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Background
Tukey (1979) recommends that it is perfectly proper to routinely use both the ordinary 
least squares (OLS) and robust estimators and only examine the data more closely in 
case of “large” discrepancies-whatever this means (but it is widely accepted that this 
means that otherwise it suffices to use the OLS). However, this is rarely done as robust 
estimators are still playing a second fiddle role to the OLS estimator, despite their prolif-
eration. The main reason why this status quo remains is that at the interface of statistics 
and its applications there are non-specialists who find it insurmountable to deal with 
this vague idea of “large” discrepancies and the necessary choices of types of estima-
tors and tuning constants involved in the robust statistical methodology. On the other 
hand the OLS has a clear and easy to implement methodology to conduct inference and 
goodness of fit analysis (including residual diagnostics). To make the robust estimators 
more appealing to statistical practitioners, an endeavor to studentize robust estimators 
has been undertaken by some researchers (see e.g. Mckean and Sheather 1991; Yohai 
et al. 1991). This studentization enables users to undertake pertinent statistical tests and 
obtain confidence intervals and critical values as well as outlier diagnosis which parallel 
the OLS ones.
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Outliers (unusual observations in the Y-space) can adversely influence the regression 
model fit thereby invalidating the pertinent statistical inferences (see e.g. Rousseeuw and 
Leroy 2003; Barnett and Lewis 1998). The Koenker and Basset (1978) regression quan-
tiles (RQs) are fairly robust to outliers as their influence functions are bounded in the 
Y-space. As a result, not only have RQs been employed as alternatives and complemen-
tary tools to the OLS estimator but also in robust outlier detection techniques (Portnoy 
1991). These detection methods are based on a two-fold approach, namely, the “peel-
ing” of observations fit exactly by extreme RQs and those based on RQ computation, i.e., 
observations lying below the RQs hyperplanes q̂Y |x(τ ) and/or lying above q̂Y |x(1− τ ) 
corresponding to β̂(τ ) and β̂(1− τ ), τ ∈ (0, 1), respectively (see expression (7)) may 
be identified as outliers. Complemented by the ordinary least squares (OLS) one con-
sequence of the latter approach is the Ruppert and Carroll (1980) regression trimmed 
mean estimator. Outliers in the X-space are referred to as high leverage points. A worse 
outcome can result if outliers are further coupled with high leverage points in a data 
set than when either data aberration manifests alone, especially in the case of RQs. This 
stems from the fact that RQs are very susceptible to high leverage points since their 
influence functions are unbounded in the X-space. This curtails their effectiveness to 
detect outliers that are also high leverage (outlier-leverage) points due to the not yet so 
well-perceived trade-off between the RQs high affinity for high leverage points and their 
exclusion of (resistance to) outliers. Studentization may be a solution as it involves inco-
orperating some X-information.

Most of the existing outlier diagnostics in the RQ framework are in relation to the 
global orientation (centre) of the data and not relative to each quantile level τ ∈ (0, 1) , 
i.e., a conditional quantile model, QY |X (τ ), especially extreme ones. Very few quantile 
level specific diagnostics exist. One such single case outlier diagnostic in existence is 
based on the standardized median absolute deviation (MAD) of residuals (Huber and 
Ronchetti 2009). Given that it is well-known that regression outlier diagnostics do not 
always agree in flagging outliers the conventionally agreed practice of employing a wide 
spectrum of diagnostics before the analyst arrives at a verdict cannot be exercised in 
the RQ framework. The focus of this paper is to contribute by adding some new outlier 
diagnostics to the few existing ones in the RQ framework and further bring in the OLS’s 
attractiveness to this framework via studentization of residual statistics. This is a con-
venient approach as RQs have a common link with the OLS estimator that can be fruit-
fully exploited. This link exists via the elemental set (ES) method (Hawkins et al. 1984). 
So a studentized residual statistics are suggested for RQs here based on the ES method.

An ES consists of exactly the minimum number (p) of observations to fit the regres-
sion model parameters. Such a proposal is motivated by the fact that the basic optimal 
solution of a linear programming (LP) problem giving a RQ coincides with the p points 
of an ES (see Koenker and Basset 1978, Theorem 3.1; Ranganai 2016). Applying the OLS 
procedure to the p ES observations yields a specific elemental regression (ER). Thus 
RQ leverage and residual statistics and ER ones are identical. A deterrent to employ-

ing the ES method is the possibly huge load involved in computing all the K =
(
n
p

)
 . 

However, the number of LP optimization solutions giving RQs is approximately equal 
to n < K . Thus the ES approach benefits from the existence of efficient LP optimization 
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algorithms giving RQs as solutions. Also, it is shown that the suggested RQ studentized 
residual statistics follow a t distribution from which a wide spectrum of cut-off values 
can be obtained like their OLS based counterparts. These are desirable attributes for the 
practitioner.

In summary the motivations for the development of studentized outlier diagnostics in 
RQ frame work, are the following:

• • Very few RQ τ level specific outlier diagnostics with the efficacy to deal with all 
outlier configurations currently exist in the literature. Therefore the conventionally 
accepted practice of employing a wide spectrum of diagnostics cannot be carried out 
in the RQ framework unless more get developed.

• • Use of of efficient LP algorithms lessens the possibly huge load involved in comput-
ing all the K ESs as approximately n < K  RQs from the LP solutions are of interest to 
this study.

• • Ease of implementation via OLS and the existence of a wide spectrum of cut-off val-
ues from the t distribution brings in the attractive of OLS to practitioners.

• • There is need to develop more single case outlier diagnostics in light of the not so 
well perceived opposing phenomena between outlier and high leverage behaviours in 
outlier-leverage points.

• • Outlier-leverage points may be identified better using outlier diagnostics as the sug-
gested studentized diagnostics have some leverage (X information) inherent in them 
unlike the entirely residual (Y information) based ones.

Motivated by this background, this paper suggests outlier diagnostics based on stu-
dentization and ER. The rest of the paper is organized as follows; Some OLS leverage 
statistics and residuals are elaborated on in the next section; RQ leverage statistics and 
residuals are discussed in “Regression quantiles leverage statistics and residuals” section; 
“Studentized residuals in the quantile regression scenario” section dwells on the con-
struction of the suggested RQ studentized residual statistics; Applications are given in 
“Applications” section while conclusions are given in the last section.

Some OLS leverage statistics and residuals
Consider the linear regression model,

where Y is an n× 1 vector of response observations, 1n is an n× 1 vector of ones, X is an 
n× (p− 1) matrix of predictor variables, β is a (p− 1)× 1 vector of regressors, ε is an 
n× 1 vector of errors, ε ∼ Nn

(
0n, σ

2
In

)
, 0n is an n× 1 vector of zeros, and In is an n× n 

identity matrix. The ith OLS residual is given by

where x̃′i =
[
1, x′i

]
 with x′i denoting the ith row of X. It is well-known in the literature that 

the analysis of (raw) residuals (2) is far less potent in flagging outliers than the analysis of 
their transformed versions.

(1)Y = 1nβ0 + Xβ + ε,

(2)ei = Yi − x̃
′
iβ̂ , 1 ≤ i ≤ n,
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There are four versions of transformed residuals most frequently employed to identify 
outliers in the literature. We list them here in order of increasing effectiveness. These are 
the normalized, the standardized, the internally studentized and externally studentized 
residuals. The standardized OLS residuals are given by

where σ̂ =
√
MSE with MSE = SSE/n− p and SSE denoting the usual OLS sum of 

squares of the error terms. Substituting σ̂ in (3) by 
√
Var(ei) = σ̂

√
1− hi yields the 

internally studentized residuals

where hi = x̃
′
i

(
X̃
′
X̃

)−1
x̃i, the ith diagonal element of the hat matrix H = X̃

(
X̃
′
X̃

)−1
X̃
′ 

denotes the leverage of the ith observation. Under model (1) assumptions, ti follows a t 
distribution with n− p degrees of freedom, i.e., ti ∼ tn−p.

Finally, the externally studentized residuals follow from substituting σ̂ in (3) by √
Var(e(i)) = σ̂(i)

√
(1− hi), where the subscript notation (i) indicates the deletion of the 

ith observation and σ̂ 2
(i) = [(n− p)σ̂ 2 − e2i /(1− hi) ]/[n− p− 1], giving

Also, like ti, under model (1) assumptions t(i) follows a t distribution with n− p− 1 
degrees of freedom, i.e., t(i) ∼ t(n− p− 1)

Another version of the residuals that is often used to assess prediction are the jack-
knife (predicted) residuals

The jackknife residuals have been found to be more effective than the OLS ones in 
assessing prediction and flagging outliers in the literature (see e.g. Myers et  al. 2010). 
The predicted sum of squares gives the well-known PRESS statistic,

In the next section some of the analogues of the OLS statistics discussed here are 
adapted to the RQ scenario.

Regression quantiles leverage statistics and residuals
The τ th RQ based on the linear model is a solution to the linear programming (LP) 
problem

(3)ri =
ei

σ̂
, 1 ≤ i ≤ n,

(4)ti =
ei

σ̂
√
1− hi

, 1 ≤ i ≤ n,

(5)t(i) =
ei

σ̂(i)
√
1− hi

, 1 ≤ i ≤ n.

(6)e(i) = Yi − x̃
′
iβ̂(i) =

ei

1− hi
, 1 ≤ i ≤ n.

PRESS(i) =
n∑

i=1

(
ei

1− hi

)2

.

(7)β̂(τ ) = arg min
β0,β

n∑

i=1

ρτ
(
Yi − (β0 + x

′
iβ)

)
,
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where ρτ (u) = u[τ − I(u < 0)] ≡ u[τ · I(u ≥ 0)+ (τ − 1).I(u < 0)], for τ ∈ (0, 1). The 
basic optimal solution to this LP problem (7) obtained using efficient LP algorithms in 
the literature, is a RQ that corresponds to a specific ES of size p (see Koenker and Basset 
1978, Theorem 3.1, p. 39; Koenker 2005, Subsection 2.2.1). Two major linear program-
ming techniques exist for solving the above linear programming problem, viz., exterior 
and interior methods.

Letting X̃ = [1n,X] in terms of ESs the linear model (1) can be expressed as

where X̃J is p× p and X̃I is (n− p)× p matrices. Let 
(
X̃J YJ

)
 be a generic ES, then 

K =
(n
p

)
 is the number of ESs. The subset J corresponds to the set of subscripts {h1, ..., hp} 

such that (x′hi, yhi), i = 1, ..., p, is the the ith case of ES J. Applying OLS to an ES based on 
a subset J of size p of the original data results in the following vector of regression coef-
ficients estimates

where X̃J is a square matrix and assumed to be nonsingular. Since a RQ solution of (7) 
corresponds to ER (8) then their leverage statistics and residuals are identical.

RQ/ER leverage statistics are the diagonal elements of the matrix HJ = X̃(X̃′
J X̃J )

−1
X̃
′ , 

i.e.,

The statistic hiJ , i �∈ J  is referred to as the ER predicted (ERP) leverage. Note that this 
statistic is the jackknife analogue of the ith diagonal element h(i) = x̃

′
i

(
X̃′

(i)X̃(i)

)−1
x̃i, 

of another variant of the hat matrix H(i) = X̃

(
X̃
′
(i)X̃(i)

)−1
X̃
′.

The RQ/ER residuals are given by

The residuals eiJ , i �∈ J  which are the analogues of the jackknife (predicted) residuals (6) 
are referred to as elemental predicted residuals (EPRs). EPRs have has variance

Following from this variance, Hawkins et al. (1984) referred to hiJ , i /∈ J  as the residual 
freedom, to “convey the impression of its property of measuring the extent to which the 
elemental set J fails to predict Yi.” Consequently eiJ/σ

√
1+ hiJ , i /∈ J ∼ N (0, 1).

Summing the EPRs gives the analogue of the PRESS statistic

Residual analysis in the ER case is redundant, since the ER (internal) residuals suffer 
from the exact fit property, i.e., the (internal) residuals are constants (zeros), and hence, 

(
YJ

YI

)
=

(
X̃J

X̃I

)
β + ε,

(8)β̂J =
(
X̃
′
J X̃J

)−1
X̃
′
JYJ = X̃

−1
J YJ ,

(9)hiJ =
{
1, for i ∈ J

x̃
′
i(X̃

′
J X̃J )

−1
x̃i, for i �∈ J .

(10)eiJ =
{
0, for i ∈ J

yi − x̃
′
iβ̂J , for i �∈ J .

Var
(
eiJ

)
= σ 2

(
1+ hi J

)
for i /∈ J .

PRESSJ =
∑

i/∈J
e2iJ .



Page 6 of 11Ranganai ﻿SpringerPlus  (2016) 5:1231 

the same applies for the RQ case. However, the external ones, i.e., ER predicted (ERP) 
residuals which are the analogues of the jackknife (leave one observation out) residuals 
are useful. Similarly ERP leverage is also useful. Thus in the next section RQs studen-
tized residuals are constructed using ERP residuals and ERP leverage values.

Studentized residuals in the quantile regression scenario
In this section we construct a version of studentized residuals for RQs. We do this by 
first suggesting a scaled version of the RQ predictive residuals (EPRs),

where Jτ denotes the ES corresponding to the τ th RQ for τ ∈ (0, 1) since we are only 
interested in RQs (ESs corresponding to RQs). The statistic σ̂(Jτ ) is the scaled prediction 
variance with the p observations left out corresponding to a RQ (ER) Jτ left out, i.e.

where PRESS′Jτ =
∑

i/∈Jτ e
2
iJτ
/(1+ hiJτ ) and α = 2p accounting for the p parameters as 

well as the p ER observations left out corresponding to eiJτ = 0 for i ∈ Jτ. In line with the 
literature convention the RQ externally studentized residuals or externally studentized 
EPRs (SEPRs) should be based the jackknife residual variance

i.e., with the ith observation left out. This statistic is given by

where ε̂iJτ = eiJτ /
√
1+ hiJτ , i /∈ Jτ to flag outliers. The internally studentized version 

is given by

The distributions of the these statistics ((14) and (15)) are given by Theorems 1 and 2 
from which we determine the appropriate cut-off values.

Theorem  1  Under model (1) the RQ externally studentized residuals 
υ(i)Jτ ∼ t(n− 2p− 1).

Proof  Let θi = tiJτ
√
1+ hiJτ , i /∈ Jτ , with tiJτ = eiJτ

σ̂(Jτ )
√

1+hiJτ
= ε̂iJτ

σ̂(Jτ )
.

Substituting (12) into θi, we have

(11)
tiJτ =

eiJτ

σ̂(Jτ )

√(
1+ hi Jτ

) , for i /∈ Jτ

(12)σ̂ 2
(Jτ )

=
PRESS′Jτ
(n− α)

,

(13)σ̂ 2
(i)(Jτ )

=
PRESS′(i)Jτ
(n− α − 1)

,

(14)υ(i)Jτ =
ε̂iJτ√

1
(n−α−1)PRESS

′
(i)Jτ

,

(15)υiJτ =
ε̂iJτ√

1
(n−α)

PRESS′Jτ

.
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Therefore

with ε̂iJτ. So 0 ≤ ε̂2iJτ
PRESS′Jτ

≤ 1 and θ2i ≤ (n− α) or equivalently |θi| ≤
√
(n− α) meaning 

that the density function of θi is zero outside [−
√
(n− α),

√
(n− α)]. Now let

The second factor can be simplified as

The denominator component in the square root sign can be expressed as

where PRESS′(i)Jτ =
∑

j �=i e
2
jJτ
/(1+ hjJτ ) =

∑
j �=i ε̂

2
jJτ

, for i, j /∈ Jτ . Then

Multiplying this result by the first factor in υiJτ we have

Therefore

since ε̂iJτ
σ

= eiJτ /σ
√
1+ hiJτ ∼ N (0, 1) and 1

σ 2(n−α−1)
PRESS′(i)Jτ ∼ χ2(n− α − 1). Tak-

ing α = 2p we have

� �

θi =
ε̂iJτ

σ̂(Jτ )
=

êiJτ
√
(n− α)√

PRESS′Jτ
, i /∈ Jτ .

θ2i = (n− α)ε̂2iJτ /PRESS
′
Jτ

υ(i)Jτ =

√
(n− α − 1)

(n− α)(1+ hiJτ )

θi√
1− θ2i

n−α

.

θi√
1− θ2i

n−α

=
√
(n− α)θi√
n− α − θ2i

=
√
(n− α)

[√
(n− α)ε̂iJτ /

√
PRESS′Jτ

]
√
(n− α)− (n− α)

[
ε̂2iJτ /PRESS

′
Jτ

] .

(n− α)(PRESS′Jτ − ε̂2iJτ )

PRESS′Jτ
=

(n− α)PRESS′(i)Jτ
PRESS′Jτ

,

θi√
1− θ2i

n−α

=
√
(n− α)√

PRESS′(i)Jτ
ε̂iJτ .

υ(i)Jτ =

√
(n− α − 1)

(n− α)(1+ hiJτ )

√
(n− α)√

PRESS′(i)Jτ
ε̂iJτ

=

√
(n− α − 1)

(1+ hiJτ )

ε̂iJτ√
PRESS′(i)Jτ

.

υ(i)Jτ =
ε̂iJτ
σ√

1
σ 2(n−α−1)

PRESS′(i)Jτ

=
ε̂iJτ√

1
(n−α−1)PRESS

′
(i)Jτ

∼ t(n− α − 1)

υ(i)Jτ ∼ t(n− 2p− 1).
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Theorem 2  Under model (1) the RQ studentized internally residuals υiJτ ∼ t(n− 2p).

Proof  The proof follows from that of Theorem 1 by substituting (n− α − 1)−1PRESS′(i)Jτ 
with (n− α)−1PRESS′Jτ for the estimated EPR variance. Thus the final result becomes

since ε̂iJτ
σ

= eiJτ /σ
√
1+ hiJτ ∼ N (0, 1) and 1

σ 2(n−α)
PRESS′Jτ ∼ χ2(n− α). Taking 

α = 2p we have

� �

Therefore the appropriate Bonferroni critical values are t(1− α/2(n− p); n− 2p− 1). 
The advantage of these critical values is that the Bonferroni method is simple and allows 
many comparisons to be made simultaneously while still maintaining an overall con-
fidence coefficient. In the literature externally studentized diagnostics are shown to 
outperform their internal versions counterparts. Therefore it is preferred here to com-
pare the externally SEPR υ(i)Jτ’s outlier flagging pattern to the MAD version in the SAS 
QUANTREG procedure. Using the MAD based version of the RQ predicted residuals, 
outliers are identified as

where the multiplier k usually takes values, 3, 4 or 5. The scale parameter σ̂m is the 
corrected median of absolute values σ̂m = median

{
|eiJτ |/θ0, 1 ≤ i ≤ n

}
, where 

θ0 = �−1(0.75) is an adjustment consistency with the normal distribution.
In the next sections the flagging rate of outliers based on this cut-off value in expres-

sion (16) and the ones from (14) based on critical values of the t distribution are com-
pared using the Hocking and Pendleton (1983) data set.

Applications
In this Section we consider the Hocking and Pendleton (1983) data set. This data set 
is a plausible candidate to study the efficacy of the SEPR in flagging outliers as it has 
various various outlier and high leverage scenarios that are both easy and challenging 
to deal with in the RQ framework. These include a very high leverage observation 24, 
an outlier in 17 and two outlier-leverage points 11 and 18 with varying degrees of high 
leverage. Observation 24 will almost always be included in the ES corresponding to RQs 
due to RQs affinity for high leverage points. Thus it will often have a zero residual while 
observation 17 will almost always be excluded in this ES and will often have a very large 
residual. The challenge is on outlier-leverage points 11 and 18 which will depend on 
the trade-off of the two antagonistic phenomena, namely, the RQs’ affinity for leverage 
points versus their exclusion (resistance) to outliers.

It is well-known that externally studentized residual statistics always perform better 
than their internally studentized counterparts since (5) and (14) are based on σ̂(i) and 

υiJτ =
ε̂iJτ
σ√

1
σ 2(n−α)

PRESS′Jτ

=
ε̂iJτ√

1
(n−α)

PRESS′Jτ

∼ t(n− α)

υiJτ ∼ t(n− 2p).

(16)eiJτ ≡
{
non outlier, if eiJτ ≤ kσ̂m
outlier, Otherwise,
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σ̂ 2
(i)(Jτ )

 which are both more robust to problems of gross errors in the ith observation 
than σ̂ 2 and σ̂ 2

(Jτ )
 on which (4) and (15) are based, respectively (Chatterjee and Hadi 

1988, pg 79). Therefore the externally studentized residual criterion (14) is compared to 
the robust version one based the standardized MAD of residuals (16). Criterion (16) is 
the only single case similar RQ level related outlier diagnostic with which to validate the 
efficacy of (14). Firstly the robust and multivariate location and scale diagnostics com-
puted using the minimum covariance determinant (MCD) method of Rousseeuw and 
Driessen (1999) are applied to circumvent the masking and swamping phenomena so as 
to expose all the single case high leverage points and outliers. The resulting diagnostic 
outcome is given in Fig. 1.

The flagging pattern based criteria MAD (16) and SEPR (14) for the Hocking and 
Pendleton data set are given in Table 1. For criterion (16) the multiplier k values were 
chosen as 3 (*) and 4 (**) while for criterion (14) the significance level α = 0.10 was cho-
sen so as to be both liberal and stringent in flagging outliers. The liberal and stringent 
Bonferroni cut-off values correspond to |υ(i)Jτ | > t(1− α/2; n− 2p− 1) = ±1.740 and 
|υ(i)Jτ | > t(1− α/2(n− p); n− 2p− 1)± 3.544, respectively.

Remark  ESs Corresponding to RQs are the p = 4 observations (with zero residuals) in 
the basic optimal solution of LP problem (7) obtained using effeicient linear programing 
algorithms.

The two outlier diagnostics do not always agree as is the norm in any regression diag-
nosis outcome using different diagnostics. Observation 24 with the highest leverage and 

Fig. 1  MCD high leverage and outlier diagnosis for the Hocking and Pendleton data set
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non outlying is never flagged at all. The major difference to note here is the uniform flag-
ging exhibited by (16) from τ = 0.2046 to τ = 0.8276 and only otherwise in very extreme 
τ levels. It is hard to conceive that results for below and above τ = 0.50 are similar to 

Table 1  Hocking data set diagnostics

+ Outlier, × leverage, △ outlier-leverage

MAD (16): (*) and (**) corresponds to k=3 and 4, respectively; SEPR (14): (*) and (**) corresponds to t values ±1.740 and 
±3.544, respectively

ESs corresponding to RQs τ MAD (16) υ(i)Jτ (14)

8 11
△ 16 18

△ 0.0853 None 17
+(1.789∗)

8 11
△ 16 19 0.0930 None 17

+(2.043∗)

8 11 19 24
× 0.1232 None 17

+(2.406∗)

8 12 13 24
× 0.1861 17

+(3.645∗∗), 18△(−4.582
∗∗) 17

+(1.822∗), 18△(−6.507
∗∗)

8 13 14 24
× 0.2046 11

△(−4.060
∗∗), 17+(5.022∗∗), 

18
△(−7.486

∗∗)
17

+(2.460∗), 18△(−4.869
∗∗)

1 14 24
× 26 0.2528 11

△(−4.060
∗∗), 17+(5.022∗∗), 

18
△(−7.486

∗∗)
17

+(2.315∗), 18△(−5.439
∗∗)

1 5 14 24
× 0.2593 11

△(−4.066
∗∗), 17+(5.022∗∗), 

18
△(−7.494

∗∗)
17

+(2.315∗), 18△(−5.439
∗∗)

1 14 16 24
× 0.3053 11

△(−5.495
∗∗), 17+(6.099∗∗), 

18
△(−9.149

∗∗)
17

+(1.977∗), 18△(−6.853
∗∗)

1 4 16 24
× 0.3659 11

△(−6.205
∗∗), 17+(6.462∗∗), 

18
△(−10.647

∗∗)
17

+(2.246∗), 18△(−6.394
∗∗)

1 14 23 24
× 0.4018 11

△(−6.205
∗∗), 17+(6.462∗∗), 

18
△(−10.647

∗∗)
17

+(2.241∗), 18△(−6.394
∗∗)

14 16 23 24
× 0.4412 11

△(−6.822
∗∗), 17+(6.920∗∗), 

18
△(−11.740

∗∗)
17

+(1.871∗),18△(−7.223
∗∗)

10 14 16 24
× 0.4686 11

△(−6.602
∗∗), 17+(6.437∗∗), 

18
△(−11.162

∗∗)
17

+(2.143∗), 18△(−5.689
∗∗)

7 10 14 24
× 0.5370 11

△(−6.502
∗∗), 17+(6.277∗∗), 

18
△(−10.923

∗∗)
11

△(−1.741
∗), 17+(2.073∗), 

18
△(−5.689

∗∗)

3 9 10 24
× 0.5448 11

△(−6.728
∗∗), 17+(6.290∗∗)

,18△(−11.073
∗∗)

11
△(−1.741

∗), 17+(2.073∗), 
18

△(−5.689
∗∗)

3 8 10 24
× 0.5512 11

△(−6.728
∗∗), 17+(6.290∗∗), 

18
△(−11.073

∗∗)
17

+(1.893∗), 18△(−6.350
∗∗)

8 9 10 24
× 0.6215 11

△(−7.205
∗∗), 17+(6.045∗∗), 

18
△(−11.492

∗∗)
17

+(2.013∗), 18△(−4.843
∗∗)

8 9 24
× 25 0.6315 11

△(−7.205
∗∗), 17+(6.045∗∗), 

18
△(−11.492

∗∗)
11

△(−2.301
∗∗), 17+(2.704∗∗), 

18
△(−2.543

∗∗)

9 15 24
× 25 0.6839 11

△(−7.224
∗∗), 17+(5.986∗∗), 

18
△(−11.488

∗∗)
11

△(−2.132
∗∗), 17+(2.102∗∗), 

18
△(−4.229

∗∗)

8 9 15 24
× 0.7227 11

△(−7.240
∗∗), 17+(5.971∗∗), 

18
△(−11.476

∗∗)
18

△(−6.832
∗∗)

8 10 15 24
× 0.7304 11

△(−7.240
∗∗), 17+(5.971∗∗), 

18
△(−11.476

∗∗)
18

△(−6.832
∗∗)

6 8 21 24
× 0.7385 11

△(−7.240
∗∗), 17+(5.971∗∗), 

18
△(−11.476

∗∗)
11

△(−1.911
∗), 18△(−4.510

∗∗)

6 21 22 24
× 0.7660 11

△(−6.866
∗∗), 17+(4.990∗∗), 

18
△(−10.409

∗∗)
11

△(−2.236
∗), 17+(2.020∗), 

18
△(−2.687

∗)

6 8 22 24
× 0.8276 11

△(−5.260
∗∗), 17+(3.564∗∗), 

18
△(−7.887

∗∗)
11

△(−2.807
∗), 17+(1.908∗), 

18
△(−2.526

∗)

2 6 8 24
× 0.9549 None 11

△(−2.078
∗), 18△(−3.067

∗∗)

6 8 16 24
× 0.9570 11

△(−2.184
∗∗), 18△(−2.897

∗∗) 11
△(−2.078

∗), 18△(−3.067
∗∗)
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this extent. This is inconsistent with the well-known outcome of RQ results due their 
ability to capture the changing conditional distribution of the response variable, Y given 
the predictor factors, X at different quantile levels (Chamberlain 1994; Cade and Noon 
2003). On the other hand criterion (14) has a dynamic pattern consistent with RQs 
results as expected.

Conclusion
The version of the studentized RQ predicted residuals (SEPRs) suggested here are use-
ful and of benefit to statistical practitioners as they add to the few existing single case 
outlier diagnostics in the RQ scenario. Further, the methodology is easy to implement as 
they have cut-off values that parallel the OLS based versions. Thus they offer alternatives 
to non-specialists who may fight it too hard to comprehend the robust outlier detection 
methodology. However, if possible these diagnostics must be used together as recom-
mended by Tukey (1979).
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