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Background

Global food security threatened by climate change is one of the serious challenges in
the twenty-first century to supply sufficient food for the burgeoning population while
sustaining the already stressed environment. Changes in temperature and precipita-
tion due to global climate change may have serious impacts on hydrologic processes,
water resources availability, irrigation water demand, and thereby affecting the agri-
cultural production and productivity. Meanwhile, climate variability is one of the most
significant factors influencing year to year crop production, even in high yielding and
high-technology agricultural areas (Kang et al. 2009). There are reports suggesting that
decline in grain yields of rice and wheat in Indo-Gangetic Plains (IGP) could have been
partly due to weather changes (Aggarwal et al. 2004).

Agricultural productivity is sensitive to climate change due to direct effects of changes
in temperature, precipitation and carbon dioxide concentrations, and also due to indi-
rect effects through changes in soil moisture and the distribution and frequency of infes-
tation by pests and diseases (Mendelsohn 2014). The increase in temperature under
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climate change scenarios is expected to increase the evapotranspiration (ET) demand.
Therefore, understanding the impacts of climate change on crop production and water
resources is of utmost importance for developing possible adaptation strategies.

Various studies conducted to study the effects of climate change on the crop produc-
tion showed that the effect of climate change on crop production varied with the cli-
mate change scenario used, current climate, cropping systems, management practices
and also from region to region (e.g., Islam et al. 2012, 2014; Hillel and Rosenzweig
2011; Ko et al. 2011; Rosenzweig and Parry 2004). Naresh Kumar et al. (2013) reported
decrease in irrigated rice yields in India by about 4, 7, and 10 % during the 2020s (2010—
2039), 2050s (2040-2069), and 2080s (2070-2099), respectively. Rainfed rice yields in
India were projected to decrease by about 6 % during the 2020s scenario, but during
the 2050s and 2080s decrease was projected to be marginal (<2.5 %). Naresh Kumar
et al. (2014) reported 6—23 and 15-25 % reduction in the wheat yield in India during
2050s and 2080s, respectively, under projected climate change scenarios. Mishra et al.
(2013) reported a change in the rice yield in the range of —4.7 [lower Indo-Gangetic
Basin (IGB)] to —23.8 (upper IGB) and 1.2 (lower IGB) to —5.9 % (upper IGB) under
the REMO and HadRM3 projected climate change scenarios, respectively. They also
reported a change in wheat yield in the range of —1.7 (lower IGB) to —12.9 (upper IGB)
and 5.4 (lower IGB) to —6.1 % (upper IGB) under REMO and HadRM3 projected sce-
narios, respectively. These results indicate need for region specific studies for developing
proper adaptation strategies.

Soil and Water Assessment Tool (SWAT) is a comprehensive, hydrological model that
incorporates hydrological, chemical, and ecological processes and management prac-
tices in watershed simulation and analysis (Arnold et al. 1998; Neitsch et al. 2011). It
simulates the plant growth by simplifying the generic crop growth module from the ero-
sion productivity impact calculator (EPIC) model (Neitsch et al. 2011). This model has
been successfully applied for studying impact of climate change on water resources (e.g.,
Gosain et al. 2011; Singh and Gosain 2011; Narsimlu et al. 2013) as well as in crop pro-
duction (e.g., Lakshmanan et al. 2011; Bhuvaneswari et al. 2013) in different river basins
of India. Lakshmanan et al. (2011) modelled the hydrology and rice yield of the Bhavani
basin in Tamil Nadu, India and showed that the SWAT can be employed under differ-
ent climate change as well as management scenarios for developing adaptation strategies
to sustain rice production under changing climate scenarios. SWAT has also been used
to assess the impact of El Nifio/Southern Oscillation on hydrology and rice productiv-
ity in the Cauvery basin in India (Bhuvaneswari et al. 2013). The main objective of this
paper is to assess the climate change impact on rice and wheat yield in the Gomti River
basin using the SWAT hydrological model and climate change projections from Model
of Interdisciplinary Research on Climate (MIROC-HiRes) GCM.

Methods

Description of the study area

The Gomti River basin lies mainly in Uttar Pradesh (UP) and is spread over an area of
30,437 km? (Dutta et al. 2011). Topography of the basin is undulating, and the eleva-
tion ranges from 58 to 238 m above mean sea level (MSL) (Fig. 1). The climate of the
basin is semi-arid to sub-humid tropical with average annual rainfall varying from 850 to
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Fig. 1 Location map of Gomti River basin with distribution of gauging stations and major stream network,
and district boundaries in the basin

1100 mm. This river is one of the important tributaries of the Ganga River and it meets
the main Ganga River at Kaithi in Varanasi (UP) after flowing 960 km in south, south-
east direction (Abeysingha et al. 2015).

SWAT model description

The SWAT model was developed for exploring the effects of climate and land manage-
ment practices on water, sediment and agricultural chemical yields (Arnold et al. 1998).
This is a watershed scale model and simulates the hydrological cycle, plant growth
cycles, transportation of sediment, and agricultural chemical yields on a daily time step.
In SWAT, the watershed is divided into a number of sub-watersheds that are further sub-
divided into hydrologic response units (HRUs) based on unique soil, slope and land-use
characteristics. The model simulates hydrology at each HRUs using the water balance
equation. In present study, we used the latest version of SWAT (SWAT-2012.10_1.14)
with ArcGIS (ver.10.1) interface.

The SWAT model provides different methods to estimate surface runoff, evapotranspi-
ration and channel routing (Neitsch et al. 2011). We used the SCS curve number proce-
dure (USDA SCS 1972), the Penman—Monteith method (Monteith 1965), and variable
storage coefficient method (William 1969) for the estimation of runoff, evapotranspira-
tion and channel routing, respectively. Actual evapotranspiration was estimated based
on methodology developed by Ritchie (1972).



Abeysingha et al. SpringerPlus (2016) 5:1250 Page 4 of 20

In the SWAT model, crop growth is computed based on EPIC crop growth model.
The crop growth model initially computes the potential crop growth under ideal grow-
ing conditions by simulating leaf area development, light interception, and conversion
of intercepted light into biomass assuming a species-specific radiation-use efficiency
(RUE) (Neitsch et al. 2011). If there are constraints imposed by water, temperature, and
nutrients in a simulation day, the SWAT model simulates actual crop growth with the
applicable stress factors. SWAT considers the temperature stress as a function of the
daily average air temperature and the optimal temperature for plant growth. As the air
temperature diverges from the optimal, plant begins to experience stress (Neitsch et al.
2011). Following equations are used to determine the temperature stresses (Neitsch et al.
2011):

tstrs =1 when Ty < Thuse (D

—0.1054 - (Topt — Tag)?
(Topt - Tavg)2

tstrs =1 — exp{ | when Tpuee < Tay < Topt (2)

—0.1054 - (Topt — Tavg)? .
tstrs = 1 — exp (- opt ~ Targ) when Topr < Tay < 2Topt — Tpase
2- Topt - Tavg - Tbase)2 3)

tstrs =1 when T, > 2Topt — Tpase- 4)

where, tstrs is the temperature stress for a given day expressed as fraction of optimal
plant growth, T,,, is the mean air temperature for a day (°C), T}, is the plant’s base or
minimum temperature for growth (°C), and T, is the plant’s optimal temperature for
growth (°C).

SWAT model set-up

For SWAT simulation, the basin, sub basins and stream network were delineated from
the 90 m x 90 m shuttle radar topography mission (SRTM) (Jarvis et al. 2008) digital
elevation model (DEM) (http://gisdata.usgs.gov/website/Hydro-SHEDS/), Gomti River
basin was divided into 21 sub-basins (Fig. 2a) at the SWAT watershed delineation pro-
cess and sub-basin discretization for spatial aggregation, and was further divided into
296 HRUs at HRU definition and analysis. The soil types of the study area were extracted
from a soil map (78 x 78 m resolution) of the Ganga River basin (http://gisserver.civil.
iitd.ac.in/grbmp/iitd.htm) which has been digitized from the soil map of National Bureau
of Soil Survey and Land Use Planning (NBSS&LUP) (Fig. 2a). Soils of the area were pre-
dominantly alluvial, deep soil. Soil properties were also taken from the same NBSS&LUP
soil map. For land use and land cover data, the satellite remote sensing derived Inter-
national Water Management Institute (IWMI) land-cover map (Thenkabail et al. 2009)
of the study area at 56 x 56 m resolution was used. The predominant land use in the
basin was agriculture, with 59.4 % of the area occupying irrigated conjunctive use double
cropping (SWAT model class, R-08), and 32.7 % area occupying irrigated surface water,
double cropping (R-02) (Fig. 2b). Other land use categories were forests (2.6 %), irrigated
surface water continuous crop lands (1.3 %—R03), barren lands (1.1 %) etc. Climate data
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Fig. 2 Soil and landuse map of the Gomti River basin (1-21 denotes the sub basin numbers). a Soil types and
sub basin map. b Land use land cover map

required by the model are daily precipitation, maximum and minimum air temperature,
solar radiation, wind speed, and relative humidity. Historical daily precipitation and air
temperatures of 14 districts (Barabankki, Hardoi, Kheri, Lucknow, Pilibhit, Shahjahan-
pur, Sitapur, Unnao, Udham Singh Nagar, Faizabad, Pratapgarh, Rae Bareli, Sultanpur,
and Jaunpur) covering the entire basin for the period 1982-2010 were obtained from
the National Initiative on Climate Resilient Agriculture web portal (NICRA, http://www.
nicra-icar.in/nicrarevised/). Daily values of solar radiation, wind speed, and relative
humidity were generated using long term statistics through the WXGEN weather gen-
erator (Sharpley and Williams 1990) in SWAT.

Inputs for simulation of crops in the basin

We assigned crops to IWMI land use and land cover map of the Gomti River basin con-
sidering the cropping pattern of Uttar Pradesh (UP) assessed using IRS-P6 (AWIFS)
data (Singh et al. 2011). They showed that the rice—wheat is the main cropping pattern
and the order of the cropping pattern in UP in terms of area is rice—wheat > sugar-
cane > rice—pulses > sugarcane—wheat etc. The land cover category R-08 was assigned
to irrigated rice (kharif) and wheat (rabi). The R-02 category was assigned to rice
(kharif) and pulses (rabi) and R-03 category was assigned to sugarcane (annual) crop.
R-08, R-02, and R-03 occupy 59.58, 32.45, and 1.38 % areas, respectively, in the basin.
The management inputs on planting, harvesting and irrigation were obtained from the
available literature pertaining to the area (Hobbs et al. 1992; Gangwar and Singh 2011).
Considerable part of the Gomti River basin is supplied with canal water from Sharda
Sahayak canal system. Therefore, water source for the simulation of the rice, sugarcane,
and pulse (lentil) was considered as canal water in HRUs, where canal is located, and
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SWAT recognized the source as outside unlimited source. For the other rice growing
HRUs where canal is not located, source of irrigation was considered as shallow aquifer
located in the same sub-basin. For irrigation of wheat, auto irrigation option of SWAT
was used in which source of irrigation water was considered as shallow aquifer located
in the same sub basin. For auto-irrigation, the plant water stress threshold that triggers
irrigation was set to 0.9 initially (Arnold et al. 2012). The HRUs under sugarcane and
pulse (lentil) crops were irrigated similarly as that of area under wheat. The sugarcane
and pulse crops were simulated as part of land use category in the model setup but they
are not calibrated and validated and hence not reported in this paper. We selected auto-
matic fertilization option for fertilizing the crops because of the difficulty in obtaining
fertilizer schedules for each crop at each HRUs.

Paddy fields in the SWAT model are treated as a pothole, like an impounded or
depression area. Impound operation was given before planting, and release operation
was given 5 days before harvesting of paddy for each rice growing HRUs. Maximum vol-
ume of water stored in the pothole was fixed to 60 mm and the fraction of area that
drains to pothole was initially set as 0.8. Moreover, at the initial stage of the modelling,
initial leaf area index (LAI) and biomass of rice were set as 1.1 and 800 kg/ha, respec-
tively as rice is mostly a transplanted crop (Kaur et al. 2003). However, these values were
lowered to 0.9-1 and 700-780 kg/ha, respectively while calibrating the model to match
the observed and simulated rice yield of different districts.

Climate change scenarios

Future climate projections of the “Model of Interdisciplinary Research on Climate
(MIROC)” GCM, from the World Climate Research Programme’s (WCRP’s) Coupled
Model Intercomparison Project Phase 3 (CMIP3) climate projections multi-model data-
set (Meehl et al. 2007), were used to develop climate change scenarios. The MIROC3.2
model, developed at the National Institute for Environmental Studies of Japan, has been
found to perform quite satisfactorily, with larger pattern correlation and smaller root-
mean-square differences for India (Anandhi and Nanjundiah 2014; Das et al. 2012).
Using the MIROC 3.2 (HiRes) monthly projection for three Special Report on Emission
Scenarios (SRES) emission scenarios, namely A2 (high), A1B (medium) and Bl (low),
daily rainfall and temperature time series were generated for three future periods of
2020s (2010-2039), 2050s (2040-2069), and 2080s (2070-2099). We used the most com-
monly used perturbation (or delta change) method (Hay et al. 2000; Ragab and Prud-
homme 2002; Khoi and Suetsugi 2012) for generating the climate change scenarios.
These perturbed rainfall and temperature data of 12 stations, spread over the basin, were
input to the calibrated and validated SWAT model and model was run for the each emis-
sion scenarios and time periods separately. The results were analysed separately for each
of the emission scenarios and time periods. The results in each case were expressed as
cumulative distribution functions (CDFs) and as percentage change with respect to the

baseline period.

Model calibration and validation for streamflow
The SWAT model was calibrated and validated for the streamflow at four spatially dis-
tributed gauging stations, Neemsar, Sultanpur, Jaunpur and Maighat (Fig. 1) based on
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the monthly streamflow data obtained from Central Water Commission (CWC), Min-
istry of Water Resources, River Development and Ganga Rejuvenation, Government
of India. Eight years warm-up period (1982-1990) was considered prior to the model
simulation starting date to stabilize the model initial condition. Before calibration and
validation, a sensitivity analysis was performed using SUFI2 in SWAT CUP auto cali-
bration tool (version 5.1.7) (Abbaspour 2012). Most sensitive hydrological parameters
were then adjusted manually considering their limits (Moriasi et al. 2007) and taking
the support from SWAT CHECK which is embedded in the SWAT 2012. After calibrat-
ing the crop parameters manually (as discussed in section “Rice and wheat yield cali-
bration and validation”) final adjustments for the hydrological parameters were done by
matching observed and simulated streamflow data of four different gauging stations. The
model was calibrated using the data for 1990-2000 for all the four gauging stations. The
model validation was done using 2001-2008 data for all the gauging stations, except for
Maighat station where data for the period 2001-2006 was used for model validation. The
Nash-Sutcliffe efficiency (NSE), coefficient of determination (R*), RMSE-observations
standard deviation ratio (RSR), and percent bias (PBIAS) were used as benchmarking
indices to assess the goodness of fit of simulated and observed streamflow.

Rice and wheat yield calibration and validation

Annual yields of both rice and wheat were calibrated by manually adjusting the param-
eters such as harvest index (HVSTI), biomass energy ratio (BIO_E), Auto_NSTRS (nitro-
gen stress factor that triggers fertilization), Auto_WSTRS (water stress threshold that
trigger irrigation), for both the crops. In addition to the above parameters, the planting
and harvesting dates and heat unit to maturity for wheat and initial LAI and biomass for
rice were also considered for calibrating the model.

The model was calibrated for rice using the yield data for the period 1995-2002 and
validated using the data for the period 2003-2008. Similarly, calibration of the model
for wheat was done using the yield data for 1996, 1998—2003, and data for 2004—2009
periods were used for model validation. Reported rice and wheat yield data of four dis-
tricts (Lucknow, Sultanpur, Barabanki, and Jaunpur) in the basin, collected from the
State Department of Agriculture, Lucknow, Uttar Pradesh, were used for calibration and
validation of the model. Area weighted average simulated yield of each HRUs in rele-
vant districts were compared with the reported district average yield for calibration and
validation of SWAT model. The differences between the measured and simulated yields
were evaluated by using  test statistics (p > 0.05) and PBIAS (<10 %). These statistics for
SWAT crop yield calibration has been reported in previous studies too (Hu et al. 2007;
Nair 2010; Ahmad et al. 2011).

Results and discussion

Streamflow calibration and validation

Streamflow at the four gauging stations were calibrated and validated for the most sen-
sitive parameters by matching measured and simulated streamflow of the four gaug-
ing stations located in the basin. The most sensitive factors considered for calibration
and validation are: Base flow alpha factor (ALPHA_BF), available water capacity (SOL_
AWC), plant uptake compensation factor (EPCO), delay of time for aquifer recharge
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(GW_DELAY), aquifer percolation coefficient (RCHRG_Dp), groundwater ‘revap’ coef-
ficient (GW_REVAP), soil evaporation compensation factor (ESCO), curve number
(CN2), threshold water depth in the shallow aquifer for flow (GWQMIN), threshold
water level in shallow aquifer for revap (REVAPMIN), saturated hydraulic conductiv-
ity (SOL_K), Manning’s “n” value for overland flow (OV_N), maximum canopy storage
(CANMAX), channel effective hydraulic conductivity (CH_K2), bulk density (SOL_BD).
During calibration period, the performance indicators R?, NSE, RSR, and PBIAS values
were in the range of 0.66—0.78, 0.62—0.74, 0.51-0.61, and —0.25 to 14, respectively. Dur-
ing validation period, the same indicators values ranged from 0.57 to 0.73, 0.51 to 0.72,
0.50 to 0.68, and —1.1 to 17.7, respectively (Table 1).

According to the performance rating suggested by Moriasi et al. (2007), model per-
formance was good (0.65 < NSE < 0.75; 0.5 < RSR < 0.6; and +10 < |PBIAS| < +£15)
during both calibration and validation phase at Neemsar and Sultanpur, and dur-
ing calibration phase at Maighat. The model performance was found to be satisfactory
(0.5 < NSE < 0.65; 0.6 < RSR < 0.7; and +15 < |PBIAS| < £25) during the both cali-
bration and during validation phase at Jaunpur, and during validation phase at Maighat
gauging station. The statistical indicators of the Maighat gauging station, which is
located at the downstream end of the basin and reflecting the outflow from the entire
basin, indicates that model performance is good at the calibration phase but satisfac-
tory at the validation phase. Based on threshold R? or E (model efficiency) value, Parajuli
(2010) categorized model performance for monthly streamflow as excellent (>0.90), very
good (0.75-0.89), good (0.50—0.74), fair (0.25-0.49), poor (0-0.24), and unsatisfactory
(<0). According to these criteria, SWAT model performed reasonably well in simulating
the streamflow for the entire Gomti basin with R? and NSE values >0.50 for all the sub-
basins both during calibration and validation. Overall, the SWAT model exhibits satis-
factory performance in simulating monthly streamflows for the entire Gomti River basin
as this study used observed streamflow of four spatially distributed gauging stations and

long term records which cover both dry and wet years.

Rice and wheat calibration and validation

Simulated rice and wheat yield were compared with the reported yields of different dis-
tricts located within the basin. According to ¢ test statistics (p > 0.05) and PBIAS (<10 %)
evaluation statistics, SWAT model performed reasonably well in all the four districts in
simulating the rice yield during calibration period (Table 2). Further, model performed
reasonably well during validation phase except at Jaunpur district where PBIAS > 10

Table 1 Model calibration and validation performance statistics for monthly streamflows
at the four gauging stations

Calibration Validation

NSE RSR PBIAS (%) R? NSE RSR PBIAS (%) R?
Neemsar 0.72 0.52 —0.25 0.73 0.72 0.53 —1.1 0.76
Sultanpur 0.74 0.51 14.0 0.78 0.64 0.50 3.2 0.69
Jaunpur 0.62 061 124 0.66 0.54 0.67 40 0.63

Maighat 0.72 0.53 9.76 0.77 0.51 0.68 17.7 0.57
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Table 2 Rice and wheat calibration and validation performance statistics

Districts Calibration Validation

Reported Simulated t-statistics PBIAS Reported Simulated t-statistics PBIAS

meanyield mean yield meanyield mean yield

(t/ha) (t/ha) (t/ha) (t/ha)
Rice
Lucknow 1.68 1.78 0.29 —58 1.96 1.77 0.03* 10.0
Barabanki 2.01 1.98 0.66 16 218 1.98 0.12 9.0
Sultanpur  2.05 2.12 0.52 —31 214 2.18 0.37 —6.5
Jaunpur 213 213 0.99 0.01 1.88 2.13 0.16 —137
Wheat
Lucknow 235 2.74 0.18 =147 251 2.83 0.10 —10.5
Barabanki 259 237 047 85 293 245 0.16 164
Sultanpur  2.51 2.32 0.52 73 270 2.30 0.15 14.7
Jaunpur 240 241 0.72 39 250 240 0.72 39

* Indicates t values significant at p < 0.05

(Table 2) and Lucknow where ¢ test value is <0.05. Similarly, mean wheat yield was also
simulated reasonably well by the model in both calibration and validation phases as far
as t test values are concerned. However, PBIAS was slightly higher than 10 at calibra-
tion phase in Lucknow, and during validation phase in Lucknow, Barabanki and Sul-
tanpur (Table 2). The over estimation (rice: 0.005-0.85 t/ha and wheat: 0.04—1.5 t/ha)
and underestimation (rice: 0.01-0.48 t/ha and wheat: 0.065—1.74 t/ha) of rice and wheat
yield during some years of calibration and validation periods could be attributed to dif-
ferent management practices followed e.g., tillage operations, crop rotations, depth and
frequency of water application and planting dates etc. in different districts. However,
SWAT could simulate the long term average yield quite well as shown in the mean statis-
tics (Table 2). Since long term (30 years) mean yield for future as well as baseline period
were used for climate change impact studies, the performance of the SWAT model in
simulating mean yield may be considered as quite satisfactory.

Temperature and rainfall change during the rice and wheat growing seasons
Mean temperature changes in the basin varied from 0.02 to 1.56, 0.47-2.60, and 1.21—
4.10 °C during 2020s, 2050s, and 2080s, respectively under different emission scenarios
(Fig. 3). During the rice growing months (June—October), the changes in mean tempera-
ture varied from 0.02 to 0.77, 0.46 to 1.66, and 1.21 to 3.34 °C during 2020s, 2050s, and
2080s, respectively, depending upon the different emission scenarios. As shown in Fig. 3,
the mean temperature changes during wheat growing season (November—April) were
higher than the projected temperature change for rice growing season. It varied from
0.58 to 1.56, 1.23 to 2.60 and 1.96 to 3.98 °C, during 2020s, 2050s, and 2080s, respectively.
As shown in Fig. 3, there is increase in rainfall in the basin during most of the months.
The changes in the mean monthly rainfall in the basin varied in the range of —38.1 (Dec)
to 91.5 (May), —48.8 (Nov) to 112.7 (May), and —45.8 (Nov) to 103.6 % (May) during
2020s, 2050s, and 2080, respectively, depending upon the different emission scenarios.
During the rice growing period (June—October), there is increase in rainfall under all
three emission scenarios for all the three future periods in most of the months, except
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for the month of August in which there is decrease in rainfall under the A2 emission
scenario during 2020s and 2050s (Fig. 3). This decrease in rainfall during August is 13
and 4 % during 2020s and 2050s, respectively. Mean rainfall changes during the wheat
growing months are different during different month and also under different emission
scenarios (Fig. 3). Overall, month of December, February, March and April showed a
decrease in mean rainfall during all the three future period for most of the emission sce-
narios. In the month of January, rainfall is likely to increase during 2080s for all emission
scenarios in the entire basin. This decrease in rainfall during wheat growing season is

likely to impact the yield as well as irrigation water demand.

Page 10 of 20



Abeysingha et al. SpringerPlus (2016) 5:1250

Impact of rainfall and temperature change on rice and wheat production

Rice

The cumulative distribution function plotted using the 30 years simulated rice yield data,
clearly indicates an increase in rice yield under the changing climate scenarios for the all
the three future periods (2020s, 2050s, and 2080s), with comparatively greater increase
during 2080s as compared to 2050s and 2020s (Fig. 4a). During 2020s, there is marginal
increase in yield and the increase in yield remained almost same for all the three emis-
sion scenarios. Further, analysis of HRU wise simulation results indicated large varia-
tions (1162.5-3401.5 kg/ha) in the simulated yields amongst different HRUs (Fig. 5a)
under different climate change scenarios. The median yield in the basin under different
climate change scenarios ranged from 2077.8 (B1) to 2086.2 kg/ha (A2), 2286.6 (A2) to
2363.5 kg/ha (A1B), and 2503.5 (B1) to 2567.2 (kg/ha) (A2) during 2020s, 2050s, and
2080s, respectively, as compared baseline median yield of 1965.4 kg/ha. The large vari-
ation yield in different HRUs within basin is mainly due to different soil characteristics,
input use and management practices etc. Overall, change in the mean rice yield in the
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Fig. 4 Cumulative distribution function of mean rice and wheat yield in response to climate change
scenarios. a Rice. b Wheat
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basin varied from 5.5 to 6.7, 16.6 to 20.2 and 26.0 to 33.4 %, during 2020s, 2050s and
2080s, respectively (Fig. 6a). It is also to be noted that increase in yield is slightly higher
at the upstream basin as compared to the downstream basin. At the upstream basin the
increase in rice yield ranged from 6.6 to 8.7, 18.8 to 23.5 and 29.4 to 38.1 % during 2020s,
2050s and 2080s, respectively, whereas at the downstream basin the increase in rice yield
ranged from 5.1 to 6.0, 15.1 to 19.0 and 24.7 to 31.7 % during 2020s, 2050s and 2080s,
respectively. Relatively higher increase in yield at the upstream basin may be attrib-
uted to the higher rainfall at the upstream basin (Figs. 3, 8). As we assumed that Sardha
Sahayak canal supplies irrigation water without any limitation even in future time and
rainfall is likely to be substantially increasing during future time periods over the rice
growing season (Fig. 3), water stresses may not limit the paddy growth and development.
The higher increase in rice yield towards the end of the century may be attributed to
higher increase of rainfall during the end of the century (Fig. 6a).

Matthews et al. (1995) reported a reduction in rice yield of about 5 % per degree rise
in mean temperature above 32 °C. Krishnan et al. (2007) predicted average rice yield
changes of —7.20 and —6.66 % with every 1 °C increase in temperature at the cur-
rent level (380 ppm) of CO, using the ORYZA1 and INFOCROP rice models, respec-
tively, in the eastern region of India. They also reported a maximum gain of 11.08 % at

Jorhat, where the climate is warm moist perhumid type had the maximum temperature
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Fig. 6 Changes in rice and wheat yield under different climate change scenarios. a Rice. b Wheat
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of about 28 °C and a minimum temperature of 19 °C only as the temperature at the
time of flowering affects the spikelet fertility and hence the yield. In our study basin,
number of days with T, . > 30 °C remained almost same as that of baseline scenar-
ios (Table 3). Analysis of the mean number of days with maximum temperature (7,,,,)
greater than 30 °C during the rice growing season indicated that that the number of
days with T, > 30 °C ranged from 95 to 99 days in the basin during future periods
as against baseline of 93 days (Table 3). Temperature changes during the rice growing
period were not significantly high in the basin (Fig. 3). The optimum temperature for
the normal development of rice ranges from 27 to 32 °C (Yin et al. 1996; Shah et al.
2011). The projected mean temperatures in the basin during July—Oct ranged from 26.5
to 30, 27.6 to 30.7 and 28.1 to 31.5 °C, respectively, which is within the optimum range
(Yin et al. 1996; Shah et al. 2011) in most of the cases. Thus, temperature changes may
not affect the growth and yield of paddy. As there is not considerable increase in num-
ber of days with 7,,,,. > 30 °C when compared to the baseline period, future maximum
temperature may not affect the rice production considerably in the Gomti river basin. It
has also been reported that changes in the minimum temperature is more crucial than a
change in the maximum temperature for rice with decline in rice yield by 10 % for each
1 °C increase in the minimum temperature above 32 °C (Pathak et al. 2003). However,
MIROC projected maximum values for minimum temperature during the rice sensitive
growing months were 26.04, 26.94 and 28.43 °C, for 2020s, 2050s and 2080s, respec-
tively. Therefore, rice yield may not be negatively affected with these projected changes
of temperature. Further, Saseendrain et al. (2000) reported an exponential increase in
rice yield due to increase in rainfall above the observed values. Increase in temperature
mostly remaining within the optimum limit as compared to the baseline together with
the projected increase in rainfall under all three emission scenarios for all the three
future periods in the basin (Fig. 3) probably contributed to the gain in the rice yield.
In SWAT all stresses including water stress integrates together and influence on the
growth and yield. Therefore, the positive effects of water in rice growth and develop-
ment might outweigh the stress due to higher temperature. Simulation studies con-
ducted using different models and scenarios have projected decrease in rice yield in

Table 3 Average number of days with T, > 30 °C, T,,,,, > 18 °C during rice and wheat

growing season respectively under different climate change scenarios

Scenarios  Time period  Number of days with T, > 30 °C Number of days with T, > 18 °C
during rice growing season during wheat growing season

Basin  Upstream Downstream Basin  Upstream  Downstream

Base Base 93 91 94 150 148 152
A2 2020 95 94 96 152 151 153
2050 97 97 98 153 153 154
2080 99 99 99 154 154 155
Alb 2020 95 94 96 152 151 153
2050 98 97 98 153 153 154
2080 99 99 99 154 154 154
B1 2020 95 93 96 152 151 153
2050 97 96 98 153 152 154

2080 98 98 99 154 153 154
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India as well as Indo-Gangetic basin too (Naresh Kumar et al. 2013; Mishra et al. 2013).
The differences in results may be attributed to the different crop growth simulation
models used as well as climate change scenarios used. For example, Mishra et al. (2013)
based on DSSAT model simulation reported a greater decrease (4.7-23.8) when REMO
projected climate change scenario were used. They reported a change in the rice yield
in the range 1.2 (lower IGB) to —5.9 % (upper 1GB) under the HadRM3 projected cli-

mate change scenarios, respectively.

Wheat
Similar to rice, there is also increase in the wheat yield in the basin, with higher increase
during 2080s as compared to 2020s (Fig. 4b). However, increase in yield under the differ-
ent emission scenarios remained almost the same. Further, HRUs wise analysis showed
large variation (1645-4026.9 kg/ha) in the yields of different HRUs depending upon the
emission scenarios and future periods (Fig. 5b). The median yield of wheat in the basin
varied from 2685.4 to 2704.2, 2899.0 to 2946.8 and 2940.9 to 3013.8 kg/ha during 2020s,
2050s and 2080s, respectively depending upon the different emission scenarios. The
baseline period median yield was 2386.8 kg/ha. The increase in mean wheat yield in the
basin varied in the range of 13.9-15.4, 23.6-25.6 and 25.2-27.9 % during 2020s, 2050s
and 2080s. As opposed to rice, increase wheat yield was higher at the downstream basin
as compared to the upstream basin (Fig. 6b). At downstream areas of the basin, increase
in wheat yield varied from 16-17.6, 28.0-31.4 and 30.8-33.6 % during 2020s, 2050s and
2080s, respectively. Wheat yield at upstream increased from 9.4-11.5, 14.9-15.6 and
15.3-17.7 %, during 2020s, 2050s and 2080s, respectively. In this study, wheat was irri-
gated using the shallow aquifer water. The decrease in rainfall in the month of Decem-
ber, February and March—May not trigger a decrease in wheat yield as irrigation water is
available from the shallow water aquifer. However, the wheat yield increase in the basin
was not significant (9-20 %) and CV of wheat yield also varied from 19 to 32 %, whereas
CV ofrice varied only from 14 to 17 %.

Ortiz et al. (2008) reported that global warming may be beneficial for the wheat crop
in some regions, but could reduce productivity in zones where optimal temperatures
already exist. The projected absolute mean temperature during wheat growing stage was

not significantly higher as compared to the model default 7}, and T,,, for wheat, which

opt
are 0 and 18 °C, respectively. Similar to rice, for wheat growing seasgn also increase in
number of days with daily maximum temperature greater than wheat optimum tem-
perature (i.e., 18 °C), were not considerable in any of the future scenarios in the basin.
Number of days with T,

and 154 days during future periods as against 150 days during baseline period (Table 3).

> 18 °C during wheat growing season ranged between 152
Temperatures greater than 34 °C have been found to decrease wheat yields up to 50 %
due to increased leaf senescence (Asseng et al. 2011). However, in this study, MIROC
temperature projection did not demonstrate greater temperature such as 34 °C even
during 2080s for wheat cropping season. Therefore, the projected increase in maximum
temperature may not affect the growth and yield of wheat in the basin. In addition, simu-
lated increase in yield gain might be due to increased rate of irrigation water applica-
tion (as discussed below). Lv et al. (2013) reported increase in irrigated wheat yields in
almost all regions China under full irrigation conditions. Similar to rice, Mishra et al.
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(2013) also reported increase in wheat yield using DSSAT model and HadRM3 projected
climate change scenarios in lower Ganga basin. But, they reported contrasting results
for upper Ganga basin, where wheat yield was projected to decrease with REMO based
projections. Based on the simulations studies for northern India [Indo-Gangetic Plains
(IGP)] to monitor rates of wheat senescence following exposure to temperatures greater
than 34 °C with two commonly used process-based crop models (CERES-Wheat and
APSIM), Lobell and Gourdji (2012) indicated that existing models underestimate the
effects of heat on senescence. Porter and Gawith (1999) also suggested explicit consider-
ation of extreme high temperature events to better understand the full response range of
growth and development processes for wheat as extreme high temperature events have
autonomous effects on grain production. As the simulated climate change impact varies
across models due to differences in model structure and its parameterization (Asseng
et al. 2013) and climate change scenarios used, multi-model ensemble analysis may be
helpful for better quantification of climate change impact on crop yield and preparing
adaptation plans.

Change of irrigation and evapotranspiration
SWAT simulation showed increase in mean actual evapotranspiration for both wheat
and rice as compared to the baseline (Figs. 7, 8). However, the increase in actual evapo-
transpiration for wheat is higher than that of rice. The increase in evapotranspiration
during rice growing period in the basin varied in the range of 3-3.35, 5-6.3 and 5.9—
9.6 % during 2020s, 2050s and 2080s, respectively, with slightly higher increase in the
upstream basin as compared to the downstream basin (Fig. 7a).

Increased rainfall during rice growing period resulted in the decreased irrigation water
application for rice. As per the SWAT simulation results, irrigation could be decreased
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slightly in future for the rice cultivation in this basin. There was approximately 1-4 %
(<5 %) decrease in irrigation water application for rice during the future periods of 2020s
and 2050s and 2080s. This decrease in irrigation water application is mainly due to
increase in rainfall (Fig. 7a). The increase in rainfall in the basin during rice growing sea-
son varied in the range of 7.3-17.8, 9.9-24.0 and 20.9-33.2 % during 2020s, 2050s and
2080s, respectively. The increase in rainfall as well mean temperature is relatively higher
at the upstream basins as compared to downstream basins during rice growing season.
As shown in the Fig. 8, the increase in actual evapotranspiration during wheat season
varied from 7.8-9.8, 10.8-11.8 and 10.1-16.3 % during 2020s, 2050s and 2080s, respec-
tively. The increased evapotranspiration demands resulted in more irrigation demand.
The irrigation water allocated by the model for wheat considerably increased during
future period, whereas it slightly decreased during the same period for rice cultivation.
The irrigation water allocated for wheat is likely to increase by 17.0-28.0, 28.3-36.5 and
38.4—45.3 % during 2020s, 2050s and 2080s, respectively under the projected climate
change scenarios. Increased irrigation requirement relates with the decreased rainfall of
December, February and March during which wheat is grown, and higher temperature
which resulted in increased actual evapotranspiration. Seasonal decrease in rainfall var-
ied in the range of 5.1-26.4, 1.9-15.4 and 7.6-16.7 % during 2020s, 2050s and 2080s,
respectively. This decrease in rainfall during wheat growing season is more in down-
stream basins as compared to upstream basin; whereas increase in temperature is higher
at upstream basins as compared to downstream basins (Fig. 8). Greater increase in
mean temperature at the upstream basin as compared to the downstream basin, might
have greater impact on wheat yield in the upstream basin resulting in higher increase
in downstream wheat yield than upstream wheat yield. The increased irrigation water
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allocation might have compensated for the temperature and other stresses, and resulting

in increase in wheat production in the basin.

Limitations

The SWAT model considers daily mean temperature for simulating temperature stress
on crop growth and yield. For the simulation of rice and wheat we gave approximately
the same date of management operation such as planting and harvesting for all HRUs
due to non- availability of HRU wise data of crop wise management practices. This may
not be the actual case in the entire Gomti River basin. Moreover, we considered the
changes in temperature and rainfall only for the future climate change scenarios. Other
factors such as radiation may affect the future rice and wheat growth and yield. In addi-
tion, the agronomic practices, technological development, land use and land cover and
cropping pattern were also assumed to remain same in future. However, this simulation
study provided valuable information on possible impact of climate change on rice and
wheat production, irrigation requirement and change of evapotranspiration which may
be useful in future planning for crop production in the Gomti River basin.

Conclusion

This study analysed the rainfall and temperature changes during the rice and wheat
growing periods, and resultant impacts on rice and wheat production and their irriga-
tion requirements in the Gomti River basin in India. For simulation of crop production
as well as basin hydrology, SWAT hydrological model was used. The MIROC (3.2, HiRes)
GCM projections for Alb, Bl and A2 emission scenario were used for generation of cli-
mate change for future time periods of 2020s, 2050s and 2080s. The SWAT model per-
formed reasonably well for the simulation of streamflow and also for the simulation of
rice and wheat yield during the calibration and validation periods. This modelling study
revealed increase in mean rainfall during rice growing season (Kharif) in the range of
7.3-17.8,9.9-14 and 20.9-33.2 % during 2020s, 2050s and 2080s, respectively. However,
during wheat growing season rainfall was projected to decrease in the range of 5.1-26.4,
1.9-15.4 and 7.6-16.7 % during 2020s, 2050s and 2080s, respectively. The simulation
results showed increase in rice and wheat yield in future periods under the MIROC3.2
GCM projected climate change scenarios, provided that other factors of crop growth are
favorable. Considering the entire river basin, and the three emission scenarios (A1b, B1,
and A2), mean rice yield is projected to increase by 5.5-6.7, 16.6—20.2 and 26-33.4 %
during the time period 2020s, 2050s and 2080s, respectively and the mean wheat yield
is likely to increase by 13.9-15.4, 23.6—-25.6 and 25.2—-27.9 % for the same future period.
Simulation results also showed increase in irrigation water allocation for wheat in the
range of 17-28, 28.3-36.5 and 38.4-45.3 % during 2020s, 2050s and 2080s, respectively.
In contrast, irrigation water allocation for rice was simulated to decrease, though this
decrease remained <5 % during the same future time periods. These results indicates the
need to improve its irrigation facilities in the basin to cope up with the decreasing rain-
fall for the growing of Rabi crops. The results of this study provide valuable information
for developing adaptation plan as well for the restoration plan of the Gomti River basin.
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