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Background
Image restoration is a fundamental and unavoidable problem in digital image pro-
cessing by reconstructing the blurred or noisy image from the observed image 
and not losing the details of image (Zhao et al. 2013; Bilal et al. 2015). There are 
abundant methods to restore these images. For example, in Zhao et  al. (2013), a 
Bayesian minimum mean squared error (MMSE) estimation based on high-order 
non-local range-Markov random field (NLRMRF) prior is proposed for non-blind 
image deblurring problem. The constrained optimization framework (Bilal et  al. 
2015) was presented to solve the image spatial degradation problem. Moreover, 
an adaptive weighted regularization scheme was also proposed in modified error 
estimate (MEE) to cater with the uncertainty due to ill-posed nature of the inverse 
problem in Bilal et  al. (2015). In terms of regularization models, one of the most 
remarkable models was the ROF model introduced by Rudin et  al. (1992), which 
presented total variation regularization for removing the additive Gaussian white 
noise. The total variation (TV) model assumed the original image u to be defined 
on � ⊂ R

2 and obtained a solution from a minimization problem

(1)F(u) :=

∫

�

|∇u| +
λ

2

∫

�

∣∣f − u
∣∣2,

Abstract 

Restoring Poissonian noise images have drawn a lot of attention in recent years. There 
are many regularization methods to solve this problem and one of the most famous 
methods is the total variation model. In this paper, by adding a quadratic regulariza‑
tion on TGV regularization part, a new image restoration model is proposed based on 
second-order total generalized variation regularization. Then the split Bregman itera‑
tion algorithm was used to solve this new model. The experimental results show that 
the proposed model and algorithm can deal with Poisson image restoration problem 
well. What’s more, the restoration model performance is significantly improved both in 
visual effect and objective evaluation indexes.
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where the first term is the total variation regularization term, the second term is 
fidelity term and λ is a positive fidelity parameter. Although the TV model is effec-
tive in image processing, specially for Gaussian white noise. However, this model 
is not effective in restoring Poisson noise images such as astronomical (Starck and 
Murtagh 2007), biomedical (Dey et al. 2006; Sarder and Nehorai 2006; Willett and 
Nowak 2003), and photographic imaging (Foi et al. 2005). For this reason, scholars 
have proposed some new methods to deal with Poisson noise image problems.

Le et al. (2007) proposed a new total variation model to recover image corrupted by 
Poisson noise, the new total variation model with fidelity term is suitable for Poisson 
noise. The new model can be written as

The authors used the gradient descent method to obtain its optimum solution. How-
ever, this method can not obtain optimal approximation when the image is both high 
intensity noise and low intensity features. In Sawatzky et al. (2013), an efficient EM-TV 
algorithm is presented to speed the computation of the optimization problem (2). In 
addition, alternating split Bregman iterative algorithm (Setzer et  al. 2010) is also used 
to solve the question (2), since this algorithm does not contain iterations and also not 
produce negative values. In addition, Figueiredo and Bioucas-Dias (2010) proposed an 
approach based on alternating direction optimization method for deconvolving Poisso-
nian images.

Recently, based on Chavent and Kunisch (1997) and Liu and Huang (2012) pro-
posed another new total bounded variation-based Poissonian images restoration 
model

Although the above model is better than the total variation model and has a com-
petitive superiority, there also exist some shortcomings, for example, sometimes it 
will cause undesired oil painting artifacts. In order to avoid the staircase effect, many 
methods have been proposed. A well-known method to eliminate staircase effect is 
the TGV (Bredies et al. 2010; Bredies and Valkonen 2011; Bredies et al. 2013) regu-
larization. The TGV regularizer can effectively eliminate the staircase effect but there 
are still some shortcomings, it tends to introduce some blurring on image edges and 
texture regions as the existence of high-order derivative term. More seriously, some 
small details will be lost during the denoising. For this reason, we consider combine 
the TGV and ‖u‖2 as one regularization term to solve the poisson noise image resto-
ration problem.

The rest of this article is organized as follows. In “Total generalized variation (TGV)” 
section, we briefly review the total generalized variation (TGV). The proposed model 
and algorithm are presented in “The proposed Poisson noise recovering model and algo-
rithm” section. In “Experimental results and discussions” section, experimental results 
are illustrated to show the consistent performance of the proposed method. Finally, con-
clusions are given in “Conclusions” section.

(2)min
u

∫

�

|Du| + λ

∫

�

(Ku− f logKu).

(3)min
u

∫

�

|Du| +
λ1

2
�u�2 + λ2

∫

�

(Ku− f logKu).
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Total generalized variation (TGV)
Bredies et al. (2010) proposed the concept of total generalized variation (TGV), which is 
considered to be the generalization of TV. For convenience, some concepts of TGV are 
given as follows.

Definition 1  (Bredies et  al. 2010) Let � ⊂ R
d be a domain, k ≥ 1 and α = (α0,

. . . ,αk−1) > 0.Then, the total generalized variation of order k with weight α for 
u ∈ L1loc(�) is defined as the value of the function

where Symk(Rd) denotes the space of symmetric tensors of order k with arguments in 
R
d, and αl are fixed positive parameters.

Definition 2  (Bredies et  al. 2010) The space of bounded generalized variation is 
defined as

Here BGV k
α (�) is a Banach space independent of the weight vector α.

Definition 3  (Bredies et al. 2010) The “dualization” in the definition of the functional 
TGV k

α  can also be informally interpreted in terms of iterated Fenchel duality.

Note that the tensor field ul are in different spaces for varying l. Moreover, the operator 
ε
(
ul−1

)
 denotes the symmetrized gradient operator

In this paper, we use k = 2 in the proposed model. Thus, the second-order TGV can be 
written as

where Sd×d denotes the space of symmetric d × d matrices. And the first and second 
divergences are defined as

(4)

TGV k
α (u) = sup

{∫

�

udivkνdx|ν ∈Ck
c

(
�, Symk(Rd)

)
,

∥∥∥divlν
∥∥∥
∞

≤ αl , l = 0, . . . , k − 1
}
,

(5)

BGV k
α (�) =

{
u ∈ L1(�)|TGV k

α (u) < ∞

}
,

�u�BGV k
α
= �u�1 + TGV k

α (u).

(6)
TGV k

α (u) = inf
ul∈C

k−l(�,Syml(Rd))

l=1,...,k−1,u0=u,uk=0

k∑

l=1

αk−l

∥∥ε(ul−1)− ul
∥∥
1
.

(7)ε
(
ul−1

)
=

∇ul−1 +
(
∇ul−1

)T

2
.

(8)

TGV 2
α (u) = sup

{∫

�

udiv2wdx|w ∈ C2
c

(
�, Sd×d

)
, �w�∞ ≤ α0,

∥∥div w
∥∥
∞

≤ α1

}
,

(9)(div w)h =

d∑

j=1

∂whj

∂xj
, 1 ≤ h ≤ d,
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In addition, according to Bredies and Valkonen (2011), the energy term TGV 2
α  can be 

formulated as

where ε(p) can be separately expressed as

The proposed Poisson noise recovering model and algorithm
The proposed model for Poisson noise image

We assume that u ∈ R
N
+ is the original image, f ∈ R

N is the observed image, K ∈ R
N×N 

is a linear blurring operator related with the spread point function (PSF). Then the deg-
radation model can be described as

where P denotes the Poisson distribution function.
Based on Le et al. (2007), we define the Bayes Law as follows.

According to (14), for each u ∈ �, we have

Next, we assume that the prior distribution P(u) is TGV and ‖u‖2, which can be written 
as

where λ is the regularization parameter.
Thus, we obtain a model for restoring the Poissonian noise image as follows.

where ls is the indicator function of set S

(10)
div2w =

d∑

h,j=1

∂2whj

∂xh∂xj
.

(11)TGV 2
α = min

u∈BGV 2
α (�),p∈BD(�)

α1

∫

�

|∇u− p| + α0

∫

�

|ε(p)|,

(12)ε(p) =

[
∇xp1

1
2 (∇yp1 + ∇xp2)

1
2 (∇yp1 +∇xp2) ∇yp2

]
.

(13)f = P(Ku),

(14)P
(
u|f

)
=

P
(
f |u

)
P(u)

P
(
f
) .

(15)P(f |Ku) =

N∏

i=1

P(fi|(Ku)i) =

N∏

i=1

e−(Ku)i((Ku)i)
fi

fi!
.

(16)p(u) = exp

(
−
λ

2
�u�22 − TGV 2

α

)
,

(17)min
u

β

N∑

i=1

(Ku)i − fi log (Ku)i +
λ

2
�u�22 + TGV 2

α + lR+(u),

(18)

lS(u) =

{
0, ⇐ u ∈ S;
+∞, ⇐ u /∈ S.

u+ = max {0,u}, log(0) = −∞, and 0 log(0) = 0.
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By reformulating TGV as a minimization in the discrete setting, the proposed model can 
be written as

The split Bregman algorithm for Poisson noise removal

The split Bregman algorithm (Goldstein and Osher 2009; Wang et  al. 2008) has been 
widely used in image processing, which is easy to be realized and has fast convergence 
(Cai et al. 2009; Jia et al. 2009). Therefore, we use split Bregman algorithm to solve our 
minimization problem (19). Firstly, by introducing new auxiliary variables w, x, y and z, 
the problem (19) can be reformulated as the following constrained optimization problem

For the above constrained problem (20), we transform it into the corresponding uncon-
strained problem

where µi(i = 1, . . . , 4) are positive penalty parameters. Thus the split Bregma iterative 
algorithm for solving the question (20) can be described as

where the updates of the multipliers b1, b2, b3, b4 is described as follows

Since the updates of bk1, b
k
2, b

k
3, b

k
4 are merely simple calculations, then the minimization 

question (22) can be divided into the following several subproblems: Given initial value 

(19)

min
u

β

∫

�

(Ku− f log(Ku))dx +
λ

2
�u�22 + α1�∇u− p�1

+ α0�ε(p)�1 + lR+(u).

(20)

min
u

β

∫

�

w − f logw +
λ

2
�u�22 + α1�x�1 + α0

∥∥y
∥∥
1
+ lR+(z)

s.t. Ku = w, ∇u− p = x, ε(p) = y, u = z.

(21)

min
u

β

∫

�

w − f logw +
λ

2
�u�22 + α1�x�1 + α0

∥∥y
∥∥
1

+ lR+(z)+
µ1

2
�Ku− w�22 +

µ2

2
�∇u− p− x�22

+
µ3

2

∥∥ε(p)− y
∥∥+

µ4

2
�u− z�22,

(22)

(
wk+1, xk+1, yk+1, zk+1,uk+1, pk+1

)
= min

u
β

∫

�

w − f logw

+
λ

2
�u�22 + α1�x�1 + α0

∥∥y
∥∥
1
+ lR+(z)+

µ1

2

∥∥∥Ku− w − bk1

∥∥∥
2

2

+
µ2

2

∥∥∥∇u− p− x − bk2

∥∥∥
2

2
+

µ3

2

∥∥∥ε(p)− y− bk3

∥∥∥
2

2

+
µ4

2

∥∥∥u− z − bk4

∥∥∥
2

2
,

(23)

bk+1
1 = bk1 +

(
Kuk+1 − wk+1

)
;

bk+1
2 = bk2 +

(
∇uk+1 − pk+1 − xk+1

)
;

bk+1
3 = bk3 +

(
ε(pk+1)− yk+1

)
;

bk+1
4 = bk4 +

(
uk+1 − zk+1

)
.
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b01 = b02 = b03 = b04 = 0 and u0 = p0 = w0 = x0 = y0 = z0 = 0, the split Bregman algo-
rithm can be written as

For w-subproblem, note that it is separable with respect to each component. It is easy to 
solve and the solution of w may be written as

As for solving x, y-subproblem, we can directly obtain the solutions by using shrinkage 
operator:

The x-subproblem can be solved by

The solution of the y-subproblem is similarly obtained

The (u, p)-subproblem is a saddle-point problem, which can be divided into the follow-
ing two subproblems:

1.	 For u, we have

which can be solved by considering the following normal equation

(24)






wk+1 = arg min
w

β

�

�

w − f logw +
µ1

2

���Kuk − w − bk1

���
2

2
,

xk+1 = arg min
x

α1�x�1 +
µ2

2

���Duk − pk − x − bk2

���
2

2
,

yk+1 = arg min
y

α0
��y

��
1
+

µ3

2

���ε(pk)− y− bk3

���
2

2
,

zk+1 = max
�
uk+1 + bk4, 0

�
,

(uk+1, pk+1) = arg min
u,p

λ

2
�u�22 +

βµ1

2

���Ku− wk+1 − bk1

���
2

2
,

+
α1µ2

2

���Du− p− xk+1 − bk2

���
2

2
+

µ4

2

���u− zk+1 − bk4

���
2

2
,

+
α0µ3

2

���ε(p)− yk+1 − bk3

���
2

2
.

(25)wk+1 =
1

2




�
Kuk + bk1 −

β

µ1

�
+

��
Kuk + bk1 −

β

µ1

�2

+
4βf

µ1



.

(26)xk+1 = max

(∥∥∥Duk − pk − bk2

∥∥∥
2
−

α1

µ2
, 0

)
Duk − pk − bk2∥∥∥Duk − pk − bk2

∥∥∥
2

.

(27)yk+1= max

(∥∥∥ε(pk)− bk3

∥∥∥
2
−

α0

µ3
, 0

)
ε(pk)− bk3∥∥∥ε(pk)− bk3

∥∥∥
2

.

(28)

uk+1 = arg min
u

λ

2
�u�22 +

βµ1

2

∥∥∥Ku− wk+1 − bk1

∥∥∥
2

2

+
α1µ2

2

∥∥∥Du− p− xk+1 − bk2

∥∥∥
2

2
+

µ4

2

∥∥∥u− zk+1 − bk4

∥∥∥
2

2
,
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Finally, u is solved by

2.	 For the sub-problem p, it can be written as the following minimization problem

where p = (p1, p2)
T is a 2× 1 vector, ε(p) is a 2× 2 matrix.

	 For p1, it can be solved by considering the following linear system

Therefore,

Similarly, we can obtain the solution of p2 as

Experimental results and discussions
In this section, we illustrate some numerical results of the proposed model for the Pois-
son noise removal problem. We compare our method with the one proposed in Figue-
iredo and Bioucas-Dias (2010) (PIDAL) and the other proposed in Liu and Huang (2012) 
(PID-Split). In order to prove the superiority of the proposed model, we compare our 
model with TGV regularization model.To show the effectivity of the proposed model, we 
choose four pictures possed abundant detail information.

(29)

λu+ α1µ2

2∑

j=1

DT
j

(
Dju− pj − xk+1

j − bk2j

)

+ βµ1K
T
(
Ku− wk+1 − bk1

)
+ µ4

(
u− zk+1 − bk4

)
= 0.

uk+1 =



λI + βµ1K
TK + α1µ2

2�

j=1

DT
j Dj + µ4I




−1

×

�
βµ1K

T
�
wk+1 + bk1

�
+ α1µ2

2�

j=1

DT
j

�
pj + xk+1

j + bk2j

�

+µ4(z
k+1 + bk4)

�
.

(30)

pk+1 = arg min
p

α1µ2

2

∥∥∥Du− p− xk+1 − bk2

∥∥∥
2

2

+
α0µ3

2

∥∥∥ε(p)− yk+1 − bk3

∥∥∥
2

2
,

(31)

α1µ2

(
p1 − D1u+ xk+1

1 + bk21

)
+ α0µ3D

T
1

(
D1p1 − yk+1

1 − bk31

)

+
α0µ3

2
DT
2

(
D2p1 + D1p2 − 2yk+1

3 − 2bk33

)
= 0.

(32)

pk+1
1 = (α1µ2I + α0µ3D

T
1 D1 +

α0µ3

2
DT
2 D2)

−1

× (α1µ2(D1u− xk+1
1 − bk21)+ α0µ3D

T
1 (y

k+1
1 + bk31)

+
α0µ3

2
DT
2 (2y

k+1
3 + 2bk33 − D1p2)).

(33)

pk+1
2 =

(
α1µ2I + α0µ3D

T
2 D2 +

α0µ3

2
DT
1 D1

)−1

× α1µ2

(
D2u− xk+1

2 − bk23

)
+ α0µ3D

T
2

(
yk+1
2 + bk32

)

+
α0µ3

2
DT
1

(
2yk+1

3 + 2bk33 − D2p1

)
.
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We terminate the iterations for these methods by the following stopping criterion

The quality of the restoration results is compared quantitatively by using the Signal-to-
Noise Ratio (SNR), the Peak Signal-to-Noise (PSNR), the relative error (RelErr) and the 
Structural SIMilarity index (SSIM). They are defined as follows

where u and û are the ideal image and the restored image, respectively.

where µu and µû are averages of u and û, respectively. σu and σû are the variance of u and 
û, respectively. σuû is the covariance of u and û. The positive constants C1 and C2 can be 
thought of as stabilizing constants for near-zero denominator values. Generally speak-
ing, the more bigger value of SNR, PSNR or the smaller value of RelErr is, the better 
quality of the reconstructed image is.

The Poissonian images used for our experiments are generated as follows: the origi-
nal images are convoluted with a blur kernel and additionally contaminated by Poisson 
noise, here we use the poissrnd function in MATLAB’s Statistics Toolbox after blurring 
the true images with the given point spread functions to generate the blurred and noise 
images.

The selection of the regularization parameters highly affects the image restoration 
results, and related to make the fair comparison with different denoising models. The 
penalty parameters µ which relies on unknown noise level highly influences the speed 
of the algorithms. In experiments, we set µ = [0.01, 0.001] in the PIDAL algorithm. In 
the PID-Split algorithms, we choose µ = [0.0004; 0.1, 0.0001]. In the TGV model, we 
set µ = [0.1; 10, 5, 3]. The penalty parameter in the proposed method is empirically set 
µ = [0.1; 0.6; 0.1; 0.02]. Thus, we may have a good restoration results.

In the first experiment, we used the image “Woman” (512× 512) in Fig. 1a. We per-
form the blurring operation psfGauss(5, 2) proposed in Nagy et al. (2004) on the original 
image and add the Poisson noise to the blurred data to generate the degraded image in 
Fig. 1b. The parameter of this test, we set β = 120 in PIDAL algorithm, β = 6, � = 0.01 
for PID-Split algorithms,due to the TGV model we set β = 450,α = [8, 10], set 
β = 54, � = 0.001,α = [16, 9] for the proposed model. The pictures of Fig. 1c–f are the 
restoration images, which represent the difference between the three methods. From 

(34)

∥∥uk+1 − uk
∥∥
2∥∥uk

∥∥
2

≤ 1× 10−3.

(35)RelErr =

∥∥u− û
∥∥
2

�u�2
, SNR = 20log10

(
�u�2∥∥û− u

∥∥
2

)
,

(36)MSE =
1

|�|

∫

�

(
û− u

)2
dx, PSNR = 10log10

(
2552

MSE

)
,

(37)SSIM =
(2µuµû + C1)(2σuû + C2)(

µ2
u + µ2

û + C1

)(
σ 2
u + σ 2

û + C2

) ,
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these pictures, we can see the proposed model have more advantages. In order to more 
effectively reflect the experiment result, Fig.  1g–j present the residual images refer to 
the difference of the original image and the restoration image. From these pictures, we 
can see that the proposed model can preserve more details than other methods. In the 
Table 1, the SNR, PSNR, RelErr and SSIM values of the restored images by the proposed 
model are better than other methods.

In second experiment, we use the image “House” with size (512× 512) in Fig.  2a, 
which contains a lot of edge details. We perform the blurring operation with radius 
5 (psf = ones(5, 5)/25) on the original image and add the Poisson noise to the 
blurred data to generate the degraded image in Fig.  2b. As for parameter selection, 
we choose β = 200 for the PIDAL algorithm, β = 20, λ = 0.00001 for the PID-Split 

Fig. 1  The woman picture is compared with other method. a Original image; b degraded image; c the PIDAL 
model result; d the PID-Split method result; e the TGV method result; f the proposed model result. g–j The 
residual images

Table 1  Summarized all of the experiment restoration results

Method SNR PSNR RelErr SSIM

Test1

 PIDAL (Figueiredo and Bioucas-Dias 2010) 25.33 30.30 0.054 0.904

 PID-Split (Liu and Huang 2012) 25.18 30.16 0.055 0.917

 TGV 25.31 30.32 0.053 0.908

 Proposed 25.48 30.45 0.053 0.922

Test2

 PIDAL (Figueiredo and Bioucas-Dias 2010) 21.17 25.03 0.087 0.828

 PID-Split (Liu and Huang 2012) 21.38 25.36 0.084 0.837

 TGV 21.24 25.10 0.086 0.835

 Proposed 21.74 25.60 0.080 0.843

Test3

 PIDAL (Figueiredo and Bioucas-Dias 2010) 21.50 27.87 0.0841 0.811

 PID-Split (Liu and Huang 2012) 21.49 27.86 0.0357 0.811

 TGV 20.64 27.01 0.092 0.801

 Proposed 21.01 27.23 0.0803 0.820
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algorithm, set β = 450,α = [8, 10] in the TGV model. The proposed algorithm we set 
β = 75, � = 0.00001,α = [17, 13]. Form Fig.  2c–f, we can see that the proposed model 
compared to the PIDAL method and PID-Split algorithms have better restoration results. 
In Fig. 2g–j, we have enlarged some details of the images, which can be clearly see the 
advantages of the proposed model for the recovery of edge details. The SNR, RelRrr and 
SSIM values in Table 1 showed that the proposed model have a better restoration result.

In order to further verify the validity of the new model, in third experiment, we use 
the image which contains a lot of edge details. We perform the blurring operation by a 
line motion blur. The point spread function for the linear motion blur is returns a filter 
to approximate, once convolved with an image, the linear motion of a camera by r pixels, 
with an angle of θ degrees in a counter-clockwise direction. In this example, r = 2 and 
θ = 45, then add the Poisson noise to the blurred data to generate the degraded image in 
Fig. 3b. The parameters choose as the same as those in second experiment and also may 
be adjusted.

Finally, let us choose a human brain MR image of size 240× 240 as the test image. 
We zoom in a marked close-up region which is abundant in texture-like features to bet-
ter visual comparison. We can clearly see that the produced textures by our proposed 
method are better quality than the other methods from Fig. 4.

Conclusions
In this paper, we investigate the second-order total generalized variation with a quad-
ratic regularization to deal with the Poissonian images restoration problem. The pro-
posed model is solved efficiently by split Bregman iterative algorithm in this way the 

Fig. 2  The house picture is compared with other method. a Original image; b degraded image; c the PIDAL 
model result; d the PID-Split method result; e the TGV method result; f the proposed model result; g–j The 
result of partial enlarged pictures
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calculation speed is fast. Numerical results show that our proposed method is particu-
larly advantageous for restoration the Poisson images in terms of SNR, SSIM and RelErr 
quality compared to other methods. In the model, the parameters selection is a difficult 
problem which needs further study.
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