰ group recovered the initial 
level, whereas those in the salinity 5 and 7.5 ‰ groups decreased to levels lower than 
the initial level. The gill Na+–K+-ATPase activity significantly declined with time and 
salinity increase. Thus, adding an appropriate amount of salt can save energy con-
sumption during osmoregulation and temporarily enhance the antioxidant activity of 
blood parrotfish. However, this strategy is insufficient for long-term culture. Therefore, 
adding salt to water only provides short-term benefit to blood parrot cichlid during 
transportation.
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NKA is considered a good biomarker of osmoregulation in teleosts. Several recent stud-
ies have reported that NKA activity changes with environment salinity variation (Fuentes 
et al. 1997; Laiz-Carrion et al. 2005; Malakpour Kolbadinezhad et al. 2012; Fisher et al. 
2013; Handeland et al. 2014; Imsland et al. 2014; Vargas-Chacoff et al. 2014). Previous 
studies indicated that transferring fish to different salinities causes changes in oxygen 
consumption. The oxygen consumption of the Mozambique tilapia Oreochromis mos-
sambicus enhances when salinity is increased (Zikos et al. 2014). Cao and Wang (2015) 
also found that the oxygen consumption of the mudskipper Boleophthalmus pectiniro-
stris increases significantly when the salinity is increased from 12 to 27. Similar results 
were obtained in the inanga Galaxias maculatus (Urbina and Glover 2015). However, 
previous studies obtained different results possibly because of differences in species, 
acclimation duration, experimental design and measurement methodology. Morgan and 
Iwama (1991) summarised five oxygen consumption rate patterns from previous studies: 
(1) no change occurs in the oxygen consumption rate; (2) the oxygen consumption rate is 
minimum in isotonic salinity but increases in different salinities; (3) a linear relationship 
exists between the oxygen consumption rate and fluctuant salinity; (4) the oxygen con-
sumption rate increases in hypotonic water and decreases under isotonic salinity con-
dition; and (5) the highest oxygen consumption occurs in hypertonic water. Moreover, 
the relationship of salinity to the immune response of teleosts has received consider-
able attention in recent years (Harris and Bird 2000; Zhang et al. 2011; Arnason et al. 
2013; Choi et al. 2013). Superoxide dismutase (SOD) is a common antioxidant enzyme 
that can protect organisms against reactive oxygen species-induced damage, which may 
lead to many disorders (Stadtman and Levine 2003; Seifried et al. 2007). Therefore, the 
antioxidant status in fish can be accurately reflected by SOD activity. Ma et al. (2014) 
indicated that salinity regulates the antioxidant activities of the juvenile golden pompano 
Trachinotus ovatus. They found that the SOD activity of this species is low at 10 ‰ salin-
ity than at higher salinity levels. Acid phosphatase (ACP) may also act as an antioxidant 
that inhibits membrane nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 
activity and consequently suppresses H2O2 and O2 production by immune cells (Glew 
et al. 1988). In most animal cells, alkaline phosphatase (ALP) is an important non-spe-
cific phospho-monoesterase enzyme that functions in phosphate metabolism. In aquatic 
organisms, responses to salinity include changes in oxygen consumption (Viarengo 
and Nott 1993) and osmoregulation (Lovett et al. 1994). Currently, several studies have 
focused on the effect of salinity changes on teleost osmoregulation, oxygen consumption 
rate and immunity response. These studies are mostly limited to marine or estuarine fish. 
Hence, the effects of salinity on ornamental freshwater fish remain unknown to date.

In many ornamental fish markets in China, some aquaculturists usually add salt to 
water during transportation and water renewal to maintain freshwater ornamental fish 
in a good shape (i.e. fish are more active and bright-coloured). However, the physiologi-
cal effects of increased salinity on freshwater ornamental fish are unclear. Blood parrot, 
commonly known as bloody parrot or blood parrotfish, is a popular ornamental fresh-
water fish worldwide. Blood parrot is a man-made cross-bred fish hybridised from male 
Cichlasoma citrinellum and female Cichlasoma synspilum in Taiwan during the late 
1980s and enjoyed in many countries, such as China and Japan, in recent years because 
of its bright red appearance and plump body. To explain the above phenomenon and 
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explore whether increasing salinity favours the culture or transportation in freshwater 
ornamental fish, we chose blood parrotfish as a model to clarify the physiological mech-
anism based on the following hypotheses: (1) Increased water salinity saves energy for 
oxygen consumption by regulating NKA activity; (2) Increased water salinity stimulates 
fish immune responses by increasing antioxidant enzymes; (3) Increased water salin-
ity helps preserve the fish skin pigment. Thus, the oxygen consumption, NKA activity, 
serum osmolality, immune-related enzyme activities in the gill, and skin carotenoid con-
tent of blood parrotfish were investigated by transferring fish from freshwater to water 
with four salinity levels (0.16, 2.5, 5 and 7.5 ‰) for 168 h, and physiological parameters 
were evaluated at 0, 6, 12, 24 and 168 h. Our results may also provide some useful infor-
mation for freshwater ornamental fish production and logistics.

Methods
Animals and sampling methods

Blood parrots C. synspilum ♀ × C. citrinellum ♂ (total length 12–14 cm, body weight 
52.5–54.0  g) were originally obtained from a commercial fish farm (Jiaxing, Zhejiang, 
China). All fish were maintained in a freshwater (a salinity of 0.16) recirculating tank 
with a 12L:12D photoperiod at 28 ± 1 °C in the Aquarium of Shanghai Ocean Univer-
sity, Shanghai, China. The treated salt water was prepared by adding artificial sea salt 
to freshwater. Blood parrots were transferred directly from freshwater to treated water 
with different salinity levels (0.16 as control, 2.5, 5 and 7.5) at the same time by nylon-net 
capture. Each treatment included three tanks (50 L) as three replicates with 25 fish each 
tank. During the experimental period (0–168 h), fish were reared in the experimental 
tanks without feeding. The fish from all groups were sampled at 0, 6, 12, 24 and 168 h 
at each sampling time point. Five individuals were randomly selected from each tank. 
Fish were anaesthetised with ice and killed immediately. Blood was collected via caudal 
puncture using a non-heparinised 2 mL syringe and then transferred to a 1.5 mL tube 
on ice. Blood samples were stored at 4 °C overnight, centrifuged at 800×g for 5 min and 
then serum was stored at −80 °C. The gills were removed and weighed.

Sample processing

The tissue was homogenised in homogenisation solution (100  mM imidazole–HCl 
buffer, pH 7.0, 5 mM Na2 EDTA, 200 mM sucrose and 0.1 % sodium deoxycholate) with 
a motorised Teflon pestle at 600×g for 20 strokes on ice. After centrifugation (12,000×g 
for 30 min at 4 °C), the supernatant was stored at −80 °C until assay. Carotenoids were 
obtained from freeze dried skin in accordance with the method of Boonyaratpalin et al. 
(2001).

Serum osmolality

Serum osmolality (mOsm/kg) was measured using a Vapro©Model 5520 vapour pres-
sure osmometre (Wescor Inc., Logan, Utah, USA) from 10  μL of serum. Each sample 
was measured in duplicate.
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Serum ACP, ALP, SOD and gill NKA activity assay

The activities of ACP, ALP, SOD and NKA were determined using commercial kits 
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China) in accordance with the 
method of Ma et al. (2014). (1) ACP and ALP activities were measured by using diso-
dium phenylphosphate as the substrate. The enzyme unit definitions of ACP (U/100 mL 
serum) and ALP (U/100 mL serum) were expressed as the degradation of 1 mg phenol/
mg serum at 37 °C within 30 and 15 min, respectively. (2) SOD activity was assayed using 
the xanthine/xanthine oxidase method based on the production of O2

− anions. (3) NKA 
activity was measured using an endpoint phosphate ATP hydrolysis protocol following 
the kit. The inorganic phosphate released was determined by colorimetric assays, and 
NKA activity was expressed as micromole inorganic phosphate per mg protein per hour.

Carotenoid content

Carotenoid contents were determined as described by Boonyaratpalin et al. (2001). The 
absorption of solution was read at 470  nm. The carotenoid content was calculated in 
accordance with the formula:

where S is the carotenoid content (mg/kg), A is the absorbance, K is a constant (104), V is 
the volume of extracting solution (mL), E is the extinction coefficient (2500) and G is the 
sample weight (g).

Oxygen consumption rate

The oxygen consumption rates of blood parrots under different salinity levels were 
determined using computerised, intermittent-flow respirometry (LoligoSystems, Hobro, 
Denmark, Beauregard et al. 2013). The system consisted of four glass chambers (180 mm 
long, 62  mm inner diameter; 0.54  L) outfitted with fibre optic oxygen probes (OXY-4 
mini, PreSens, Regensburg, Germany) immersed in a 120 L tank of aerated treated water 
maintained at 28 °C. The fish were placed in the chambers and left to acclimatise for 4 h 
until oxygen consumption of the test fish reached a steady state level. The change in oxy-
gen concentration (α) for each chamber was calculated as slope (△O2saturation/△t), 
and the oxygen consumption rate (MO2; mg O2/kg h) for each fish was calculated by the 
formula:

where α is the oxygen concentration, Vresp is the volume of each glass chamber minus 
the volume of the fish (L), β is the oxygen solubility (adjusted nightly for both tempera-
ture and barometric pressure) and Mb is the fish mass (kg) prior to placing in a respiro-
metre chamber. During each trial, the coefficient of determination (r2) for all slope 
measurements was >0.95, and the oxygen concentration in each chamber was recorded 
every 2 s. Experiments were designed such that the oxygen consumption in each indi-
vidual chamber was quantified with 10 min cycles consisting of a measurement phase 
(5 min), a flushing period (4 min) to replace water in each chamber and a waiting period 
(1 min) following each flushing prior to commencing measurements. During each meas-
urement period, water from the chambers was continually recirculated across the fibre 

S = (A× K× V)/(E× G),

MO2 = α× Vresp× β×Mb−1,



Page 5 of 12Sui et al. SpringerPlus  (2016) 5:1246 

optic oxygen probes to ensure adequate mixing, and all calculated dissolved oxygen val-
ues were corrected for background oxygen consumptions generated for each specific fish 
and chamber prior to commencing experiments. The fibre optic oxygen probes were cal-
ibrated with oxygen-free water and fully aerated water regularly throughout the experi-
ments, and data were recorded with AutoResp software (version 2.0.1; Loligo Systems, 
Tjele, Denmark).

Statistical analysis

Prior to the analysis, normality of the data was evaluated by using the Shapiro–Wilk’s 
test, and homogeneity of variances was checked by Levene’s test using the statistical 
software SPSS 17.0. One-way ANOVA was applied to evaluate the effects of salinity on 
all parameters at each time point, and Student–Newman–Keuls tests were performed 
to determine which salinity treatments were different. For the time effects, paired t test 
was used to compare the difference between each sampling time and 0 h at each salinity 
treatment, respectively. Differences were considered significant at P < 0.05. The results 
are expressed as mean ± SD.

Results
Enzymatic activities

The activities of ACP, ALP, SOD and NKA were measured at 0, 6, 12, 24 and 168 h. The 
activities of ACP and ALP were maintained at normal levels regardless of the salinity 
level and time (Figs.  1, 2). SOD activity was significantly affected by salinity and time 
(P  <  0.05, Fig.  3). Compared with that in the control group, the SOD activities in the 
trial groups increased within 6 h and then maintained at a high level until 24 h. On day 
7, the SOD activities in all trial groups decreased; the SOD activity in the salinity 2.5 ‰ 
group recovered to the same level as that in the control group. Nevertheless, the SOD 
activities in the salinity 5 and 7.5 ‰ groups were significantly lower (P < 0.05) than those 
in the control group (Fig. 3). NKA activity was significantly affected by salinity and time 
(Fig.  4). After 12  h, NKA activity significantly decreased with increasing salinity level 
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Fig. 1  Acid phosphatase activity over time in blood parrotfish serum following transfer to various salinities
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and showed the lowest value at 7.5 ‰. At high salinity levels, NKA activity decreased 
with time and showed the lowest value at 168 h (Fig. 4).

Serum osmolality

Serum osmolality was significantly affected by salinity and time. The serum osmolality 
in the control group was similar at all sampling times, whereas that in all trial groups 
showed peaks at 6 h. Significant differences in serum osmolality were observed between 
various salinity groups (7.5 > 5 > 2.5 > 0.16 ‰, P < 0.05). Thereafter, the serum osmolal-
ity in all trial groups returned to the level of the control group within 12 h and remained 
stable until the end of the experiment (Fig. 5).
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Fig. 2  Alkaline phosphatase activity over time in blood parrotfish serum following transfer to various salini-
ties
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Fig. 3  Superoxide dismutase over time in blood parrotfish serum following transfer to various salinities. Dif-
ferent small letters indicate significant differences between different salinities at a fixed time, whereas asterisk 
indicates significant differences between initial moment (0 h) and other sampling times within a given salin-
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Oxygen consumption rate and carotenoid content

The oxygen consumption rate was not significantly affected by salinity and time 
(P > 0.05). No significant interaction was observed between salinity and time. The MO2 
in all groups was stable during the experimental period (Fig. 6). The carotenoid content 
in the skin of the fish was unaffected by salinity and time (P > 0.05, Fig. 7).
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Discussion
Compared with that in the control group, the SOD activities in all trial groups increased 
after 6  h of exposure, suggesting that increased salinity can stimulate SOD activ-
ity within a short period. Nevertheless, high SOD activities were not maintained at all 
sampling times. The value changed greatly at 168 h. As shown in Fig. 3, SOD activity 
returned near the initial level in the salinity 2.5 ‰ group, whereas those in the salinity 
5 and 7.5 ‰ groups reduced significantly by 50 and 65 %, respectively. The study on the 
juvenile silver pomfret Pampus argenteus by Yin et al. (2011) showed that salinity change 
might stimulate SOD activity to some extent, but the activity would recover more or less 
with the elongation of time. Similar results were also found in pompano. Liu et al. (2013) 
indicated that increased salinity enhances liver SOD enzyme activity. In accordance with 
the results of our research, adding appropriate salt to water could temporarily enhance 
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Fig. 6  Oxygen consumption rate over time in blood parrotfish following transfer to various salinities
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the antioxidant ability of fish. However, this strategy is insufficient or harmful for long-
term culture.

Phosphatases remove phosphate groups from their substrates by hydrolysing phos-
phoric acid monoesters into phosphate ions and molecules with free hydroxyl groups. 
ACP and ALP are important phosphatases in aquatic organisms; these enzymes partici-
pate in the degradation of foreign proteins, carbohydrates and lipids (Liu et  al. 2004). 
ACP is a typical lysosome enzyme that plays a role in killing and digesting pathogens 
in immune responses (Yin et  al. 2014). ALP is a multi-functional enzyme involved in 
immune responses (Xing et al. 2002). Both enzymes are sensitive to environment change. 
In the present study, ACP activity did not change significantly, indicating that increased 
salinity levels only slightly affected the physiological functions of blood parrotfish. The 
result is supported by Fang et al. (2014), who found that the ACP activities in the gill and 
kidney of the juvenile tongue sole Cynoglossus semilaevis show no significant difference 
between low salinity and high salinity treatments. Similar to ACP activities, ALP activi-
ties were also not affected by increased salinity. However, the ALP activity in the serum 
of the cobia Rachycentron canadum increases when the salinity is within the range of 5 
to 37 (Feng et al. 2007). In general, ACP and ALP activities were not significantly altered. 
This result indicates that blood parrotfish can easily adapt to salinity increase.

Among the transporters that modulate ion fluxes, NKA actively transports Na+ out 
and K+ in animal cells (Post and Jolly 1957). In addition, NKA is generally involved in the 
maintenance of internal hypo-osmotic state when the environmental salinity changes. 
Changes in environmental salinity are usually accompanied by changes in NKA activity 
(Marshall 2002; Hirose et al. 2003; Burg et al. 2007). In this study, the NKA activity in 
fish was affected significantly by salinity. NKA activity decreased with increasing salinity. 
NKA activity was significantly lower in the 7.5 ‰ group than in the other groups after 
168 h of exposure (P < 0.05). Meanwhile, osmolality increased with increasing salinity 
(Table 1), but the serum osmolality of blood parrotfish was not altered (Fig. 5). The result 
is consistent with a previous study that pointed out that Atlantic sturgeon could regulate 
blood plasma osmolality at similar levels regardless of salinity (Martinez-Alvarez et al. 
2002). Therefore, blood parrotfish can move along a salinity gradient. In addition, the 
gradients between medium and body fluid became small as the salinity level increased. 
Thus, energy expenditure on osmoregulation decreased. However, in the present study, 
the oxygen consumption rate did not change in the various groups during the experi-
ment. The result is consistent with the findings of other studies (Swanson 1998; Haney 
et al. 1999; Sardella and Brauner 2008), which indicates no clear trend of lowest oxygen 
uptake at either normal lifecycle salinity or other salinities. As summarised by Bœuf and 
Payan (2001), 20–68 % of the total energy expenditure is estimated to be consumed by 
osmoregulation in different species. This condition implies that although the total energy 
expenditure of the fish does not change, the allocation of energy is altered clearly. Mor-
gan and Iwama (1991) stated that estimates of osmoregulation costs based on whole-fish 

Table 1  Salinity and  osmolality (mean ±  SD, n =  5) of  trial water during  the experiment 
period

Salinity 0.16 ± 0.01 2.5 ± 0.05 5 ± 0.06 7.5 ± 0.05

Osmolality (mOsm/kg) 21 ± 1 82.5 ± 1.1 251 ± 1.2 210 ± 1.5
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oxygen consumption should consider the effects of other metabolic processes that 
respond to salinity changes. During salinity adaptation, several hormones affect different 
pathways of energetic metabolism (Polakof et al. 2006; Sangiao-Alvarellos et al. 2007), 
and other organs (e.g. the brain, liver and kidney) also show changes in energetic metab-
olism (Sangiao-Alvarellos et  al. 2005, 2006). Sangiao-Alvarellos et  al. (2003) indicated 
that acclimation of Sparus aurata to various salinities alters the energy metabolism of 
osmoregulatory and non-osmoregulatory organs. In the gills, NKA activity improved, 
the capacity for use of exogenous glucose and the pentose phosphate pathway decreased, 
and glycolytic potential increased with increasing salinity. In the brain, freshwater-accli-
mated fish displayed enhanced potentials for glycogenolysis, use of exogenous glucose 
and glycolysis compared with seawater-acclimated fish (Sangiao-Alvarellos et al. 2003). 
Furthermore, the levels of lactate and ATP in the brain decreased with increasing salin-
ity (Sangiao-Alvarellos et al. 2003). However, we did not assess the parameters related in 
non-osmoregulatory organs in the present experiment.

The carotenoid content of the skin in some ornamental fish is crucial because it would 
affect acceptability by consumers. In a recent study, Eslamloo et al. (2015) have stated 
that background colour could affect goldfish skin pigmentation. The carotenoid concen-
tration in the skin significantly decreases in white background in comparison with the 
other groups. Doolan et  al. (2008) recommended that holding snapper in white cages 
at high densities greatly improves skin lightness in comparison with black cages. In the 
present study, the carotenoid contents in the blood parrotfish skin did not change in the 
various salinity groups. This result implies that salinity change could not affect the skin 
pigmentation of blood parrotfish.

Conclusions
On the basis of the estimated parameters, adding appropriate salt into water provides 
benefits to the transportation or short-term culture of blood parrotfish by temporarily 
elevating the antioxidant ability of this ornamental fish. However, this strategy is insuf-
ficient for long-term culture.
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