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Background
The increasing global population, energy consumption and the frequent natural dis-
asters are drawing more and more attention about the future sustainability of natural 
resources. There are concerns that the natural resources are beyond the safety margin of 
feeding human beings and other animals with the influence of anthropogenic activities 
(Rockström et al. 2009). Apart from human impact, the natural biogeochemical cycles 
also lead to the change of troposphere concentrations of greenhouse gases (Xiao et al. 
1995) and solar radiation. The resultant climate change, together with the changes of 
temperatures, concentrations of greenhouse gases, may drive a significant variation on 
the biogeochemical process of the terrestrial ecosystems (Melillo et al. 1990; Gates 1985; 
Houghton and Woodwell 1989; Jenkinson et al. 1991). The global biomass productivity 
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is a critical limiting resource (Running 2012), which is limited by land area, water, soil 
moisture and solar radiation.

Net primary production (NPP) measures the net amount of carbon assimilated after 
photosynthesis and autotrophic respiration over a given period of time (Clark et  al. 
2001). It harbors most species in the earth by providing food sources and services. More-
over, NPP is related to policy making. As described in the economic-emission model 
(Dean et al. 1992), the anthropogenic emissions, anthropogenic impacts on ecosystems 
and their corresponding NPP aggregations are linked with each other (Xiao et al. 1995). 
Therefore, monitoring NPP is of significantly important for maintaining sustainable nat-
ural resources for most species on earth. Better understanding of NPP impact factors 
helps develop management plans for land planning to satisfy human requirements and 
minimize the impact of climate change (Smith et al. 2012).

There are multiple researches analyzing the impact factors of NPP, such as precipita-
tion, temperature and atmospheric carbon dioxide concentration (Melton et al. 2013). 
Some researchers conclude that soil moisture is the dominant factor controlling NPP 
compared with annual rainfall (Raich et al. 1991). NPP of arid ecosystem is mostly influ-
enced by water, by enhancing the water use efficiency of vegetation (Xiao et al. 1995). For 
areas with limited temperature, NPP will get larger when temperature becomes higher 
(Nemani et al. 2003; Lucht et al. 2002; Bogaert et al. 2002; Piao et al. 2006). In terms of 
tropical areas, solar radiation becomes the dominant factor in influencing NPP because 
of severe cloudiness (Zhao and Running 2010; Garbulsky et al. 2010). The annual NPP is 
strongly correlated with the mean annual precipitation and temperature in dry and cold 
areas (Zhu and Southworth 2013; Schuur 2003). Moreover, there are also several studies 
suggesting a significant correlation relationship between normalized difference vegeta-
tion index (NDVI) and NPP (Paruelo et al. 1997; Fensholt et al. 2013). NDVI, as a dif-
ference ratio of near infra-red and red reflectance values, is commonly used to monitor 
vegetation growth status and the vegetation coverage.

For global NPP, different climatic characteristics of different types of land are influ-
enced by different variables. Generally, the land types cover forest, water, shrub lands, 
cropland, permanent wetland, grassland, built-up areas and snow cover. In terms of NPP 
in different types of land, there have been many researches analyzing the impact factors 
of NPP in each land type. Climate variables such as temperature, precipitation, topog-
raphy and soil type have been validated to have strong correlation relationship with the 
NPP in forest (Whittaker 1970; Woodward et al. 2004; Holdridge 1964; Pan et al. 2013), 
savanna (Zhu and Southworth 2013; Schuur 2003), grassland (Scholes and Hall 1996; Xia 
et al. 2014) and wetland (Birkett 1998). The impact of anthropogenic activities in CO2 
emissions and land cover change on NPP analyzed in studies (Prentice et al. 2001; Ou 
et al. 2015; Haberl et al. 2007) has turned out to be pervasive and serious.

However, the analyses above are mostly based on field data, which need to parameter-
ize, calibrate and validate NPP estimation models (Zheng et al. 2003). The field observ-
ing data have three main disadvantages: (1) the experiment sites are selected subjectively 
and the field data are quite unbalanced, data collected in developed areas are more 
intense and accurate than that in developing areas or less-developed areas; (2) up-scal-
ing the field data to global estimation models brings about more uncertainties, especially 
under the premises of different conditions for various models (Law et al. 2006; Xiao et al. 
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2011); (3) data sharing is a critical issue that hinders many researchers from analyzing 
more complex circumstances. To avoid such shortages, more and more researches start 
to apply remote sensed products in analyzing NPP impact factors (Potter et  al. 2003; 
Nayak et al. 2010; Zhao et al. 2005). Moreover, the remote sensed NPP product has been 
proved to be able to support real estimation of the process of carbon cycle and avail-
able to validate NPP monitoring after a recent comparison between the estimates from a 
dynamic vegetation model and remote sensed NPP products.

Models in calculating NPP are generally grouped into process-based model and 
data-driven regression model. The process-based model is designed based on different 
understandings of the process, at a local scale by synthesizing soil, temperature, cli-
matic variables to calculate NPP. Much calibration needs to be done with observations 
to up-scale such model to study a large region (Li et al. 2014). However, current stud-
ies indicate poor performances of process-based model with large differences between 
observation values and model estimations (Schwalm et  al. 2010). Data-driven regres-
sion model is limited by the amounts of data provided to train the regression model, 
which can be overcome by large quantities of remote sensed products. Random forest 
(Breiman 2001) has been used (Tramontana et al. 2015) in predicting annual gross pri-
mary production (GPP) and found that remote sensed data drives the model close to the 
optimum.

Since publicly acceptable impact factors of global NPP have not been analyzed widely, 
we investigate the potential impact factors of global NPP spatial pattern in terms of dif-
ferent land cover types. Firstly, a random forest regression model is trained to estimate 
NPP spatial pattern for each land cover type based on all the concerning climatic vari-
ables, soil temperature, moisture, anthropogenic emissions and consumptions. Process-
based model is not used here, because it is limited by its understanding of NPP process. 
Secondly, on top of each trained model, we get importance ranking of all the variables for 
each type of land. Thirdly, the importance rankings are further used to investigate main 
impact factors for each type of land globally and provide supporting data for policy mak-
ings. To the best of our knowledge, this work first quantifies the impact of each potential 
factor in estimating NPP to provide an objective analysis for each type of land globally. 
The group of potential impact factors first covers a wide range of variables, comprising 
atmospheric parameters, climatic parameters, soil and anthropogenic consumptions.

Methods
The experimental data in this paper cover climate data, biosphere data and anthropo-
genic energy consumption. In terms of global NPP pattern calculation, we have gener-
ated and downloaded the concerning annual global remote sensed products mainly from 
http://giovanni.sci.gsfc.nasa.gov/giovanni/ and http://gdata1.sci.gsfc.nasa.gov/daac-bin/
G3/gui.cgi?instance_id=neespi, managed by NASA GES DISC (Acker and Leptoukh 
2007). All the remote sensed products in this study are resampled to 1° × 1°.

Climate and biosphere data

As shown in Table 1, the feature variables indexed from 3 to 22 are climate and bio-
sphere data. Planetary boundary layer height above surface (Wikipedia 2015), soil 
temperature (NASA 2013), soil moisture (NASA 2015), land surface temperature, 

http://giovanni.sci.gsfc.nasa.gov/giovanni/
http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi%3finstance_id%3dneespi
http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi%3finstance_id%3dneespi
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aerosol index (OMI 2006), wind speed, precipitation (NASA 2015), irradiance ultra-
violet (Montzka et al. 2011), net all-wave radiation (NASA 2014) and spectral indexes 
are all frequently used parameters in NPP calculation (Melillo et al. 1990; Dean et al. 
1992; Woodward et al. 2004; Birkett 1998). The concentrations of tropospheric NO2 
and CO2 are also used in our study as atmosphere parameters, impacting NPP as well 
(Xiao et al. 1995). There has been research indicating that biomass burning influences 
soil fuel and atmospheric environment (Freeborn et al. 2011; Boschetti and Roy 2009). 
Therefore, fire radiative power (FRP), i.e. the emissions of fire radiative energy, as an 
indicator to quantify biomass burning and trace gases, is used to express fire intensity 
in this work. Furthermore, surface emissivity, plant canopy surface water and canopy 
water evaporation are used as potential impact factors in NPP calculation.

As shown in research (Ardö 2015), moderate resolution imaging spectro-radiometer 
(MODIS) NPP product from ftp://ftp.ntsg.umt.edu/pub/MODIS/NTSG_Products/
MOD17/GeoTIFF/MOD17A3/GeoTIFF_30arcsec/ is used as ground truth for training 
our regression model and evaluating its performance.

Table 1  Feature variables and their corresponding indexes used for calculating NPP

Feature index Feature variable

1 Longitude

2 Latitude

3 Aerosol index

4 Carbon dioxide

5 GPCP (global precipitation climatology project) precipitation rain rate

6 Planetary boundary layer height above surface (height)

7 Nitrogen dioxide

8 Soil temperature

9 Soil moisture

10 Enhanced vegetation index

11 Fire radiative power

12 Land surface temperature in the night time

13 Land surface temperature in the daytime

14 Normalized difference vegetation index (NDVI)

15 Irradiance ultraviolet

16 Net longwave radiation

17 Net shortwave Radiation

18 Aerosol optical depth

19 Surface emissivity

20 Plant canopy surface water

21 Canopy water evaporation

22 Wind speed

23 Oil consumption

24 Gas consumption

25 Renewable energy consumption

26 Coal consumption

27 CO2 consumption
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Anthropogenic consumption

BP statistical Review of World Energy (2015) is the statistical review on world energy 
markets, published by BP, one of the world’s leading international oil and gas companies. 
It records annual primary energy consumption comprising oil, coal and natural gas. The 
consumption of renewable energy, such as solar and wind energy is recorded as well. 
Moreover, CO2 emission is published in the statistical review to reflect the anthropo-
genic impact on atmosphere. Each kind of statistical data is mapped to a global map with 
the help of ArcGIS software at the spatial resolution of 1° ×  1°. In total, we have five 
anthropogenic products, indexed as 23–27 in Table 1.

Random forest regression modeling

Random forest (Breiman 2001) is an ensemble learning model, composed of multiple 
trees. Each tree samples a different bootstrap sample of data for construction. A fixed 
number of features are randomly selected to train the criteria of each node. Random 
Forest has become a widely used machine learning model, since it performs better than 
support vector machines and neural networks in many researches (Liaw and Wiener 
2002). The whole process of training a random forest regression model is listed as below:

1.	 Given training sample set S, test set T and the feature vector F of each sample. The 
number of trees in the forest is N and f is the fixed number of feature vector, selected 
from F used to train each note;

2.	 For each of the bootstrap samples, train a regression tree where each node is split by 
choosing the best criteria among the randomly selected f features at that node;

3.	 Obtain the regression value as the average of the N regression values from N trees.

Variable importance calculation

Variable importance, measuring the interaction of each variable with all the others, can 
be obtained from a trained random forest regression model. The importance of each var-
iable is calculated by evaluating the average error increase when it is permuted while all 
the other variables are maintained the same. From the calculated variable importance, 
we can investigate the impact of each feature variable has in the regression model. The 
details in calculating variable importance are described in the following equations.

where VI(Fi) is the variable importance of feature Fi, VIt(Fi) is the variable importance 
of tree t, Rerror(F̂) is the regression error after permuting feature Fi and Rerror(F) is the 
regression error before permuting.

Land cover classification

This paper is focused on analyzing potential impact factors of NPP in terms of differ-
ent land cover types. MODIS global land cover product in the IGBP land cover type 

(1)VI(Fi) =

∑Ntree

t=1
VI

t(Fi)

Ntree

(2)VI
t(Fi) = Rerror(F̂i)− Rerror(F)
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classification is downloaded from http://glcf.umd.edu/data/lc/. The product has 18 types 
of land totally, but some are merged in our study for the sake of analysis. Generally, we 
have eight classes in our study, forest, shrub lands, savannas, grasslands, permanent wet-
lands, croplands and built-up area, snow and ice and barren or sparsely vegetated area. 
The reason why croplands and built-up area are merged together is that urban areas are 
typically built on or near the most productive agricultural lands. They have strong inter-
action between each other. The class ‘water’ is not considered in our study, because our 
research mainly focuses on global terrestrial ecosystem. Therefore, eight classes of land 
cover with eight class labels are generated, and the corresponding annual product for 
each land cover can be achieved by masking using each class label.

Results
Regression performance of random forest model

Of all the 7-year products of each type of land from 2005 to 2011 in this study, we ran-
domly picked 2-year products as test data; the other 5-year products are used for train-
ing a random forest regression model to calculate global terrestrial NPP for each type of 
land. The ratio between the number of training and testing data is 5:2 in our case, which 
satisfies the commonly used pipeline in solving machine learning problems that the ratio 
between the quantity of training and testing data is larger than 2:1. Table 2 demonstrates 
the correlation coefficient of data in each test year between the estimated NPP spatial 
pattern and ground truth MODIS NPP in different land cover type. Furthermore, to 
demonstrate the correlation visually, the scatter plots of estimated NPP by random for-
est (RF) and MODIS NPP in three main land cover types, forests, shrub lands and savan-
nas are shown in Fig. 1.

Concerning Table 2 and Fig. 1, the NPP pattern estimated by random forest correlates 
quite well with that from MODIS in each type of land. All the correlation coefficients are 
higher than 0.98, indicating strong correlation. The results validate that random forest 
model estimates NPP pattern as well as MODIS product.

Feature variable importance of each type of land

To further understand the importance of each feature variable in estimating NPP pat-
tern in each type of land, we calculated variable importance for each feature on top of 
the trained model and demonstrated in terms of each type of land in Figs. 2, 3 and 4. The 
numbers are in accordance with the indexes in Table 1. 

Generally, Figs. 2, 3 and 4 show that variable importance rankings in different types 
of land are different. For the sake of understanding the importance ranking of feature 

Table 2  Correlation coefficient between calculated NPP by random forest and MODIS NPP 
in global different types of land

Class 
year

Forests Shrub 
lands

Savannas Grass-
lands

Perma-
nent 
wetlands

Croplands 
and built-
up area

Snow 
and ice

Barren 
and sparsely 
vegetated

2005 0.991651 0.983342 0.988376 0.991347 0.984758 0.987507 0.991462 0.987169

2010 0.990842 0.982202 0.987927 0.991595 0.983005 0.988258 0.992126 0.984349

http://glcf.umd.edu/data/lc/
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variables in the eight types of land, as shown in Figs.  2, 3 and 4, we have divided the 
importance rankings into four groups and demonstrated in Table 3.

As shown in Table 3, each type of land has four groups of feature variables, ranked one 
after another. For example, NPP in global forests (Fig.  2a) is mostly influenced by the 
two feature variables in the 1st group, latitude and irradiance ultraviolet. They determine 
solar radiation, which play a significant role in photosynthesis. NDVI belongs to the 2nd 
group, indicating the growing motion of forests. The 3rd group consists of height, CO2 
and anthropogenic impact. Height is important in NPP estimation for forests, since it 
describes the growth stage of the tree. Anthropogenic impact comprises anthropogenic 
primary energy consumption, renewable energy consumption and CO2 emissions. With 
elevated CO2 concentrations, water use efficiency of the plant is enhanced, especially 
in high latitude ecosystems (Xiao et al. 1995). Therefore, the rate of decomposition of 
organic matter is increased, so that NPP is influenced. The other parameters, such as 
aerosol index, NO2, soil temperature, soil moisture and so on are actually not playing 
that important role in calculating NPP as expected. Moreover, most researches (Clark 
et al. 2001; Schuur 2003; Pan et al. 2013) conducted in analyzing forest NPP only focus 
on precipitation, temperature and a few other commonly used soil conditions. As far as 
we are concerned, there are few researches analyzing impact factors of forest NPP con-
sidering not only anthropogenic impact and solar radiation impact, but also biosphere 
impact, like this paper. The researches mostly focus on precipitation and temperature 
(Melton et al. 2013; Scholes and Hall 1996). The situation goes the same with the other 
seven land cover types.

Discussion and conclusions
In this paper, we have analysed potential impact factors of global NPP in eight types 
of land, based on a trained random forest regression model. The regression model cal-
culates NPP fairly well as MODIS NPP product. From the feature variable importance 
analysis, we find that the importance rankings of the potential impact features for differ-
ent types of land are different. A systematic comparison of feature importance is done 
for eight types of land at a global scale and generally can be grouped into anthropogenic 
impact, solar radiation impact and biosphere impact.

Fig. 1  Scatter plots of NPP from RF and MODIS in forests, shrub lands and savannas in randomly selected test 
year 2005 and 2010
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Solar radiation impact

Solar radiation factors, latitude and irradiance ultraviolet are ranked in the first two 
groups of the eight types of land. That indicates impact of solar radiation on NPP cal-
culation is stronger than anthropogenic impact and most biosphere impact, except for 
NDVI.

Anthropogenic impact

Anthropogenic impact comprises anthropogenic oil consumption, gas consumption, coal 
consumption, renewable energy consumption and CO2 emissions. They are significantly 
influencing NPP in most land cover types, except for permanent wetlands, snow and ice, 
and barren and sparsely vegetated area, which accords with the report in (Haberl et al. 
2007). The anthropogenic activities in permanent wetlands, snow and ice and barren and 
sparsely vegetated areas are comparatively less frequent than in other types of land.

Fig. 2  Variable importance of each factor impacting NPP in each type of land from 2005 to 2011
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Biosphere impact

NDVI is leading the impact that all the concerning features have on calculating NPP, 
together with latitude and irradiance ultraviolet. It further accords with the conclusions 
that NDVI is significantly correlated with NPP (Schloss et al. 1999), and NDVI has been 
used to replace NPP to analyze ecological cycle in many researches (Schloss et al. 1999). 
Apart from NDVI, surface emissivity and precipitation are influencing NPP largely in 
most land cover types, except for forest, which is covered by intense high trees. That 
comes to the same conclusion with the researches analyzing the impact factors of savan-
nas, shrub lands and so on (Melton et al. 2013; Zhu and Southworth 2013; Schuur 2003; 
Scholes and Hall 1996). Moreover, FRP in this study shows little impact on global NPP. 
But there have been many researches concluding that FRP generates precursor of tropo-
spheric ozone (Monks et al. 2015), which has been proved to be highly correlated with 
NPP to a large extent (Ainsworth et al. 2012). That indicates that the impact of FRP on 

Fig. 3  Variable importance of each factor impacting NPP in each type of land from 2005 to 2011
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NPP is not immediate, which cannot be measured using the simultaneous products. It 
will take a long time for the influence to become obvious.

The other biosphere impact factors, such as soil moisture, aerosol index and land sur-
face temperature, are expected to play a dominant role in calculating NPP, while most 
features play limited role in effecting NPP as they rank the last group in all the land 
cover types. That is different from the common principle that the biosphere impact fac-
tors are important in measuring NPP and form the basic equations of NPP calculation 
(Vorosmarty and Schloss 1993) in process-based models. Data-driven model focuses 
on the importance of each feature has in calculating NPP, and constructs a synthe-
sized model to calculate NPP. Each feature variable has a different weight, representing 
its importance. However, process-based model focuses on the physical understanding 
of the NPP generation process, which may miss more significant feature variables and 
may be subjective misunderstandable. The main different roles of biosphere factors play-
ing in process-based models and data-driven models is that biosphere factors form the 
basic formulations in generating NPP in common belief and experience, while data-
driven model calculates the significance of each feature objectively without much prior 
knowledge.

Since there are few researches in understanding the 27 potential impact factors of 
NPP pattern in different land cover types simultaneously, this study conducts a compre-
hensive analysis of potential impact factors in estimating global NPP spatial pattern in 
terms of eight types of land. We come to the conclusion that NDVI, irradiance ultravio-
let and latitude are the most significant features for each type of land, which accord with 
many published correlation analyses. However, the commonly used features in process-
based model for calculating NPP, such as soil moisture, soil temperature and aerosol 

Fig. 4  Variable importance of each factor impacting NPP in each type of land from 2005 to 2011
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index are comparatively less important than anthropogenic impact and solar radiation 
impact. That indicates that more relevant parameters should be considered in process-
based models and they should be given objective weights in different types of land. As 
a complementary of process-based model, this work broadens the method in under-
standing ecological process system by providing an objective and effective data-driven 
model using publicly available remote sensed products. Moreover, the specific analysis 
of the impact factors on NPP may provide a direction for policy makings to decrease the 
anthropogenic impact and enhance NPP.

Data accessibility
Remote sensed products: http://giovanni.sci.gsfc.nasa.gov/giovanni/, http://gdata1.sci.
gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=neespi, http://glcf.umd.edu/data/lc/.

BP statistical review data: http://tools.bp.com/energy-charting-tool.aspx.
ArcGIS: http://www.esrichina-bj.cn/softwareproduct/ArcGIS/ArcGis%2010.1/.

Table 3  Importance ranking group of each land cover type in Figs. 2, 3 and 4

Forests (Fig. 2a) 1st Latitude and irradiance ultraviolet

2nd NDVI

3rd Height, CO2 and anthropogenic impact

4th Others, such as aerosol index, NO2, soil temperature, soil moisture

Shrub lands (Fig. 2b) 1st NDVI

2nd Latitude, height, irradiance ultraviolet, surface emissivity

3rd Anthropogenic impact, precipitation

4th Others, such as aerosol index, NO2, soil temperature, soil moisture

Savannas (Fig. 2c) 1st Latitude and NDVI

2nd Irradiance ultraviolet and surface emissions

3rd Precipitation, height, soil temperature, land surface temperature, 
wind speed and anthropogenic impact

4th Others

Grasslands (Fig. 3a) 1st Latitude and NDVI

2nd Height, irradiance ultraviolet and surface emissivity

3rd CO2, precipitation, wind speed and anthropogenic impact

4th Others, such as soil temperature, FRP, land surface temperature

Permanent wetlands (Fig. 3b) 1st NDVI

2nd Wind speed

3rd Latitude, irradiance ultraviolet, surface emissivity and precipitation

4th Others, anthropogenic impact belongs to this group

Croplands and Built-up area (Fig. 3c) 1st NDVI

2nd Irradiance ultraviolet, latitude and surface emissivity

3rd Precipitation, height, soil temperature, anthropogenic impact

4th Others, including soil moisture, FRP, all-wave radiation

Snow and ice (Fig. 4a) 1st NDVI

2nd Latitude

3rd Irradiance ultraviolet and surface emissivity

4th Others, including anthropogenic impact

Barren & Sparsely vegetated (Fig. 4b) 1st Latitude

2nd NDVI, irradiance ultraviolet, surface emissivity

3rd Others

4th –

http://giovanni.sci.gsfc.nasa.gov/giovanni/
http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi%3finstance_id%3dneespi
http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi%3finstance_id%3dneespi
http://glcf.umd.edu/data/lc/
http://tools.bp.com/energy-charting-tool.aspx
http://www.esrichina-bj.cn/softwareproduct/ArcGIS/ArcGis%252010.1/
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