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Background
In a recent paper by Grzymkowski et  al. (2013), an analytical method for finding the 
approximate temperature distribution in a solidifying plate modeled by the one-phase 
problem 

was introduced. Equation  (1), which models the temperature distribution only in the 
solid phase of the plate is such that x̄ is the half of the plate thickness, λ its thermal 
conductivity, κ its latent heat of fusion, γ its mass density and b its diffusivity given by 

(1a)∂tT = b∂xxT in (�(t), x̄)× (0, τ );

(1b)�(t) = x̄ − ξ(t), ξ(0) = 0;

(1c)T
∣

∣

∣

x=x̄
= �(t) for t ∈ [0, τ ];

(1d)T
∣

∣

∣

x=�(t)
= T ⋆ ∈ R for t ∈ [0, τ ];

(1e)−λ∂xT
∣

∣

∣

x=�(t)
= γ κdt�(t) for t ∈ [0, τ ],
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Two distinct and novel formalisms for deriving exact closed solutions of a class of 
variable-coefficient differential-difference equations arising from a plate solidification 
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b = λ/(γ κ). Further, �(t) describes the time-dependent position of the solidification 
front, ξ(t) the time-dependent thickness of the solidified layer, �(t) is the time-depend-
ent temperature of the plate’s surface, and τ the duration for complete solidification. 
The approach taken by Grzymkowski and coauthors relied on the assumption that the 
unknown temperature field T = T (x, t) takes the form of an exponential generating 
function

with the undetermined sequence 
{

Aj(t)
}∞
0

 and solidification front �(t) [through ξ(t)] 
satisfying the boundary conditions 

 where in Eq. (3b) and through the rest of this paper, the prime is indicative of an ordi-
nary derivative with respect to the temporal variable t.

This technique, which is plausible provided series  (2) is convergent in the interval 
(�(t), x) for all t ∈ (0, τ ), leads to the reformulation of Problem (1) as that of finding such 
Aj(t) and ξ(t) as would satisfy the variable coefficient differential-difference equation 
(D�E)

Z+ is the set of positive integers.
D�Es of similar structures to Eq. (4) with both constant and variable coefficients have 

been studied in the literature by various methods. Numerical and truncation techniques 
were deployed by were deployed by Barry (1966) in studying a first order constant coeffi-
cient first order D�E. Feynman-Dyson (Feynman 1951) and Magnus (Blanes et al. 2009) 
time-ordering techniques have been employed in solving constant and variable coeffi-
cient Raman–Nath equations (which constitute a class of first order D�Es) in Bosco and 
Dattoli (1983), Bosco et al. (1984), Dattoli et al. (1984), Dattoli et al. (1985). Alimoho-
madi et al. (2012) solved a variable coefficient D�E using the Wei-Norman Lie-algebraic 
time ordering method of Wei and Norman (1963), Shang (2012).

The discrete version of Lie-group symmetric reduction was introduced by Levi and 
Winternitz (1991), Levi and Winternitz (1993). This novelty afforded the study of sym-
metry reductions of several classes of differential-difference equations: Shen (2007) used 
a combination of the classical Lie-group method and symbolic computation to solve 
nonlinear constant coefficient D�Es; Shen et al. (2004) derived symmetry reductions of 

(2)T (x, t) =
∞
∑

j=0

Aj(t)
(x −�(t))j

j!
,

(3a)A0(t) = T ⋆;

(3b)A1(t) =
γ κ

λ
ξ
′
(t) for t ∈ [0, τ ];

(3c)�(t) =
∞
∑

j=0

Aj(t)
ξ j(t)

j!
for t ∈ [0, τ ],

(4)A
′
j(t)+ ξ

′
(t)Aj+1(t)− bAj+2(t) = 0 inZ+ ∪ {0} × (0, τ ).
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Toda-like lattice equations by a similar method; while Li et al. (2008) and Lv et al. (2011) 
deployed a synthesis of the Lie group and Harrison-Estabrook geometric techniques in 
the study of Lie symmetries of some differential-difference equations. The technique 
employed in this paper derives partly from that of Shen (2005) in which the direct simi-
larity method of Clarkson and Kruskal (1989) was extended to the study of D�Es.

Solidification of materials has been extensively studied in the literature, see Kurz and 
Fisher (1992), Dantzig and Rappaz (2009), Glicksman (2011) and the references therein, 
and still receives continuous attention due to its huge significance to industrial pro-
cesses. Several mathematical techniques have been developed and exploited in the study 
of models similar to  (1); Chuang and Szekely (1971) proposed a Green’s function-based 
semi-analytical method for studying approximate solutions of a solidification problem; 
Charach and Zoglin (1985) employed a combination of the heat balance integral method 
(Goodman 1958; Mitchell and Myers 2010; Layeni and Johnson 2012) and time-depend-
ent perturbation theory to construct approximate solutions for solidification of a finite 
slab which is valid for small Stefan numbers and uniformly in time; Prud’homme et al. 
(1989) investigated heat transfer during the solidification of materials in various geome-
tries by the method of strained coordinates; and Gonzalez et al. (2003) developed a com-
putational simulation system for modelling a solidification process during continuous 
casting.

Grzymkowski et  al. resorted to deriving approximate analytical and numerical solu-
tions for Eq.  (4), and consequently Eq.  (1), primarily due to the difficulty encountered 
in obtaining closed-form solutions satisfying boundary conditions Eq. (3). Consequent 
upon the inability of their approach at solving D�E (4) exactly and partially for the sake 
of completeness we revisit the problem, proffering two efficient protocols for solving (4).

The objective of this paper is twofold. The one is to construct exact solutions to 
D�E  (4) through two distinct syntheses of the ideas of Shen (2005), Clarkson and 
Kruskal (1989) or Bateman (1943). The other is to apply the obtained results in establish-
ing exact closed-form solutions to the plate solidification problem (1).

The rest of this paper is organized as follows: The second Section gives the similarity 
reductions and closed form solutions to D�E  (4). The third Section gives two distinct 
classes of solutions to the solidification process courtesy the results of the second, while 
the last concludes the paper.

Clarkson–Kruskal’s similarity reduction and explicit solutions
In this Section, in line with the direct method of Clarkson and Kruskal (1989), we seek 
solutions to D�E (4) which are of the form

with ϒ, �, Vj and z being continuously differentiable functions.
Substituting Eq. (5) into Eq. (4) yields

(5)Aj(t) = ϒ(t)+�(t)Vj(z), z = z(t),

(6)
�(t)z

′
(t)

dVj(z)

dz
+�

′
(t)Vj(z)+�(t)ξ

′
(t)Vj+1(z)

− b�(t)Vj+2(z)+
(

ϒ
′
(t)+

[

ξ
′
(t)− b

]

ϒ(t)
)

= 0.
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Clarkson–Kruskal similarity reduction

As a result of the variant of Clarkson–Kruskal’s direct method due to Shen (2005), the 
following system of equations can be sieved from Eq. (6): 

Ŵj, j ∈ {1, 2, 3, 4} being undetermined functions of z(t) defined such that (Shen 2005),

(i)		� if a function R(t) is found to have the form R(t) = Q(t)Ŵj(z(t)) then one may set 
Ŵj(z(t)) = 1 ;

(ii)		� if a function S(t) is found to have the form S(t) = T (t)+ U(t)Ŵj(z(t)) then one 
may set Ŵj(z(t)) = 0 ; and

(iii)		� if z(t) is determined from the implicit equation f (z(t)) = g(t), f invertible then 
one may set f (z) = z(t),

where Q, T, U and g are known functions with sufficient regularity.
Proceeding from Eq.  (7a), it is observed that �

′
(t)�−1(t) = z

′
(t)Ŵ1(z(t)) = 

z
′
(t)Ŵ

′
1(z(t)) = (Ŵ1(z(t)))

′
, Ŵ1(z(t)) being equivalent to Ŵ

′
1(z(t)), see Shen 

(2005). This implies that 
(

log(�(t))
)′

= (Ŵ1(z(t)))
′
, which further means that 

�(t) = �0 exp (Ŵ1(z(t))) ⇔ �(t) = �0 = constant and Ŵ1(z(t)) = 0. Applying these 
results to Eqs.  (7b) and   (7c) shows that ξ ′

(t) = z
′
(t)Ŵ2(z(t)) implies that ξ ′

(t) = z
′
(t) 

and Ŵ2(z(t)) = 1.
Also, −b = z

′
(t)Ŵ3(z(t)) = ξ

′
(t)Ŵ3(z(t)) or −b = −z

′
(t)Ŵ10(z(t)) = −ξ

′
(t)Ŵ10(z(t)) , 

Ŵ10(z(t)) = −Ŵ3(z(t)). These imply that ξ
′
(t) = ±b and Ŵ3(z(t)) = 1. Since 

ξ
′
(t) = ±b, then ξ(t) = ±bt + γ, γ ∈ R. Further, z

′
(t) = ξ

′
(t) implies that 

z(t) = ξ(t)+ γ ∗ = ±bt +̟, where ̟ = γ + γ ∗ ∈ R. Setting Ŵ4(z(t)) = 0 in  (7d) 
implies that ϒ ′

(t)ϒ−1(t) = b− ξ
′
(t) = 0 or 2b, showing that ϒ(t) is either a real con-

stant ϒ0 or equal to ϒ0 exp(2bt).
As a consequence of the above, D�E  (4) has solutions

ϒ0,�0, b,̟ real constants; Vj(z(t)) being solutions of the constant coefficient differen-
tial-difference equations

(7a)�
′
(t) = �(t)z

′
(t)Ŵ1(z(t));

(7b)ξ
′
(t) = z

′
(t)Ŵ2(z(t));

(7c)−b = z
′
(t)Ŵ3(z(t));

(7d)�(t)z
′
(t)Ŵ4(z(t)) = ϒ

′
(t)+ ξ

′
(t)ϒ(t)− b�(t),

(8)Aj(t) = �0Vj(z(t))+
{

ϒ0 z(t) = ξ(t) = bt +̟ ,
ϒ0 exp(2bt) z(t) = ξ(t) = −bt +̟ ;

(9)

{

dVj(z(t))

dz
+ Vj+1(z(t))± Vj+2(z(t)) = 0;

ξ(t) = ∓bt +̟ .
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Equations  (8) and  (9) constitute a Clarkson–Kruskal symmetry reduction of Eq.  (4). 
Following Bateman (1943), a solution to Eq.  (9) can be constructed by assuming 
Vj(z(t)) = exp (ipz(t))vj(p), i =

√
−1, p ∈ R, thereby yielding the reduction

which has the solution

C1 and C2 being arbitrary constants. In summary, we have the following result.

Theorem 1  Differential-difference equation (4) has solutions

where ω± = 1+
√
1± 4ip, and p, ̟ , ϒ0, C1, C2 are constants.

For ξ(t) = −bt +̟, it is observed that condition   (3a) affords the vector of param-
eters and arbitrary constants ζ := [p,ϒ0,C1,C2] values [−2i,−(C1 + C2),C1,C2] , 
[p, 0,−C2,C2] or [0, 0,C1,C2]. In the instance ξ(t) = bt +̟, however, condition  (3a) 
admits only the vector [0,−(C1 + C2),C1,C2]. Enforcing the remaining conditions  (3b) 
and (3c) yields the following result.

Corollary 1  The differential-difference equation (4) and conditions  (3a) to (3c) are ver-
ified by

for ξ(t) = ∓bt +̟ , �(t)  being of the form �(t) = T ⋆ − 1+ exp(bt +̟).

A variant Clarkson–Kruskal similarity reduction

Equation (6) can be alternatively pictured as the system of uncoupled equations

which can be recast as 

(10)

{

Vj(z(t)) = exp (ipz(t))vj(p);
0 = ipvj + vj+1 ± vj+2, if ξ(t) = ∓bt +̟ ,

(11)











Vj(z(t)) = exp (ipz(t))vj(p);
vj = 2−j

�

�

∓1−
√
1∓ 4ip

�j
C1 +

�

∓1+
√
1∓ 4ip

�j
C2

�

,

ξ(t) = ∓bt +̟ ,

(12)

Aj(t) =







ϒ0 exp(2bt)+ 2−j
�

(−ω−)
jC1 + (ω− − 2)jC2

�

exp(−ipbt) ξ(t) = −bt +̟

ϒ0 + 2−j
�

(2− ω+)
jC1 + ω

j
+C2

�

exp(ipbt) ξ(t) = bt +̟

(13)Aj(t) =
{

T ⋆ j = 0

(∓1)j j ≥ 1,

(14)











0 = ϒ
′
(t)+

�

ξ
′
(t)− b

�

ϒ(t),

0 = �(t)z
′
(t)

dVj(z)

dz(t)
+�

′
(t)Vj(z(t))+ ξ

′
(t)�(t)Vj+1(z(t))− b�(t)Vj+2(z(t)),
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Here we shall only study the special case of Eqs.  (14) and   (15) for which z(t) = t; 
rather than Eq. (15b), the following equation is studied

Next, we shall furnish a difference equation reformulation of Eq. (16) by employing the 
variant Clarkson–Kruskal ansatz

gj being a continuously differentiable function of t for each j. Substituting ansatz  (17) 
into differential-difference equation Eq. (15b) yields

It is clear that our present objective can be attained by imposing conditions on Eq. (18) 
which simultaneously make גj(t), �j(t) and �j(t) constant in t. One such way is to, firstly, 
endow gj(t) with a recurrence

from which it follows that �j(t) and �j(t) are equivalent-

and

the derivative of gj(t) with respect to t being

Incorporating Eqs. (19)–(22) into Eq. (18) transforms it into

(15a)ϒ(t) = ϒ0 exp
(

bt − ξ(t)
)

;

(15b)0 = �
′
(t)�−1(t)Vj(z(t))+ ξ

′
(t)Vj+1(z(t))− bVj+2(z(t))+ z

′
(t)

dVj(z)

dz
.

(16)0 = �
′
(t)�−1(t)Vj(t)+ ξ

′
(t)Vj+1(t)− bVj+2(t)+

dVj(t)

dt
.

(17)Vj(t) = gj(t)vj ,

(18)

0 =
(

1+ j(t)ג
)

vj + �j(t)vj+1 − b�j(t)vj+2;

j(t)ג := gj(t)g
′−1
j (t)

�
′
(t)

�(t)
, �j(t) := gj+1(t)g

′−1
j (t)ξ

′
(t),

�j(t) := gj+2(t)g
′−1
j (t).

(19)gj(t) = ξ
′j(t)g0(t),

(20)�j(t) = �j(t) =
(

ξ
′−2(t)g−1

0 (t)g
′
0(t)+ jξ−3(t)ξ

′′
(t)

)−1
;

j(t)ג(21) = �j(t)ξ
′−2(t)�

′
(t)�−1(t),

(22)g
′
j (t) = ξ

′j(t)g
′
0(t)+ jξ

′j−1(t)ξ
′′
(t)g0(t).

(23)







0 =
�

1+ �j(t)ξ
′−2(t)�

′
(t)�−1(t)

�

vj + �j(t)vj+1 − b�j(t)vj+2;

�j(t) :=
�

ξ
′−2(t)g−1

0 (t)g
′
0(t)+ jξ−3(t)ξ

′′
(t)

�−1
.
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Secondly, requiring that �′
(t)�−1(t) be of a constant proportion to ξ ′2(t), that is

converts Eq. (23) into

Finally, we shall enforce a set of constraints which makes �j(z(t), t) constant with respect 
to the variable t: We set

This yields the following reduction of Eq. (15b):

where C9 and C10 are integration constants. It is worth observing that Eqs.  (5),  (15a) 
and (27) constitute another Clarkson–Kruskal similarity reduction of D�E (1).

The first few terms of the solution sequence 
{

ṽj
}∞
0

 satisfying the difference equation of 
Eq. (27) are

where κ1 and κ2 are arbitrary constants. A closed solution to the difference equation can 
be sought in the sense of Popenda (1987) or Mallik (1997). However the solutions to this 
class of variable coefficient difference equations are known to be quite cumbersome, and 
as such for practical purposes the generators of 

{

ṽj
}∞
0

 are constructed instead.
Suppose that Z(x) is the sought generating function,

of the sequence 
{

ṽj
}∞
0

. Then,

(24)�
′
(t)�−1(t) = qξ

′2(t), q �= 0,

(25)

{

0 =
(

1+ q�j(t)
)

vj + �j(t)vj+1 − b�j(t)vj+2;
�j(t) :=

(

ξ
′−2(t)g−1

0 (t)g
′
0(t)+ jξ−3(t)ξ

′′
(t)

)−1
.

(26)ξ
′′
(t)ξ

′−3(t) = p, ξ
′−2(t)g−1

0 (t)g
′
0(t) = 1.

(27)







































































Vj(t) = ξ
′j(t)g0(t)vj;

g0(t) = C9 exp

�
�

t
ξ
′2(τ )dτ

�

;�(t) = C10 exp

�

q

�

t
ξ
′2(τ )dτ

�

;

ξ(t) = r + 1− s
�

s−2 − 2pt

ps
, ξ(0) = r, lim

t→0
ξ
′
(t) = s,

r, s ∈ R ∪ {+∞};

0 = (pj + (q + 1))ṽj + (j + 1)ṽj+1 − b(j + 1)(j + 2)ṽj+2,

ṽj = vj/j!;

(28)
ṽ0 = κ1; ṽ1 = κ2;ṽ2 =

κ1(1+ q)+ κ2

2b
;

ṽ3 =
(1+ q)κ1 + (1+ b(1+ p+ q))κ2

6b2
; . . . ,

(29)Z(x) =
∞
∑

j=0

ṽjx
j ,
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Multiplying through the difference equation in Eq. (27) by xj, summing from j value 0 to 
∞ and applying Eqs.  (29) and (30), it is realized that the generating ordinary differential 
equation for the solution sequence 

{

ṽj
}∞
0

 of the difference equation in Eq. (27) is

The solution to Eq. (31), which is the generator of the sequence 
{

ṽj
}∞
j=0

 , is given by

where D is the Dawson function defined by D(x) = exp(−x2)

∫ x

0
exp(y2)dy or through 

the error function Erf  as D(x) =
√
π

2
exp(−x2)Erf(x); Hr(x) is rth Hermite polynomial 

which satisfies the ordinary differential equation

1F1 is the Kummer confluent hypergeometric function defined by

with C3 =
U(p, q)

W(p, q)
 and C4 =

V(p, q)

W(p, q)
. In the aforegone, U(p, q), V(p, q) and W(p, q) are, 

respectively,

(30)

Z
′
(x) =

∞
∑

j=0

(j + 1)ṽj+1x
j;

Z
′′
(x) =

∞
∑

j=0

(j + 1)(j + 2)ṽj+2x
j; and

ωxZ
′
(x) =

∞
∑

j=0

ωjṽjx
j , ω ∈ R.

(31)

{

0 = (1+ q)Z(x)+ (1+ px)Z
′
(x)− bZ

′′
(x);

Z(0) = C1,Z
′
(0) = C2.

(32)

Z(x) =






















C1 + C2

�

2b

p

�

−D

�

1
�

2bp

�

+ exp

�

x(2+ px)

2b

�

D

�

1+ px
�

2bp

��

q = −1;

C3H− 1+q
p

�

1+ px
�

2bp

�

+ C4 1F1

�

1+ q

2p
,
1

2
,
(1+ px)2

2bp

�

q �= −1,

(33)
d2y(x)

dx2
− 2x

dy(x)

dx
+ 2ry(x) = 0, r ∈ R;

(34)1F1(a, b, x) =
∞
∑

j=0

(a)j

(b)j

xj

j!
, a, b ∈ R

+ ∪ {0};

(35)



























































U(p, q) = −bp 1F1

�

1+ q

2p
,
1

2
,

1

2bp

�

C2 + (1+ q) 1F1

�

1+ 2p+ q

2p
,
3

2
,

1

2bp

�

C1,

V(p, q) = bpH− 1+q
p

�

1
�

2bp

�

C2 + (1+ q)
�

2bpH− 1+p+q
p

�

1
�

2bp

�

C1,

W(p, q) = (1+ q)

�√
2
√
b
√
pH− 1+p+q

p

�

1
�

2bp

�

1F1

�

1+ q

2p
,
1

2
,

1

2bp

�

+

H− 1+q
p

�

1
�

2bp

�

1F1

�

1+ 2p+ q

2p
,
3

2
,

1

2bp

��

,
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C1 and C2 being arbitrary constants.
The above results can be summarized as the following.

Theorem 2  The differential-difference equation (4) has a solution

where m, p, q, r, s, ϒ0, �are constants, and ṽjis generated by the function in Eq. (32).
If the constraints due to Eqs.  (3a) to  (3c) are further imposed on solutions given by 

Theorem  2, Ajs which are potentially applicable in solving Eq.  (1) are obtained. Con-
dition  (3a) implies that ϒ0, q = −1 and � = T ⋆/ṽ0. Further, Eq.   (3c) shows that ṽ1 is 
expressible in terms of ṽ0 as ṽ1 =

(

γ κ ṽ0
)

/(�T ⋆). Consequent upon these observations, 
we have the following special case of Theorem 2.

Corollary 2  The differential-difference equation (4) and conditions  (3a)to (3c) are sat-
isfied by

�(t) being of the form �(t) = T ⋆
∑∞

j=0

((

r −
1

p

)

+
1

p
√

1− 2ps2t

)j
ṽj

ṽ0
, and 

{

ṽj
}∞
0

is 
generated by Eq. (32), q = −1.

Application to the plate solidification problem
Traveling wave solutions

In this subsection, Theorem 1 is applied in solving Eq. (1). This approach is only admis-
sible provided the range of convergence

of series (2), per time, contains the spatial domain �(t) < x < x̄ of Eq. (1). Elementary 
calculations confirm this in the affirmative: In point of fact, the range of convergence of 
the series is the set of real numbers. Due to the fact that �(t) = x̄ − ξ(t), x = x̄ being the 
plate’s surface, we shall only consider ξ(t) in the form

Further, the nature of solution (12)2 suggests the existence of a traveling wave solution to 
the Stefan problem  (1), one which is derived by substituting it into Eq. (2):

(36)















Aj(t) = ϒ0 exp
�

bt − ξ(t)
�

+� exp

�

(q + 1)

�

t
ξ
′2(τ )dτ

�

ξ
′j(t)j!ṽj;

ξ(t) = r +
1− s

�

s−2 − 2pt

ps
, ξ(0) = r, lim

t→0
ξ
′
(t) = s;

(37)Aj(t) = T ⋆j!ξ ′j(t)
ṽj

ṽ0
,

(38)− lim
j→∞

∣

∣

∣

∣

(j + 1)Aj(t)

Aj+1(t)

∣

∣

∣

∣

+�(t) < x < lim
j→∞

∣

∣

∣

∣

(j + 1)Aj(t)

Aj+1(t)

∣

∣

∣

∣

+�(t)

(39)ξ(t) = bt +̟ .

(40)































T (x, t) = ϒ0 exp (x −�(t))

+ exp

�

ipbt − 1
2

�

−1+
√
1+ 4ip

�

(x −�(t))

�

×
�

C1 + C2 exp
��√

1+ 4ip
�

(x −�(t))
�

�

;

ξ(t) = +bt;�(t) = x̄ − bt,
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up to integration constants ϒ0, C1 and C2.
Solving Stefan problem (1) up to initial and boundary conditions demands the applica-

tion of Corollary  1. This leads to the special case of plate solidification process Eq. (1) 
for which the temperature of the surface of the plate differs from that of the constant 
temperature T ⋆ of the solidification front by a magnitude (−1+ exp (bt)) : 

 Upon a reflection of the analyses of the previous Section and the preceding paragraph 
of this Section, it is observed that Eq. (41) has the exact closed travelling wave solution

with speed b, the value of the thermal diffusivity.

Similarity solutions

The study of similarity solutions to the solidification problem due the analyses of “Clark-
son–Kruskal’s similarity reduction and explicit solutions” section is hinged on the nature 
of the second solution of the D�E (4) as given by Theorem 2. Consequent upon Eq. (36), 
similarity solutions of the form

which are self-similar in variables T (x, t)/ exp

(

(q + 1)

∫

ξ
′2(t)dt

)

 and x/ξ
′−1(t), are 

obtained.
In this instance the thickness of the solidified layer ξ(t) is expected to satisfy 

ξ(0) = 0, the behaviour of its gradient being unspecified at t = 0. Suppose that 
ξ
′
(0) = s ∈ {−∞,+∞}. Since

the solidification front evolution �(t) then takes the form

(41a)∂tT = b∂xxT in (0,�(t))× [0, τ ];

(41b)�(t) = x̄ − ξ(t), ξ(0) = 0;

(41c)T
∣

∣

∣

x=x̄
= T ⋆ − 1+ exp (bt) for t ∈ [0, τ ];

(41d)T
∣

∣

∣

x=�(t)
= T ⋆;−λ∂xT

∣

∣

∣

x=�(t)
= γ κdt�(t) for t ∈ [0, τ ].

(42)

{

T (x, t) = T ⋆ − 1+ exp
(

x −�(t)
)

;
�(t) = x̄ − ξ(t); ξ(t) = +bt,

(43)T (x, t) = exp

(

(q + 1)

∫

ξ
′2(t)dt

) ∞
∑

j=0

ṽj

(

1+ (x − x̄)

ξ
′−1(t)

)j

,

(44)ξ(t) = u− 1

p

√

p2u2 − 2pt; u = 1

ps
,

(45)�(t) = x̄ −

√

−2t

p
; p < 0.
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The choice of parameters p and q such that the flux condition Eq. (1e) is satisfied is con-
tingent on D�E solution (36). From Eq. (2), it follows that ∂xT

∣

∣

∣

x=�(t)
= A1(t), and it is 

observed that if the integration constant ϒ0 of (36) is set to zero,

However the right hand side of Eq.  (1e) is proportional to −2
√
t, thereby implying that 

q = −1 (for consistency) and yielding the similarity solution to Eq. (1) as

up to arbitrary constants p, C1 and C2 . An alternative approach, one which consists of 
the application of Corollary  2, could be employed to reach the same result as given by 
Eq. (47).

The mode of determination of the arbitrary constants in Eq. (47) relies on the nature of 
admissible temperature �(t) of the plate’s surface. If the surface of the plate is kept at a 
constant temperature �c , say, then the solidification problem (1) has the solution

where Erf(·) is the error function and p is a negative root of the transcendental equation

On the other hand, if the temperature of the surface of the plate varies in time, then the 
solidification problem (1) has the solution

where Erfi(·) is the imaginary error function defined by Erfi(x) = −iErf(ix) and 
p = p(; t) which is the negative root, per time, of the equation

The notation p(;  t) in Eq.  (51) denotes that p is determined per time throughout the 
solidification process unlike the case described by Eq. (49). It is also worth noting that 

(46)A1(t) ∝ tµ, µ = −1+ p+ q

2p
.

(47)



















T (x, t) =
√
t

�

�

− 1

bt
xC1 +

x

2

�

π

b
exp

�

− x2

4bt

�

Erf

�

x

2
√
bt

�

C2

�

,

ξ(t) =

�

−2t

p
;�(t) = x̄ −

�

−2t

p
; p < 0,

(48)



















T (x, t) = �c − i

�

π

2bp
exp

�

−
1

2bp

�

Erf

�

x − x̄

2
√
bt

�

,

ξ(t) =

�

−2t

p
; p < 0,

(49)�c − T ⋆ =
γ κ

�p
1F1

(

1,
3

2
;−

1

2bp

)

, p < 0.

(50)























T (x, t) = T ⋆ +
�

π

2bp

�

i Erf

�

x − x̄

2
√
bt

�

+ Erfi

�

1
�

2bp

�

�

,

ξ(t) =

�

−2t

p
; p < 0,

(51)�(t)− T ⋆ =
γ κ

�p(; t) 1F1

(

1,
3

2
;−

1

2bp(; t)

)

, p < 0.
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the temperature distributions given by Eqs.  (48) and   (50) are real-valued due to the 
strict negativity of p.

Illustration

In this Subsection, we shall illustrate some of the results obtained in the earlier parts 
of the Section. Suppose that the material under consideration is the same as chosen by 
Grzymkowski et al. (2013), having thermal conductivity 25 W/mK, latent heat of fusion 
247,000 J/kg, density 7000 kg/m3, with x̄ = 0.2000 and T ⋆ = 1773.15 K. The first exam-
ple concerns a traveling wave solution of Problem  (1); the second example deals with 
Problem (1) when the moving front has a parabolic shape of the form (45), with constant 
temperature � at the fixed end x̄ and solution (48); while the third is similar to the sec-
ond, but with a time-varying fixed end temperature �(t).

Example 1  Suppose that ̟ = 0 and the fixed edge x = x̄ is kept at the slightly varying 
temperature 1772.1500+ exp

(

t/69, 160, 000
)

, then the temperature distribution of the 
solid phase of the solidifying material is given by

the time for complete solidification, which is obtained by setting �(t) to zero, being 
1.3832× 107 s.

Example 2  Let ̟ = 0 and the fixed edge x̄ = 0.2000 of the solidifying material is kept 
at the constant temperature 1876.9200K. From Eq.  (49), p can be evaluated using the 
FindRoot command of the symbolic computation software Mathematica to be −107. 
The temperature distribution of the solid phase is given by

total solidification in this case occurring in 2.0000× 105 s.

Example 3  Consider the instance in which the fixed edge x̄ = 0.2000 is subjected to 
a periodic temperature �(t) = 1876.92 sin(t) units. Here, p(;  t) values are computed, 
per time, by employing Eq.  (51). In the current example, p(; t) values at selected times 

(52)











T (x, t) = 1772.1500+ exp
�

−0.2000+
t

69, 160, 000
+ x

�

,

�(t) = 0.2000−
t

69, 160, 000
,

(53)







T (x, t) = 1876.9200− 104.6590 Erf

�

4158.1200 (−0.2000+ x)√
t

�

,

�(t) = 0.2000− 0.000447214
√
t,

Table 1  Values of p and �(t) at selected periods during solidification in Example 3

t (s) 3600 7200 10,800 14,400 18,000 21,600

p (×10
9) −3.0991 −2.5858 −2.2667 −2.0729 −1.9697 −1.9404

�(t) (m) 0.1984 0.1976 0.1969 0.1962 0.1957 0.1952
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varying from time period 3600–21,600 s are given by Table 1. It is observed that despite 
the periodic nature of the temperature at the fixed edge both p(;  t) and � are, respec-
tively, in time, monotonic increasing and decreasing functions. The temperature at each 
point in time can be evaluated through Eq. (50).

Conclusion
In the present paper similarity reductions of a D�E, with a variable coefficient which is 
a function of the continuous variable, arising from a solidification process were derived 
using discrete Clarkson–Kruskal techniques. These reductions admit two classes of the 
variable coefficient (which determines the nature of the solidification front), thereby 
leading to distinct solutions of the D�E. An application of these D�E solutions to the 
solidification problem revealed the presence of planar or parabolic interfacial front, 
respectively, when the temperature distribution in the solid phase is of the traveling 
wave or similarity type.

The application of the results obtained can be extended to solidification and melt-
ing processes in other simple geometries, directly so the spherical. While the results 
obtained herein are by no means exhaustive, as there remains interesting lines of study 
concerning exact analyses and qualitative properties of Eq. (1) for arbitrary continuously 
differentiable ξ(t) yet unconsidered, the approach presented herein offers fresh and 
insightful perspectives for exact analyses of differential-difference equations as well as 
solidification problems.
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