
Influence analysis of Github repositories
Yan Hu*, Jun Zhang, Xiaomei Bai, Shuo Yu and Zhuo Yang

Background
The rapid development of social coding tools is leading to a revolution in software prod-
uct development. Social interactions have become an important factor in the evaluation 
of the software development process.

Version control systems (VCS) are the essential part of a social coding platform. Now-
adays, various VCS tools, e.g. CVS, SVN, Git and etc., are frequently used by software 
development teams. With them, decentralized team work is possible, and the develop-
ment process becomes more productive. Software developers can work on their own 
versions, and submit changes into the decentralized VCS systems. Different versions of 
software are managed by the VCS system, and potential conflicts of software products 
are avoided.

Early VCS systems are used only by relatively small software development teams, and 
are mostly deployed within small area networks, like company LANs. The number of 
projects maintained within those early VCS systems is also relatively small. As Git can 
make distributed coding collaboration easier, it is gaining its popularity.

With the recent advances in Internet and cloud computing technology, distributed 
social coding receives a big boost. Popular social coding platforms can now host mil-
lions of software projects. Nowadays, more and more people accept the idea of “social 
coding”. Contributions to a software development process are most likely made or to be 

Abstract 

With the support of cloud computing techniques, social coding platforms have 
changed the style of software development. Github is now the most popular social 
coding platform and project hosting service. Software developers of various levels 
keep entering Github, and use Github to save their public and private software pro-
jects. The large amounts of software developers and software repositories on Github 
are posing new challenges to the world of software engineering. This paper tries to 
tackle one of the important problems: analyzing the importance and influence of 
Github repositories. We proposed a HITS based influence analysis on graphs that repre-
sent the star relationship between Github users and repositories. A weighted version of 
HITS is applied to the overall star graph, and generates a different set of top influential 
repositories other than the results from standard version of HITS algorithm. We also 
conduct the influential analysis on per-month star graph, and study the monthly influ-
ence ranking of top repositories.

Keywords:  Social coding, Github, HITS, Influence analysis

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Hu et al. SpringerPlus  (2016) 5:1268 
DOI 10.1186/s40064-016-2897-7

*Correspondence:  huyan@
dlut.edu.cn 
School of Software, Dalian 
University of Technology, 
Development Zone, 
Dalian 116620, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2897-7&domain=pdf


Page 2 of 19Hu et al. SpringerPlus  (2016) 5:1268 

made by a distributed, collaboration-motivated virtual community. Software developers 
across the world can take part in the same software project, modifying different parts of 
the code and generating different branches in the project source tree. There are now no 
explicit boundaries of a software team. A software project may be developed by an ever-
changing set of software engineers, and a software engineer may contributed to a set of 
different software projects hosted in a remote server.

Social coding has tremendously changed the style of software development activities. 
The social network of software developers continuously interacts with the life cycle of 
software projects. There have been several social coding platforms that facilitate soft-
ware engineers around the world to contribute to software projects together. Distrib-
uted development tools, e.g. Git, act as the foundation of social coding platforms. Based 
on Git, the Github platform has attracted many developers to work on millions of open 
source software projects. In Github, projects have evolved into repositories. Reposito-
ries have more information inside. The number of Github users and repositories keep 
growing.

Github is not only a host of software projects, but also a data source that records soft-
ware development activities. Many researchers perform analysis on Github Reposito-
ries and Github data. Some investigate the collaboration of Github users based on their 
activities on repositories (Avelino et al. 2015; Jurado and Marín 2015; Lima et al. 2014; 
Vasilescu et al. 2015b). Some study language importance, or predict the trends of popu-
lar programming languages (Casalnuovo et al. 2015; Ray et al. 2014).

As an open social coding platform, there are no restrictions to the creation of new 
users and repositories. New developers keep coming into Github, new public reposito-
ries are being created from time to time. It is now a more important issue to pick out 
capable or influential ones from millions of Github users. Naturally, the expertise level 
of a developer is judged by the quality of repositories owned by him, and by his contri-
butions made to Github repositories. Ranking the importance of Github repositories, is 
thus an necessary work for the evaluation of the Github ecosystem.

In Github, each repository is associated with a set of meta information. The size of the 
repository, the set of people who starred the repository, etc., are provided by the open 
Github API. The direct ranking of Github repository based on the size, number of stars, 
number of forks have been studied. However, ranking of repositories considering social 
relations in the Github platform, has not been studied yet.

In this paper, we analyzed the importance of Github repositories by considering the 
social relationship between users and repositories. We consider the two important fea-
tures of Github Repositories: star, and fork. We use the star relationship to create a star 
graph, and apply social analysis algorithms on the star graph. The results are then ana-
lyzed and the social influence factor of Github repositories are calculated.

The major contributions of this paper include:

1.	 We built a data acquisition module, which collects Github data from multiple data 
sources. The retrieved data is processed, and used to build the important social 
graphs.

2.	 We proposed a HITS based repository influence analysis, on the star graph con-
structed from the star relationship between Github users and repositories.



Page 3 of 19Hu et al. SpringerPlus  (2016) 5:1268 

3.	 We evaluated the weighted version of HITS algorithm. By comparing the results, we 
found that more reasonable ranking is generated by combining the fork number and 
the star relationship.

4.	 We proposed a language-specific analysis, and evaluated the difference of the pro-
gramming language influence on Github repositories.

Background
In this paper, we analyze the importance of software repositories using social analysis 
techniques. In this section, we will present some background information, including link 
analysis, social coding platform, and the Github timeline data.

Link analysis algorithms

The basic idea in this paper is to perform social influence analysis on Github reposito-
ries using link analysis techniques. Link analysis is first used in ranking web pages. HITS 
and PageRank are the two major link analysis algorithms, which we will explain in some 
detail.

PageRank

PageRank is a link analysis algorithm used to rank the result pages of Google search 
engine (Kaplan 2008). PageRank was named after one of the founders of Google, Larry 
Page.

PageRank is a way of measuring the importance of Web site pages. Google definition: 
“PageRank works by counting the number and quality of links to determine a rough esti-
mate of how important the web site is. The underly assumption is that more important 
web sites are likely to receive more link from other web sites”.

The rank of a Page A is described as:

The rank of pages are calculated iteratively until the result converges.

HITS

Hyperlink-Induced Topic Search (HITS) is a link analysis algorithm which is proposed 
in 1999, by Dr. Jon Kleinberg of Cornell University (Kleinberg 1999). HITS algorithm 
divides the Web pages into two types, namely hub pages and authority pages. The 
authority pages are generally recognized as the important pages on a particular topic. 
The hub pages, which can be regarded as the pages of evaluating pages, are the pages that 
link to a collection of authority pages on a particular topic. There is a mutually reinforc-
ing relationship between authority pages and hub pages: a good authority pages should 
be pointed to by many hub pages, while a good hub page should point to many authority 
pages. HITS algorithm makes use of the mutually reinforcing relationship between them 
and gets the page ranks by an iterative computation loop. During the iterative compu-
tation, authority weight and hub weight are recalculated and updated, until the values 
converge.

We adopt HITS algorithm as the basic social analysis technique, and improve HITS 
algorithm with Github meta information as weights.

PR(A) = (1− d)+ d(PR(T1)/C(T1)+ · · · + PR(Tn)/C(Tn))



Page 4 of 19Hu et al. SpringerPlus  (2016) 5:1268 

Social coding platform

Distributed coding tools, including CVS, SVN, GIT, have changed the ways of software 
development. Those social coding platforms have become containers for software col-
laborations, among software developers on software repositories. Several social coding 
platforms, including SourceForge and GoogleCode, have contributed to the prosperity 
of open source projects. As more and more people are used to code maintenance with 
Git, the Git-backed coding hosting platform now attracts millions of developers to put 
their software projects there.

Github is a Web based Git repository hosting service, which offers all of the distrib-
uted version control and source code management (SCM) functionality of Git. Github 
provides a Web based graphical interface. It also provides access control and several 
features such as bug tracking, feature requests, task management, and wikis for every 
project. Github provides star, fork functionalities to make Github users and repositories 
form a real social network.

Github timeline

Although there are other hosts of open source projects that also advocate social coding, 
like bitbucket and gitorious, Github is still the most popular one.

In Feb 2012, Github publicly announced that its timeline data is available on big query 
for analysis. Moreover, it offers prizes for the best visualization of the data.

Github provides the social interaction data for free. It faithfully records important 
actions a Github user performed on repositories. A clean API is provided for interesting 
people to access the event data. Project timeline can be constructed from those Github 
events. This functionality makes Github even more popular, not only as a software pro-
ject hosting service, but also as a target of software engineering research.

Github data analysis
As the Github platform is becoming popular, analyzing the social activities on Github 
platform is a new trend in software engineering (Lima et al. 2014). People observe user 
activities on Github repositories, and analyze the Github repository features to gain 
insights into the Github data. Two broad categories of research work are closely related 
to the work in this paper: user collaboration, and repository analysis.

Hauff and Gousios (2015) observe the activities of users on Github, and conduct quan-
titative analysis of user’s skills and interests based on the observation. Casalnuovo et  al. 
(2015) take a step further, and try to relate the social links between users and users’ lan-
guage experience to the productivity of developers. User following relationship demon-
strates user’s interests to other Github users. Yu et al. (2014) mine from follow networks, 
and discover several social patterns on Github. People are also interested in other social 
features of Github users, e.g. leadership, team diversity, gender diversity. McDonald et al. 
(2014) explore the concepts of distributed leadership, and propose a theory of leadership 
sharing, to support a model of developer contribution to open source projects. Vasilescu 
et al. (2015b) present a large data set of social diversity attributes of programmers in Github 
teams, for researchers to study the effect of team diversity in decentralized teams. Vasilescu 
et al. (2015a) also study the correlation of gender and tenure diversity to team productivity. 
Their results show that the gender and diversity are positive predictors of productivity.



Page 5 of 19Hu et al. SpringerPlus  (2016) 5:1268 

As Github repositories are important assets of Github users, their popularity and qual-
ity are strong indicators of their owner’s capability. Therefore, analysis of Github reposi-
tories becomes one important research branch. Researchers studied variant features of 
Github repositories, trying to analyze them from different aspects. Jurado and Marín 
(2015) perform a study over the project issues with Github repositories. They observe 
the sentimental aspects of Github project issues. Yu et al. (2015) study the pull requests, 
discuss the complex issue of pull request evaluation latency on Git enabled social cod-
ing platforms. Avelino et al. (2015) study the truck factor of popular Github repositories. 
A project’s truck factor is the number of developer it would need to lose to destroy its 
progress. Cosentino et al. (2014) evaluates the openness of Github projects with three 
metrics: the distribution of the project community, the rate of acceptance of external 
contributions, and the time it takes to become an official collaborator of the project. 
Tsay et al. (2014) study how to evaluate contributions on Github.

Recent works on Github analysis have revealed many secrets in Github data. However, 
we found that more efforts should be made to combine social interactions and Github 
repository features, in order to give a reasonable ranking of Github repositories.

There have been work on evaluating the popularity of Github users (Xavier et al. 2014). 
We focus on analyzing the popularity (influence) of Github repositories. Similar to the 
work on evaluating the effect of programming languages on open source projects (Ray 
et  al. 2014), we build language-specific social graph, and conduct language-specific 
analysis to get the per-language repository influence. People are also interested in the 
dynamics of Github data. Loyola and Ko (2014) evaluated how the contributor groups 
on a Github project evolves over time. Considering the evolution nature of Github activ-
ities, we also perform an evolutionary study of repository influence ranking.

Github data collection and social graph construction
What we want to do is to analyze the influence of Github repository based on the public 
Github timeline data. In the analysis process, we first collect the Github events data that 
are publicly available through the Github API. Then we extract all the star events and 
create a star graph to capture the social interactions with regard to user-star-repository 
actions. Finally, we apply HITS based link analysis on the graph to calculate the influence 
ranks of repositories.

Github data collection

The public Github data forms the basis of our analysis. There are now a huge amount of 
users and repositories on Github, and the number is growing rapidly. Up till now, there 
are more than 20 million public repositories and millions of users. Those users continu-
ously generate new data upon repositories hosted on Github.

In order to analyze the social behavior on Github, the Github data has to be collected 
first. For each user or repository, Github provides its meta information, like Figs. 1 and 2.

User activities on Github are represented by variant Github events. Github records 
each user action as an event, and events are generated continuously as time elapses. All 
the events forms an event stream. There are several kinds of Github events, each repre-
senting an important kind of action performed during the software development pro-
cess. They are:



Page 6 of 19Hu et al. SpringerPlus  (2016) 5:1268 

1.	 user creation event;
2.	 repository creation event;
3.	 commit event;
4.	 fork event;
5.	 star event.

{
“login”: “torvalds”,
“id”: 1024025,
“avatar url”: “https://avatars.githubusercontent.com/u/1024025?v=3”,
“gravatar id”: “”,
“url”: “https://api.github.com/users/torvalds”,
“html url”: “https://github.com/torvalds”,
“followers url”: “https://api.github.com/users/torvalds/followers”,
“following url”: “https://api.github.com/users/torvalds/following/other user”,
“gists url”: “https://api.github.com/users/torvalds/gists/gist id”,
“starred url”: “https://api.github.com/users/torvalds/starred/owner/repo”,
“subscriptions url”: “https://api.github.com/users/torvalds/subscriptions”,
“organizations url”: “https://api.github.com/users/torvalds/orgs”,
“repos url”: “https://api.github.com/users/torvalds/repos”,
“events url”: “https://api.github.com/users/torvalds/events/privacy”,
“received events url”: “https://api.github.com/users/torvalds/received events”,
“type”: “User”,
“site admin”: false,
“name”: “Linus Torvalds”,
“company”: “Linux Foundation”,
“blog”: null,
“location”: “Portland, OR”,
“email”: null,
“hireable”: null,
“bio”: null,
“public repos”: 2,
“public gists”: 0,
“followers”: 31456,
“following”: 0,
“created at”: “2011-09-03T15:26:22Z”,
“updated at”: “2015-06-11T00:46:13Z”,
}

Fig. 1  User meta information example. Display the meta information of a Github user by accessing the 
Github API with url=“https://api.github.com/users/Torvalds”

{
“id”: 2325298,
“name”: “linux”,
“full name”: “torvalds/linux”,
“private”: false,
“html url”: “https://github.com/torvalds/linux”,
“description”: “Linux kernel source tree”,
“fork”: false,
“url”: “https://api.github.com/repos/torvalds/linux”,
“forks url”: “https://api.github.com/repos/torvalds/linux/forks”,
...
“teams url”: “https://api.github.com/repos/torvalds/linux/teams”,
...
“languages url”: “https://api.github.com/repos/torvalds/linux/languages”,
“stargazers url”: “https://api.github.com/repos/torvalds/linux/stargazers”,
...
“size”: 2343179,
“stargazers count”: 26916,
“forks”: 10630,
}

Fig. 2  Repo meta information example. Display the meta information of a Github repository by accessing 
the Github API with url=“https://api.github.com/repos/Torvalds/linux”

https://api.github.com/users/Torvalds
https://api.github.com/repos/Torvalds/linux


Page 7 of 19Hu et al. SpringerPlus  (2016) 5:1268 

Github provides an easy-to-use API to enable access to events data on public repos-
itories. Events data are wrapped in JSON format documents, and can be retrieved by 
accessing an URL through an HTTP connection.

For practical reasons, Github only makes available the most recent events (events 
that happened in recent 3 months at most) via the Github API. Therefore, we have to 
keep crawling the events data every 2 or 3 months. The crawling process is as shown in 
Algorithm 1. 

Algorithm 1 The Crawling Process for Github Data
input: url, event url
output: datalist, event data in JSON format
1: if url is not valid then
2: return empty list
3: end if
4: datalist = new List()
5: onePage = httpGet(url)
6: nextUrl = url
7: while onePage is not NULL do
8: onePageEventList = jsonParse(onePage)
9: datalist.append(onePageEventList)
10: nextUrl = getNextPageUrl(nextUrl)
11: onePage = httpGet(nextUrl)
12: end while
13: return datalist

Github social graph creation

In this paper, the analysis is performed on the star graph. The star graph is constructed 
from the star relationship between Github user and Github repository. The star graph is 
created from star events within a given time interval. The creation of star graph is shown 
in Algorithm 2. 

Algorithm 2 Creation of Star Graph
input: starEvents, list of star events
output: G, the star graph G=(V,E)
1: g = new Graph()
2: for each event in starEvents do
3: e = (event.user, event.repository)
4: e.addProperty(event.time)
5: g.addEdge(e)
6: end for
7: return g

Social analysis

The main analysis part is performed on the star graph. As the star graph is a bipartite 
graph with two types of nodes: user and repository, our analysis is based on the HITS 
algorithm. The whole analysis is illustrated in Fig. 3.

The whole social analysis process is composed of three major steps:

1.	 data collection. We collect the Github events data, and retrieve star events.
2.	 create the star graph. The star graph represent the social structure that our social 

influence analysis is based upon.
3.	 HITS based social analysis. The details of the social analysis algorithms will be dis-

cussed in the next section.



Page 8 of 19Hu et al. SpringerPlus  (2016) 5:1268 

HITS based repository influence analysis
In this section, we present the HITS based social influence analysis for Github reposi-
tories. The details of the HITS based analysis are presented. Apart from the basic HITS 
analysis, we also discuss how to perform language-specific analysis, and how to use the 
Github meta information to build weighted HITS analysis of Github repositories.

HITS based analysis

The basic form of HITS algorithm consists of two main processes: constructing the adja-
cency graph and computing the authority weights and hub weights iteratively. We use an 
undirected graph G = (V, E), to represent the star graph which shows the star relation-
ship between Github users and repositories. The nodes of the graph is of two types, we 
make it V = V(u) + V(r). V(u) stands for Github users who have starred some Github 
repositories. V(r) stands for Github repositories that have been starred at least once. An 
edge e = (user, repo) belongs to E, meaning user stars repo at certain time.
For each node v, two weights are assigned to it: a(v) means the authority weight, and 
h(v) means the hub weight. In each computation step, the two weight values of a node is 
updated following two rules:

1.	 a(v) = sigma h(v)
2.	 h(v) = sigma a(v)

The basic HITS algorithm implemented is as Algorithm 3: 

Fig. 3  Workflow of the HITS based social analysis. Display the general workflow of the social influence analy-
sis on Github repositories



Page 9 of 19Hu et al. SpringerPlus  (2016) 5:1268 

Algorithm 3 The HITS-based Influence Analysis Algo-
rithm
input: g, the undirected star graph
output: H, the hub vector; A, the authority vector
1: nodeSet = set of nodes in g
2: for each node in nodeSet do
3: node.auth = 1.0
4: node.hub = 1.0
5: end for
6: for iter from 1 to MAXSTEP do
7: norm = 0
8: for each node in nodeSet do
9: if isUser(node) then
10: node.auth = 0
11: for each neighbor in node.getNeighbors(node) do
12: node.auth += neighbor.hub
13: end for
14: norm += square(node.auth)
15: end if
16: end for
17: norm = sqrt(norm)
18: for each node in nodeSet do
19: if isUser(node) then
20: node.auth = node.auth / norm
21: end if
22: end for
23: norm = 0
24: for each node in nodeSet do
25: if isRepo(node) then
26: node.hub = 0
27: for each neighbor in node.getNeighbors(node) do
28: node.hub += neighbor.auth
29: end for
30: norm += square(node.hub)
31: end if
32: end for
33: norm = sqrt(norm)
34: for each node in nodeSet do
35: if isRepo(node) then
36: node.hub = node.hub / norm
37: end if
38: end for
39: end for

To perform topic distillation, we create language specific star graph for major lan-
guages. We then apply HITS algorithm on those language-specific graphs to analyze the 
influence of repositories in different programming languages.

In order to perform language-specific analysis, we will have to first retrieve the meta 
information of Github users and repositories. A Github user has many properties, which 
can be accessed via Github API with URL of special format. In this paper, we would like 
to retrieve the meta information and store it in a database, which will be used later in 
influence analyses. We wrap the interesting features in a tuple t =  (uid, uname, enter-
Date). The steps of getting this tuple is shown in Algorithm 4. 

Algorithm 4 Get the User Meta Information
input: url, the URL used to access Github user data through
Github API
output: userTuple, the tuple of user meta information
1: jsonData = httpGet(url)
2: userTuple = jsonParse(jsonData)
3: userMetaDb.insert(userTuple)
4: return userTuple

The database userMetaDb will later be used to attract user id, and user names.



Page 10 of 19Hu et al. SpringerPlus  (2016) 5:1268 

Similarly, the repository meta information can also be retrieved through the Github 
API. Given a URL of a Github repository, we would get the meta information of the 
repository with the process described in Algorithm 5. 

Algorithm 5 Get the Repo Meta Information
input: url, the URL used to access Github user data through
Github API
output: userTuple, the tuple of user meta information
1: jsonData = httpGet(url)
2: userTuple = jsonParse(jsonData)
3: userMetaDb.insert(userTuple)
4: return userTuple

The process of creating language-specific star graph is defined in Algorithm 6. 

Algorithm 6 Create Language-Specific Star Graph
input: g, the undirected star graph
output: H, the hub vector; A, the authority vector
1: repoLang = getRepoLangMap()
2: for each repo in starredRepos do
3: if repoLang[repo] is not equal to lang then
4: continue
5: end if
6: g.addNode(repo)
7: g.addNode(user)
8: g.addEdge(user, repo)
9: end for
10: g.saveToFile()

Weighted HITS analysis

For Github ecosystem, treating all the link information of user-star-repository relation-
ship as the same may not be appropriate. The importance of Github repositories vary. 
One important factor is the fork counts and size of Github repositories.

We can use the features of Github repository as weights and perform weighted HITS 
analysis. Line 26 of Algorithm 3 should change to “node.hub = w”, where the node’s hub 
value is initialized with the weight w.

Improve HITS algorithm with repository’s fork information

The forking rate of Github repository is deemed as one of the most important features to 
indicate the popularity of a specific fork count.

The fork information comes from the Github event data. Algorithm 7 shows how the 
repository fork information is built from Github event data. 
Algorithm 7 Calculate the Fork Information
input: events, all the events that are within the given time interval
output: forkMap, data structure that map repo name to repo fork
count
1: forkCountMap = new Map()
2: for each event in events do
3: if isForkEvent(event) then
4: if event.repoName is not in forkCountMap.keySet() then
5: forkCountMap[event.repoName] = 1
6: else
7: forkCountMap[event.repoName] += 1
8: end if
9: end if
10: end for
11: return forkCountMap



Page 11 of 19Hu et al. SpringerPlus  (2016) 5:1268 

Experiments and evaluation
Experimental setup for the Github social influence analysis is presented in this sec-
tion. Firstly, The setup of data collector and experimental environments are explained 
in detail. Secondly, we present the results of basic HITS analysis and weighted analysis 
on the complete star graph. Thirdly, we present the monthly influence analysis of Github 
repositories, and track the dynamics of repository ranking.

Dataset setup

We collect the experimental data from two data sources: the original Github API, and 
githubarchive Web site. The meta information about Github users and repositories are 
retrieved with the Github API. This work is done by scraping the Github data URLs.

We get the Github events data from githubarchive. The timeline data keeps growing, 
and needs to be crawled every 2–3 months due to Github restrictions. As Github ori-
ented analysis is becoming popular, there are special archive site focusing on crawling 
Github data continuously and archive the data for researchers to download. Ghtorret 
and githubarchive are the two typical Github data archive site, which have been used in 
recent studies on Github analysis.

Experimental setup

The experiments are conducted on Intel i5, BSD Unix, 8G RAM. The star graph is cre-
ated using the SNAP library. Currently, we construct the star graph with 4  years star 
events data from Jan 1st, 2012 until Dec 31, 2015. SNAP is a C++ library that facilitates 
social analysis on large graphs. We use the Python wrapper for SNAP, and connects with 
python Github database.

Analysis of Github repositories

The top 10 Github Repositories returned by the standard HITS algorithm implementa-
tion in SNAP library are listed in Table 1. Most of these top 10 repositories are JavaScript 
or HTML5 web applications. It shows that considering only star relationship during the 
evaluated time interval, JavaScript based web applications are overwhelmingly more 
popular than repositories implemented with other programming languages.

When we apply the fork-weighted HITS algorithm on the 4-year star graph, we get dif-
ferent top repositories, as listed in Table 2. When the fork factor is considered together 

Table 1  Top 10 Github repositories with HITS algorithm

Rank Repo name Hub value

1 angular/angular.js 0.0447933608671

2 facebook/react 0.0429770574216

3 mbostock/d3 0.0411178537051

4 FortAwesome/Font-Awesome 0.0399144170895

5 vhf/free-programming-books 0.0397495680716

6 airbnb/javascript 0.0358427149496

7 meteor/meteor 0.0334891188394

8 facebook/react-native 0.0311704638485

9 daneden/animate.css 0.031147531885

10 hakimel/reveal.js 0.03028518744



Page 12 of 19Hu et al. SpringerPlus  (2016) 5:1268 

with the star relationship, highly forked repositories with reasonable amounts of stars 
get in the top 10 list. The repository “octocat/Spoon-Knife” is not an actual feature rich 
repository, it is a repository used as a demo of the Github “fork” feature. It has a very high 
fork rate, it is why it appears as one of the top repositories in the results. Highly forked 
online course projects like “rdpeng/ProgrammingAssignment2”, “DataScienceSpecializa-
tion/courses”, show in the top 10 fork-weighted list. The results shows that they have 
high social influence, although they are not hot software development projects.

We also tried size-weighted HITS algorithm on the 4-year star graph, and the results 
are shown in Table 3. It seems that the size of a repository alone is not good indicator for 
repository influence. Well-known large-scale influential repositories, like “cdnjs/cdnjs”, 
“WebKit/webkit” do not appear in the top 10 list.

Monthly analysis of Github repository ranking

Popular Github repositories keep attracting attentions of capable software developers. 
The influence of a repository may change overtime. Based on this observation, we ana-
lyze the Github events data in a monthly fashion.

Monthly star graphs are built from the monthly events data. HITS algorithm is applied 
to those star graphs. We focus on the top influential Github repositories, and demon-
strate how a repository’s influence value varies month by month. We calculate the hub 

Table 2  Top 10 Github repositories with fork-weighted HITS algorithm

Rank Repo name Hub value

1 jtleek/datasharing 0.664059586365

2 rdpeng/ProgrammingAssignment2 0.393534756

3 octocat/Spoon-Knife 0.365773402631

4 twbs/bootstrap 0.186108421832

5 rdpeng/ExData_Plotting1 0.170712175547

6 rdpeng/RepData_PeerAssessment1 0.104721087113

7 angular/angular.js 0.10327750696

8 DataScienceSpecialization/courses 0.0956450957915

9 udacity/frontend-nanodegree-resume 0.0697668647334

10 Homebrew/homebrew 0.0662650437365

Table 3  Top 10 Github repositories with size-weighted HITS algorithm

Rank Repo name Hub value

1 alphaHeavy/bloomberg_symbols 0.033543664973

2 jj1bdx/tinymtdc-longbatch 0.031942377449

3 practicalswift/osx 0.03161613091

4 Tmustafaramadhan/kloxo 0.029476151813

5 MyCATApache/Mycat-download 0.0287408749217

6 mkalin/jwsur2 0.0283066388087

7 MiCode/patchrom_miui 0.0267653188291

8 angular/angular.js 0.0265660417786

9 kiang/bulletin.cec.gov.tw 0.0264688182206

10 JustArchi/ArchiDroid-legacy 0.0261632821478



Page 13 of 19Hu et al. SpringerPlus  (2016) 5:1268 

values of all starred repositories, and rank those repositories according to their hub val-
ues. The analysis results (monthly ranking curve) on the three set of top repositories are 
illustrated in Figs. 4, 5 and 6.

In Fig. 4, we study the top 10 ranked repositories generated with the standard HITS 
algorithm implemented within the SNAP library. The results show the necessity of ana-
lyzing the Github timeline data month by month.

	 1.	 angular/angular.js is a very popular HTML client-side enhancement library. It keeps 
a relatively stable high rank during the observed months.

	 2.	 facebook/react: A declarative, efficient, and flexible JavaScript library for building 
user interfaces. It is another JavaScript project with steady rank lines.

	 3.	 hmbostock/d3: It achieves relatively high ranks in all the 48 months.
	 4.	 FortAwesome/Font-Awesome: It is a popular font and css toolkit.

Fig. 4  Monthly rank curve of top 10 HITS repositories. Display the monthly ranking dynamics of the top 10 
repositories returned by HITS algorithm

Fig. 5  Monthly rank curve of top 10 fork-weighted HITS repositories. Display the monthly ranking dynamics 
of the top 10 repositories returned by the fork-weighted HITS algorithm



Page 14 of 19Hu et al. SpringerPlus  (2016) 5:1268 

	 5.	 vhf/free-programming-books: It is an authoritative page that keeps freely available 
programming books. It is popular information source, but not a software project. 
It gets its first top1 rank in month 21, and after then stays popular as the monthly 
ranking indicates.

	 6.	 airbnb/javascript: It is a JavaScript style guide.
	 7.	 meteor/meteor: It is a JavaScript App platform. It keeps high influential rank during 

2012, then steady relatively high rank till Dec 2015.
	 8.	 facebook/react-native: It is a framework for building native apps with React. It is a 

newly popular application March 2015.
	 9.	 daneden/animate.css: It is a cross-browser library of CSS animations. It keeps rela-

tively steady high rankings throughout the 4 years.
	10.	 hakimel/reveal.js: It is a popular HTML representation framework. It keeps relatively 

steady high rankings throughout the 4 years.

Figure 5 shows the monthly ranking of the fork-weighted HITS top 10 results. Those 
10 repositories presents steady ranks than those in Fig. 4. The repository octocat/Spoon-
Knife is a high-forked repository, but is not actually popular. It is a project with few files, 
and has a small size. As we check it out, it is a project that is made typically as an exam-
ple to demonstrate the fork feature of Github. This explains why it has high forks while 
exhibiting low monthly influence ranks. All other applications comes with monthly 
ranks that fit well with the fork-weighted ranks.

We also studied the monthly ranking of the top 10 size-weighted HITS algorithm 
results. Figure 6 shows the monthly ranking of the size-weighted HITS top 10 results. As 
shown in Fig. 6, Github repositories of very large size tend to be starred by fewer devel-
opers. Among the top 10 repositories returned by size-weighted HITS algorithm, only 
three repositories (practicalswift/osx, Tmustafaramadhan/kloxo, angular/angular.js) are 
continuously influential during the 4 years.

Fig. 6  Monthly rank curve of top 10 size-weighted HITS repositories. Display the monthly ranking dynamics 
of the top 10 repositories returned by the size-weighted HITS algorithm



Page 15 of 19Hu et al. SpringerPlus  (2016) 5:1268 

From the results depicted by Figs.  4, 5, 6, we can see that the social influence of a 
repository tends to change month by month. For those top influential repositories, they 
won’t be high influential each month. However, they often have a steady influential rank, 
while having high ranks in several months.

Language‑specific monthly analysis of Github repository ranking

The monthly HITS based influence analysis is also applied to repositories of several 
major programming languages, including JavaScript, Python, Java, PHP.

We retrieved the top 10 results with HITS algorithm and fork-weighted algorithm and 
perform monthly analysis for top JavaScript and Python repositories. Monthly rank val-
ues of language-specific repositories are calculated according to their hub values.

We first build a star graph for JavaScript repositories, and perform HITS analysis on it. 
The full names of top 10 influential JavaScript repositories return by HITS algorithm are:

	 1.	 angular/angular.js;
	 2.	 facebook/react;
	 3.	 mbostock/d3;
	 4.	 airbnb/javascript;
	 5.	 meteor/meteor;
	 6.	 hakimel/reveal.js;
	 7.	 adobe/brackets;
	 8.	 getify/You-Dont-Know-JS;
	 9.	 driftyco/ionic;
	10.	 bartaz/impress.js.

The full names of the top 10 influential JavaScript repositories returned by the fork-
weighted HITS algorithm are:

	 1.	 twbs/bootstrap;
	 2.	 angular/angular.js;
	 3.	 DataScienceSpecialization/courses;
	 4.	 udacity/frontend-nanodegree-resume;
	 5.	 gabrielecirculli/2048;
	 6.	 mbostock/d3;
	 7.	 heroku/node-js-sample;
	 8.	 jquery/jquery;
	 9.	 tastejs/todomvc;
	10.	 h5bp/html5-boilerplate.

The JavaScript repositories ranking in months are illustrated in Figs. 7 and 8.
Two popular repository, angular/angular.js, stand out top in the results of standard 

HITS and fork-weighted HITS algorithms.
The fork-weighted monthly results in Fig. 8 shows that highly-forked JavaScript repos-

itories also receives increased stars.



Page 16 of 19Hu et al. SpringerPlus  (2016) 5:1268 

For Github repositories implemented with Python, a similar language-specific analysis 
is conducted. The full names of top 10 Python repositories returned by the HITS algo-
rithm are:

	 1.	 vinta/awsome-python;
	 2.	 kennethreitz/requests;
	 3.	 mitsuhiko/flask;
	 4.	 django/django;
	 5.	 ansible/ansible;
	 6.	 scrapy/scrapy;
	 7.	 rg3/youtube-dl;
	 8.	 rethinkdb/rethinkdb;
	 9.	 faif/python-patterns;
	10.	 mrdoob/three.js.

Fig. 7  Monthly rank curve of top 10 HITS repositories (JavaScript). Display the monthly ranking dynamics of 
the top 10 JavaScript repositories returned by the HITS algorithm

Fig. 8  Monthly rank curve of top 10 fork-weighted HITS repositories (JavaScript). Display the monthly ranking 
dynamics of the top 10 JavaScript repositories returned by the fork-weighted HITS algorithm



Page 17 of 19Hu et al. SpringerPlus  (2016) 5:1268 

The full names of top 10 influential Python repositories returned by the fork-weighted 
HITS algorithm are:

	 1.	 shadowsocks/shadowsocks;
	 2.	 mrdoob/three.js;
	 3.	 django/django;
	 4.	 bitcoin/bitcoin;
	 5.	 mitsuhiko/flask;
	 6.	 scikit-learn/scikit-learn;
	 7.	 ansible/ansible;
	 8.	 julycoding/The-Art-Of-Programming-By-July;
	 9.	 numbbbbb/the-swift-programming-language-in-chinese;
	10.	 scrapy/scrapy.

The Python repositories ranking in months are illustrated in Figs. 9 and 10. The results 
show that the top 10 results of fork-weighted HITS algorithm give more reasonable 
ranks to popular Python repositories on Github. Projects like django/django, scikit-
learn/scikit-learn, scrapy/scrapy are in the top ranks, and they are real popular projects 
that are well known to python programmers.

Conclusion
Github has become the most popular social coding platform. As such, it is an interest-
ing issue to analyze the social factors of Github users and repositories. In this paper, we 
present HITS based influence analysis on Github repositories. We design Github data 
collection module, which collects github data from multiple data sources. Our data col-
lector retrieves the Github events from githubarchive.org. We then filter out star events 
from the collected event stream, and build the star graph to capture the basic social rela-
tionship between Github users and repositories. Meta information about Github users 
and repositories, are crawled from Github API urls, also by our data collector. Important 

Fig. 9  Monthly rank curve of top 10 HITS repositories (Python). Display the monthly ranking dynamics of the 
top 10 Python repositories returned by the HITS algorithm



Page 18 of 19Hu et al. SpringerPlus  (2016) 5:1268 

attributes are retrieved from those meta information and used in fork-weighted and 
size-weighted HITS algorithms proposed in this paper. We evaluated those HITS based 
algorithms on the star graphs generated from Github data. In order to demonstrate the 
dynamics of repository influence, we design per-month HITS analysis and draw curves 
of monthly repository ranking. And we also create language-specific star graphs, and 
perform HITS ranking and monthly ranking evaluation for popular languages like JavaS-
cript and Python. The findings show that the adapted HITS algorithm and monthly 
analysis gives more insights into the social influence of Github repositories. Based on 
the results, we can develop new analyses, like detection of patterns or trends of Github 
social influence, detection of anomalies in Github social activities, classification of 
Github repositories.
Authors’ contributions
YH provides the ideas, and writes the draft. JZ, XB, SY help improve the research idea, and revise the paper draft. ZY helps 
revise the paper, and help design the experiments. All authors read and approved the final manuscript.

Acknowledgements
Many thanks to the detailed comments given by anonymous reviewers. This work is partially supported by the National 
Natural Science Foundation of China under Grant(NSFC) 61300017.

Competing interests
The authors declare that they have no competing interests.

Received: 14 December 2015   Accepted: 22 July 2016

References
Avelino G, Valente MT, Hora A (2015) What is the truck factor of popular Github applications? A first assessment. PeerJ 

Prepr 3:e1233
Casalnuovo C, Vasilescu B, Devanbu PT, Filkov V (2015) Developer onboarding in Github: the role of prior social links and 

language experience. In: Proceedings of the 2015 10th joint meeting on foundations of software engineering, ESEC/
FSE 2015, Bergamo, Italy, August 30–September 4, 2015

Cosentino V, Izquierdo JLC, Cabot J (2014) Three metrics to explore the openness of Github projects. CoRR. 
arXiv:1409.4253

Hauff C, Gousios G (2015) Matching Github developer profiles to job advertisements. In: 12th IEEE/ACM working confer-
ence on mining software repositories, MSR 2015, Florence, Italy, May 16–17, 2015, pp 362–366

Jurado F, Marín PR (2015) Sentiment analysis in monitoring software development processes: an exploratory case study 
on Github’s project issues. J Syst Softw 104:82–89

Fig. 10  Monthly rank curve of top 10 fork-weighted HITS repositories (Python). Display the monthly ranking 
dynamics of the top 10 Python repositories returned by the fork-weighted HITS algorithm

http://arxiv.org/abs/1409.4253


Page 19 of 19Hu et al. SpringerPlus  (2016) 5:1268 

Kaplan DT (2008) Google’s pagerank and beyond: the science of search engine rankings by Amy N. Langville; Carl D. 
Meyer. Am Math Mon 115:765–768

Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM 46:604–632
Lima A, Rossi L, Musolesi M (2014) Coding together at scale: Github as a collaborative social network. CoRR. 

arXiv:1407.2535
Loyola P, Ko IY (2014) Population dynamics in open source communities: an ecological approach applied to Github. In: 

23rd international world wide web conference, WWW ’14, Seoul, Republic of Korea, April 7–11, 2014, companion 
volume, pp 993–998

McDonald N, Blincoe K, Petakovic E, Goggins SP (2014) Modeling distributed collaboration on Github. Adv Complex Syst 
17:7–8

Ray B, Posnett D, Filkov V, Devanbu PT (2014) A large scale study of programming languages and code quality in Github. 
In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, (FSE-
22), Hong Kong, China, November 16–22, 2014, pp 155–165

Tsay J, Dabbish L, Herbsleb JD (2014) Influence of social and technical factors for evaluating contribution in Github. 
In: 36th international conference on software engineering, ICSE ’14, Hyderabad, India, May 31–June 07, 2014, pp 
356–366

Vasilescu B, Posnett D, Ray B, van den Brand MGJ, Serebrenik A, Devanbu PT, Filkov V (2015a) Gender and tenure diversity 
in Github teams. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems, CHI 
2015, Seoul, Republic of Korea, April 18–23, 2015, pp 3789–3798

Vasilescu B, Serebrenik A, Filkov V (2015b) A data set for social diversity studies of Github teams. In: 12th IEEE/ACM work-
ing conference on mining software repositories, MSR 2015, Florence, Italy, May 16–17, 2015, pp 514–517

Xavier J, Macedo A, Maia MA (2014) Understanding the popularity of reporters and assignees in the Github. In: The 26th 
international conference on software engineering and knowledge engineering, Hyatt Regency, Vancouver, BC, 
Canada, July 1–3, 2013, pp 484–489

Yu Y, Yin G, Wang HM, Wang T (2014) Exploring the patterns of social behavior in Github. In: Proceedings of the 1st 
international workshop on crowd-based software development methods and technologies, CrowdSoft 2014, Hong 
Kong, China, November 17, 2014, pp 31–36

Yu Y, Wang HM, Filkov V, Devanbu PT, Vasilescu B (2015) Wait for it: determinants of pull request evaluation latency on 
Github. In: 12th IEEE/ACM working conference on mining software repositories, MSR 2015, Florence, Italy, May 
16–17, 2015, pp 367–371

http://arxiv.org/abs/1407.2535

	Influence analysis of Github repositories
	Abstract 
	Background
	Background
	Link analysis algorithms
	PageRank
	HITS

	Social coding platform
	Github timeline

	Github data analysis
	Github data collection and social graph construction
	Github data collection
	Github social graph creation
	Social analysis

	HITS based repository influence analysis
	HITS based analysis
	Weighted HITS analysis
	Improve HITS algorithm with repository’s fork information

	Experiments and evaluation
	Dataset setup
	Experimental setup
	Analysis of Github repositories
	Monthly analysis of Github repository ranking
	Language-specific monthly analysis of Github repository ranking

	Conclusion
	Authors’ contributions
	References




