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Background
The long-term goal of the Gordon and Betty Moore Foundation’s Data-Driven Discovery 
Initiative (DDD) is to foster and advance the people and practices of data-intensive sci-
ence to take advantage of the increasing volume, velocity, and variety of scientific data to 
make new discoveries. Data-intensive science is inherently multidisciplinary, combining 
natural sciences with methods from statistics and computer science.

In January 2014 the DDD launched an Investigator Competition (IC) to identify some 
of the leading innovators in data-driven discovery. These scientists are striking out in 
new directions and are willing to take risks with the potential of huge payoffs in some 
aspect of data-intensive science. As part of the competition we collected several thou-
sand references, which we call influential works, to the literature, software, and data sets 
that the applicants listed as one of the top five most important works in data-intensive 
science or data science.

This paper is a preliminary review of what we found. The next section presents the 
methodology and some statistics from the references. “Clusters of influential works” sec-
tion contains several natural clusters of the works, some are obvious like genomics and 
machine learning. Others like the impact of Google’s work, and questions about the sci-
entific method are perhaps of more general interest. This paper ends with some limita-
tions and next steps.

Influential works at a top level
In the competition pre-application stage we asked for up to five influential works in data-
driven discovery. Specifically, as stated in the competition FAQ:
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The (up to) five Influential Works on the pre-application web form are for you to 
reference work that you think has helped define the field of data science. This may 
or may not be your own work. Taken collectively, across all the DDD IC pre-applica-
tions, these works will give the foundation a snapshot of data intensive science.

A total of 1095 applications were received in late February 2014, containing 4790 
references.

The raw data is not available for public release since it was collected with the Founda-
tion’s promise of anonymity to get a better sampling. Specifically, from the competition 
FAQ:

Members of the DDD staff intend to write a review paper that summarizes these 
findings, and information will only be used in an aggregate form. 

Presented in this paper is an aggregate form, via an automated sorting process that is 
described in the “Appendix”, for works cited at least six times. There are 53 of these 
works; and the ones cited at least ten times are in Table  1. This automatic approach 
works very well for papers and books, which have a well established citation form, but 
not so well for resources and tools and this will be discussed further in the limitations 
part of the concluding remarks.

A plot of the reference index for all works versus the reference count fitted to a power 
law is shown in Fig. 1. The correlation of about 0.99 is very good agreement. The h-index 

Table 1  Works that were cited at least ten times, with count, year, and citation

Count Year Citation

63 2008 MapReduce (Dean and Ghemawat 2008)

51 2009 Fourth paradigm (Hey et al. 2009)

43 2009 Elements of statistical learning (Hastie et al. 2009)

30 2001 Initial sequencing of the human genome (Lander et al. 2001)

24 1948 A mathematical theory of communication (Shannon 2001)

23 2000 Sloan Digital Sky Survey (York et al. 2000)

20 1990 BLAST (Altschul et al. 1990)

19 1996 Lasso (Tibshirani 1996)

19 2003 Latent Dirichlet allocation (Blei et al. 2003)

17 1977 EM algorith (Dempster et al. 1977)

17 1995 Support vector networks (Cortes and Vapnik 1995)

15 2001 Random forests (Breiman 2001)

14 2006 Pattern recognition (Bishop et al. 2006)

14 1998 Anatomy of web search engine (Brin and Page 1998)

13 2007 Numerical recipes (Press 2007)

11 1979 Bootstrap methods (Efron 1979)

11 1953 Equation of state calculations (Metropolis et al. 1953)

11 1977 Exploratory data analysis (Tukey 1977)

11 1988 Probabilistic reasoning (Pearl 1988)

10 1999 PageRank (Page et al. 1999)

10 2013 Bayesian data analysis (Gelman et al. 2013)

10 2009 Unreasonable effectiveness of data (Halevy et al. 2009)
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of the works is 14; this is the subset of the works cited as least as often as their rank by 
the number of times cited (Hirsch 2005)⋆.1

The data set is 1.7 MB and is difficult to examine directly, but the sorting process was 
manually validated on some references that have rare words. For example, MapReduce 
(Dean and Ghemawat 2008) is reported here with 63 citations and a hand count shows 
64, Latent Dirichlet allocation (Blei et al. 2003) is a perfect 19 for 19, and The Fourth 
Paradigm (Hey et al. 2009) is 51 for 58 and this mostly was due to sloppy citations. The 
counts reported here can be considered good lower bounds on the real counts.

Clusters of influential works
The works were manually organized into clusters by natural science domain, method-
ologies, tools, and the scientific method as shown in Table  2. Each cluster has some 
key topics as described below and all influential works are cited with varying levels of 
description.

Domain sciences

Astronomy

The Sloan Digital Sky Survey (SDSS) (York et al. 2000) is a widely cited resource (www.
sdss.org).2 The current release is SDSS-III DR12 that has observations through 14 July 
2014 and contains 469,053,874 unique, primary, sources from several datasets. Gener-
ally, online astronomical datasets are being federated via interoperability standards cre-
ated by organizations such as the International Virtual Observatory Alliance (www.ivoa.
net). The result is a virtual telescope, and astronomers have been pioneers in making 
observations openly available and accessible.

New instruments are also showing that data-driven discovery is not just about the vol-
ume of data, but also the “velocity”. One of the major challenges with the Large Synoptic 

1  References that provide background information, and not in the 53 influential works found as part of the competition, 
are denoted by a ⋆.
2  SDSS was cited as both a resource and an associated technical summary paper. The intent was clear so we grouped all 
the citations together.

Fig. 1  Fit of the influential works to a power law (x is index, y is count). The correlation coefficient is 
R
2
= 0.989

http://www.sdss.org
http://www.sdss.org
http://www.ivoa.net
http://www.ivoa.net
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Survey Telescope (LSST), which should start doing science runs about 2020, is that the 
number of alerts to interesting objects may overwhelm the available follow up resources. 
Good object classification (“Machine learning” section) and prioritization will be crucial 
to the science output.

Genomics

It is very clear that genomics and the Human Genome Project (HGP) have been the main 
driver of data driven discovery in the life sciences. The two primary works are the “Ini-
tial sequencing and analysis of the Human genome” (Lander et al. 2001) and the related 
paper by Venter et al. (2001). These papers report the sequencing of the approximately 3 
billion nucleotides that make up the human genome. The project was considered essen-
tially complete in April 2003 and according to the NIH’s HGP factsheet, it has enabled 
the discovery of over 1800 disease related genes and many other applications. An exam-
ple is the Thousand Genomes Project (2012) which, as of 2012, had completed a variety 
of sequences from 1092 individuals from 14 populations. This allows comparative analy-
sis of the sequences, which is at the core of bioinformatics-based discovery.

Consider two sequences a, b composed from the alphabet {A,C ,G,T }—DNA nucleo-
tides. We want to find the optimal alignments, essentially a string matching problem, of 
a, b. In general, however, the alignments are not perfect string matches due to missing 
data and other factors. Instead, a distance metric is defined and the alignments are opti-
mized with respect to that metric. For example, under a certain metric two good align-
ments of GACTAC are -ACG-C and -AC-GC. This can be done optimally using dynamic 
programming in time O(|a| |b|). However, if a must be aligned with many b taken from 
a database search, the computational expense is prohibitive. A key bioinformatics tool 
is the “Basic Local Alignment Search Tool” (Altschul et al. 1990) (BLAST). BLAST uses 
heuristics to reduce the time complexity and make large-scale searches practical.

There are many other applications besides human health. For example, population 
groupings can be inferred using Bayesian clustering methods from multiloci genotype 
information (Pritchard et al. 2000). This is an early form of Latent Dirichlet allocation 
(LDA) which is described more fully in the next section. It can be thought of as running 
LDA on genetic data, rather than on text: it clusters individuals into population rather 

Table 2  A clustering of the 53 influential works with associated sections

Count Cluster Key topics

7 “Domain sciences” Astronomy

Genomics

29 “Methodologies” Theory

Statistical methods

Machine learning

9 “General tools and applications” Google

General tools

8 “Centrality of the scientific method”

53 ALL
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than documents into topics.3 Another emerging example is the use of bioinformatics 
methods in ecology (Jones et  al. 2006). A major challenge here is the heterogeneous 
natures of the data, from individuals to the biosphere, and their interactions.

The Protein Data Bank (Berman et al. 2000) was established at Brookhaven National 
Lab in 1971 as an archive for structural genomics data: essentially the shapes of biologi-
cally active molecules. These shapes and other information is determined experimentally 
by X-ray diffraction, NMR, and sometimes theoretical modeling. These experiments 
require special facilities and can be costly, so there was clearly a motivation in the com-
munity to build an archive to minimize duplication of effort. In 2000 there were 10,714 
structures and this has grown to 106,710 by early 2015. The data bank supports sophisti-
cated query mechanisms to assist researchers in finding structures with certain proper-
ties, such as atomic locations.

It is interesting that the two most referenced natural science domains are astronomy 
and genomics, and they can differ in length scales of phenomena by up to 33 orders of 
magnitude. The fact that humanity can probe over such a large range, and even further 
with high-energy physics experiments, is simply amazing.

Methodologies

Foundational theory

Reverend Bayes’ essay on the Doctrine of Chances in 1763 (Bayes 1763) is the earliest 
commonly cited paper and it is truly foundational for data science (a popular modern 
text is Gelman et al. 2013). The work introduces “Bayes Law” which gives the likelihood 
of a condition A being present given that condition B is present, denoted as the condi-
tional probably P(A | B), as

where P(A) and P(B) are the so called prior probabilities, or the frequencies of occur-
rence of the conditions. Please note that the wording is careful to not confuse coinci-
dence with causality: the “law” is just a statement of an existing closed population. This 
equation is optimal under a crucial assumption and this can be seen since it is the unique 
generalization (up to an integration constant) of modus ponens for probabilistic infer-
ence (Jaynes 2003). The crucial assumption is that the priors are known very well. There 
are extensions to Eq. 1 known as maximal-entropy methods that are based on ideas from 
statistical mechanics, i.e.  how much information can be contained in all the possible 
ensembles of states in a closed system; again Jaynes is a good reference (Jaynes 2003).4

Shannon’s seminal work on how much information can be transmitted over a com-
munications channel is also based on entropic ideas (Shannon 2001). Recently, Donoho 
(2006) wrote on “Compressed sensing”, with an application to image analysis, but the 
development is a more general result in information theory. Let x be an unknown vec-
tor of size |m| and that we plan to make n measurements of x in a variety of ways. It is 

3  The method can be used back in time since DNA can be preserved; population studies have been done on Darwin’s 
finches from the Galápagos in 1835 using specimens from British museums (Petren et al. 2010)⋆.

(1)P(A|B) =
P(B|A)P(A)

P(B)

4  It should be noted this may be a data anomaly as one of the authors cited this work on his homepage. He also cited 
Sports Illustrated which may explain random references to sports statistics.
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shown that only n = O(m1/4 log5/2(m)) measurements are needed for a bounded error. 
This is a very interesting result because it shows that with clever measurement, we do 
not need to collect nearly as much data if there is an underlying sparse representation of 
what is being measured (another way to look at this is that there can be a lot of redun-
dancy in representations). As will be seen in “Machine learning” section, some forms of 
compression can be automatically learned.

The Metropolis Algorithm (Metropolis et  al. 1953) gives a way for sampling large 
spaces for computing high-dimensional integrals with a bounded convergence rate. 
Probabilistic reasoning in intelligent systems: Networks of plausible inference by Pearl 
(1988) also covers Bayesian inference, Bayesian and Markov networks, and more 
advanced topics of interest to the artificial intelligence community. We suspect that the 
use of automated reasoning techniques will grow in data science, although there are 
issues of scalability. Pearl has also written extensively on coincidence and causality.

Classical statistical methods

Any section on classical statistical methods must begin with linear models of data, 
such as fitting a line to a set of points using an ordinary least squares (OLS) estimate. 
The lasso (Tibshirani 1996), for “least absolute shrinkage and selection operator,” can 
improve on the prediction accuracy of OLS and also helps with interpretation since it 
identifies key coefficients in the estimate.

Consider a sample of size N, we can certainly compute basic statistics such as the aver-
age. With bootstrap methods (Efron 1979), the sample is re-sampled multiple times with 
replacement to generate better statistics, and this is useful with complicated distribu-
tions. Extensions to the original 1979 approach use Bayesian methods (Rubin 1981)⋆ . 
This is further developed in “A decision-theoretic generalization of on-line learning and 
an application to boosting” (Freund and Schapire 1995). It is an example of combin-
ing multiple strategies, even if they are individually weak, to build robust models. The 
authors use many example, including betting on horses.

Incomplete data is a very common problem and it can be formalized as follows. Let 
x ∈ X  be the complete data and y ∈ Y be the (possibly incomplete) observed data, and 
assume there is a mapping such that X (y) gives all possible x for an observation y. Given 
a set of parameters �, the family of complete sampling distributions f (x|�) is related to 
the incomplete family g(y|�) by

Dempster, Laird, and Rubin present a method for computing maximum likelihood esti-
mates from incomplete data called the EM Algorithms (for Expectation-Maximization) 
(Dempster et al. 1977); it does this by adjusting the parameters to maximize g given the 
observations. The paper has many examples including missing value situations, trun-
cated data, etc. It was read before the Royal Statistical Society and there is extensive 
commentary in its published form. One comment in particular, by R. J. A. Little, is a fine 
summary: “Other advantages of the EM approach are (a) because it is stupid, it is safe, 
(b) it is easy to program, and often allows simple adaptation of complete data methods, 
and (c) it provides fitted values for missing data.” An application of the EM algorithm 

(2)g(y|�) =

∫

X (y)

f (x|�)
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and Bayesian statistics is “Latent Dirichlet allocation” (Blei et al. 2003) that build a multi-
level model for “collections of discrete data such as text corpora.”5

Consider a set of features used to classify objects. A “random forest” (Breiman 2001) is a 
collection of decision trees where each tree uses some subset of the features to do a classifica-
tion; the trees then vote to determine the final class. It is shown that forests are not subject 
to overtraining, which can be a problem with machine learning methods (see next section).

The Elements of Statistical Learning (Hastie et al. 2009, Chapters 3, 10, 8, 15) by Hastie, 
Tibshirani, and Friedman covers lasso, bootstrap methods, the EM algorithm, and random 
forests. It is also has chapters on machine learning which is covered in the next section; it is 
a popular text. An earlier text (Breiman et al. 1984), also covers regression and tree methods.

When there are multiple hypotheses a standard approach is to control the familywise error 
rate (FWER)—closely related to Type I errors. This is a common problem in determining the 
efficacy of medical procedures. Benjamini and Hochberg suggest (Benjamini and Hochberg 
1995), instead, to control the number of falsely rejected hypotheses—the false discovery rate 
(FDR). FDR can be more powerful when some (null) hypotheses are non-true.

Isomap (Tenenbaum et  al. 2000) is an algorithm for reducing the dimensionality of 
input spaces, e.g.  face recognition. It is broadly applicable whenever non-linear geom-
etry complicates the use of techniques such as Principal Component Analysis (PCA). 
Another paper on non-linear reduction (Roweis and Saul 2000) presents a local, piece-
wise, linear method for modeling non-linear data. An interesting example is that using 
PCA on a logarithmic spiral, to first order, just yields a linear fit; yet the curve can be 
parameterized by its length and maintain its structure.

Machine learning

Methods for machine learning are crucial for data-driven discovery and are used for 
both classification and regression analysis. There are several standards texts (Mitchell 
1997; Duda et  al. 1999; Bishop et  al. 2006; Murphy 2012). Here we will focus on two 
common methods and some recent advances.

Consider the classification problem f : X �→ {−1, 1} where X is an observation space 
and f decides if a member of X belongs to one of two categories. For example, in an astro-
nomical image, find all of the quasars with a redshift greater than some value. Machine 
learning methods take a set of example observations from X and use some generalization 
process to build an f.

One of the most rigorously-founded ways is to form a “Support Vector Machine” 
(Vapnik 1998; Cortes and Vapnik 1995) (SVM). The construction of an SVM attempts 
to build a hyperplane that divides the examples into the −1 or +1 spaces. In general, the 
examples are not completely separable and so a kernel K (x, x′) is used to project an ele-
ment x of X into a higher dimensional space where the separation is more complete. It is 
useful to look at this in more detail, since it clearly shows data, mathematical formula-
tions, and clever algorithms coming together to form an f.

A common kernel is K (x, x′) = e−(x−x′)2/2σ 2 where σ is determined from the data. 
The selection of a kernel generally requires some insight, particularly when the data is 

5  It would be interesting to apply LDA to the 53 influential works.
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heterogeneous. Consider l training examples (x1, y1) . . . (xl , yl) where the yi ∈ {−1,+1}. 
To construct an SVM, solve the following optimization problem for α:

subject to 
∑l

i=1 yiαi = 0 and all αi ≥ 0. This can be done via quadratic programming 
which is generally NP-hard, but due to some constraints in the formulation the optimi-
zation can be done quickly using Sequential Minimal Optimization (SMO) (Platt 1999)⋆ . 
The decision function is then f (x) = sgn(b+

∑l
i=1 yiαiK (x, xi)) where b is the scalar 

category separator and can be computed directly given the αi.
Recently SVMs, called SVM+, have been extended to work with an auxiliary “privileged 

information” set X⋆ that is available only during classifier construction (Vapnik and Vash-
ist 2009)⋆. An example is to use a protein structure prediction code, during training, to 
help train a classifier. An SVM+ classifier typically performs better than regular SVM. 
Constructing an SVM+ can also be done fairly quickly using SMO (Pechyony and Vapnik 
2012)⋆. There is an interesting analogy to Shannon’s work that is based on the information 
available in a closed system. With SVM+, the classifier gets trained with access to another 
system, Vapnik calls it a teacher (X + X⋆), and then works independently (X) in operation.

Another common classification method are artificial Neural Networks (NN), and the 
basic ideas go back to 1943 (McCulloch and Pitts 1943)⋆. Here the input vector is fed into 
sigmoid nodes that make a choice in some shade of gray [−1, 1] and the outputs move 
onto the next network layers. A purely feed-forward network, where there are no back-
ward arcs, can be trained efficiently using back-propagation (Rumelhart et al. 2002) where 
classification errors are used to adjust the network weights backwards layer by layer.

In large NNs, such as those used in image processing, there can be a failure to gen-
eralize due to over fitting of the very large number of weights. One approach is to use 
a middle “coding” layer that is relatively small that forces the network to learn the key 
generalizations (Hinton and Salakhutdinov 2006). Recently, the so-called “dropout” algo-
rithm has been developed that trains only subsets of the network on each example and 
this helps generalization too (Srivastava et al. 2014)⋆.

Closely related to NNs are logistic belief networks, where the nodes switch from 0 to 1 as 
a function of the probability of the weighted inputs. Hinton et al. (2006) present a particular 
form of a multilayer belief network where the initial layers are feed-forward and the final two 
layers are interconnected in such a way to form an associative memory. An efficient training 
algorithm is developed that trains the individual layers using a greedy algorithm, and then 
refines the weights for the whole network. For a standard handwriting recognition bench-
mark (the MNIST database of handwritten digits) the error rate was 1.25 % which was better 
than that obtained by other standard machine learning techniques (SVM was second best at 
1.4 %). However, if you train a standard NN using slight perturbations of the training data, 
i.e. moving pixels around a bit, error rates as low as 0.4 % have been reported as of 2006. 
Table 1 of the reference shows some nice comparative data on methods and error rates.

Krizhevsky, Sutskever, and Hinton present their results from the ImageNet LSVRC-
2010 and LSVRC-2012 contests (Krizhevsky et al. 2012).6 The goal was to classify images 

(3)

l∑
i=1

αi −
1

2

l∑
i,j=1

yiyjαiαjK (xi, xj)

6  The existence of standard data sets and contests has been very important in the development of machine learning 
algorithms.
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into categories, and the training data set has roughly 1000 images in each of 1000 cate-
gories for a total of about a million images. The authors trained a convolutional neural 
network having 60 million parameters using several optimizations to make the problem 
tractable (the input layers of CNNs are not fully connected, they “focus” on overlapping 
zones of the visual field much like biological systems). The resulting network, for 
LSVRC-2012, had an error rate of 15.3 % compared to the second-best entry’s rate of 
26.2 %.

There is substantial anecdotal evidence that NNs and SVMs are the most powerful 
classifiers if trained properly, and that is why their use is so widespread. Hastie et  al. 
(2009,  Chapters  12 and 11) contains chapters on SVMs and NNs. The classic text of 
Duda et  al.  on pattern classification (Duda et  al. 1999) also covers NNs, genetic algo-
rithms, and many other machine learning algorithms.

Finally, hidden Markov models (Rabiner 1989) are transition networks where each 
transition is labeled with a probability of happening. They are common in natural lan-
guage processing, but can also be applied to problems such as representing various bio-
logical (e.g. regulatory) networks.

General tools and applications

The section describes some general tools and applications that appeared in the works 
due to their wide applicability. It opens with Google, which was somewhat surprising 
to the authors, but the company clearly has an impact on the thinking of data scientists. 
The section closes with several general tools, such as R and IPython.

Google

PageRank (Page et al. 1999) is an algorithm for ranking pages in web searches and was 
the first used by Google. It is an important example of applied computer science, where 
two good intuitions are combined in a mathematically rigorous way to produce an algo-
rithm of high utility. The first intuition is that the importance of a page is proportional to 
the number of pages that link to it. Ultimately, the sum of the importance for all pages is 
one. The second, and more mathematically interesting is that there is a damping factor 
which is denoted d. The idea is that a person will only wander so far (click) from a search 
result before getting bored and moving on to something else. In practice, d ≈ 0.85 (Brin 
and Page 1998), and this 0 < d < 1 helps to give rapid convergence.

Consider N web pages where the PageRank of page i is denoted ri and define 
RT = {r1, r2, . . . , rN }. Further define the matrix Mij = δij/Lj, where Lj is the number of 
outbound links from page j and δij = 1 if pages i, j are linked, otherwise it is zero. With 
the identity matrix I, R is given in the steady state by

In practice, the solution is computed iteratively and converges quickly.
Conceptually, MapReduce (Dean and Ghemawat 2008) transforms an input set X of 

key:value pairs with keys in K1 to an output set Y of pairs with keys in K2 using a three stage 
Map–Shuffle–Reduce process. The Map step applies a function to every element of X pro-
ducing an intermediate list X containing new pairs with keys in K2. This X is then Shuffled 

(4)R = (I − dM)−1 1− d

N
I
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to group the values corresponding to a given key in X together so that they can then be 
Reduced using another function into the output Y. In the canonical example of counting the 
number of times a distinct word appears in a set of files, the elements of K1 are filenames 
and K2 contains words, the associated values are file contents and word counts.

If general, if X and the post-shuffled X are distributed across many nodes, the map and 
reduce stages can be done in parallel on local data. Production implementations have 
many optimizations to deal with issues like load balancing, data positioning and replica-
tion, minimizing communications, and fault tolerance. PageRank can be formulated in a 
way that yields an efficient MapReduce implementation. In the context of data-intensive 
discovery, it is very common to combine MapReduce with machine learning and classifi-
cation (“Machine learning” section) to parallelize the processes.

The fact that a commercial enterprise is making such an impact on science is wonder-
ful! However, we must add a note of caution: “Big Data” is not just the massive applica-
tion of machine learning methods with large, blunderbuss, clusters; it is more subtle and 
widespread (“Centrality of the scientific method” section). Hadoop, an open implemen-
tation of MapReduce, was also cited by some. It should be noted that Google has largely 
moved onto systems such as BigTable (Chang et al. 2008)⋆ and Cloud Dataflow for stor-
ing and processing data (https://cloud.google.com/dataflow/).

General tools

A strong cluster of references emerged around tools, programming languages and meth-
ods for understanding data. These works represent a cross section of non-domain spe-
cific methods that researchers from a variety of disciplines are utilizing to process data 
to information to understanding.

Numerical Recipes (Press 2007) is the most widely used reference for numerical algo-
rithms and it covers a broad range of topics from linear algebra to optimization. There 
have been multiple editions since 1986, and the most recent edition (2007) has been 
expanded to cover topics such as classification and inference. The series web site, www.
nr.com, considers itself one of the oldest pages on the Web, and provides paid access to 
all algorithms in various programming languages.

The R language (R Development Core Team 2008) is one of the leading statistical pro-
gramming languages, and was referenced a significant number of times in the dataset. R 
was created as a free and open source implementation of the S statistical programming 
language with influences from Scheme. R focuses on ease of use, tight integration with 
publication quality graphics and charts, data processing, and modular extensions to go 
beyond the core functionality. It has its own mathematical formula expression language, 
like LaTeX, and provides users convenient tools converting formulas into executable code.

The IPython Notebook project (Perez and Granger 2007) (now Jupyter at www.jupyter.org) 
is noteworthy as one of a few open source software toolkits for both programming and data 
analysis that is not a database, algorithm or programming language. Jupyter is an “architec-
ture for interactive computing and computational narratives in any programming language.” 
It provides both a programming and documentation environment which ultimately allows 
for sharing of so-called narratives in an executable notebook, all available via the web. It is 
language agnostic; processing R, Python, Julia and provides basic workflow/reproducibility 
and collaboration capabilities. It is being used in a wide variety of scientific applications.

https://cloud.google.com/dataflow/
http://www.nr.com
http://www.nr.com
http://www.jupyter.org
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The Visual Display of Quantitative Information (Tufte 2001) by Tufte is a seminal work 
on data visualization, with a focus that uses very powerful human perceptive systems 
that are not likely to be automated soon. The famous chart, of course, is Napoleon’s fool-
ish march and then retreat from Russia. The authors feel that, perhaps, all talks should 
be speeches and perhaps simply summarized in a few charts. Tukey in a 1977 work 
(Tukey 1977) also emphasizes the use of graphs and tables to explore data.

Finally, Codd (1970) introduced relational databases in a brilliant Tour de Force of 
computer science, coupling theory with practice. No longer were databases to be ad-
hoc, they have a theory that could be used to make them better. This is at the core of all 
relational database systems, and Codd won the A.M. Turing award in 1981 for his work.

An observation is the power of open source software. R, IPython, and Apache Hadoop 
which contains an implementation of MapReduce, are all available under various open 
source licenses. This allows the free use, inspection, and extension of the codes and 
greatly lowers barriers to entry, particularly for academic research purposes.

Centrality of the scientific method

One of the most cited influential works was The Fourth Paradigm (Hey et al. 2009), a col-
lection of papers on data intensive scientific discovery produced by Microsoft in honor 
of Jim Gray, one of the first modern data scientists. The collection has had a catalytic 
effect based on the number of references, from researchers in a wide variety of fields. 
Another influential work is on the unreasonable effectiveness of data (Halevy et  al. 
2009), which is a nice play on the unreasonable effectiveness of mathematics. We must 
distinguish between tools, or instruments, and the scientific method. In the Fourth the 
argument is made that science has progressed from the 1. empirical stage (observation-
only), to the 2. theory stage, and on to 3. simulation based science, and finally 4. big data 
science. It was at stage 2 that the scientific method became fully formed, and Newton 
deserves a lot of credit although Maxwell showed the raw power of theory to explain 
phenomena beyond human senses. The tools that Newton used were the calculus, which 
he had to invent, inclined planes, and dropping fruit. Now we use computers in stages 
3 (theory) and 4 (observation). The scientific method stays the same, technology just 
allows better tools which begets deeper science and then new technology and tools.

There have also been claims that “Big Data” will eliminate science, we just need to use 
powerful methods to classify the data and from that we will know everything. The trou-
ble is confusing classification, like botany, with science: predictive theories with bounded 
errors. Let us consider training a classifier to near Bayesian optimal. It could be a NN or 
a SVM, but the advantage with an SVM is that we can extract out the key support vec-
tors, the prime xj, and examine them. Does this tell us anything? The trouble is that if the 
experiment is changed, the support vectors will likely change too so where is the insight? 
Another take on this is by Breiman, in “Statistical modeling: The two cultures” (Breiman 
et al. 2001), where he contrasts what is called classical statistical methods in this paper 
with algorithmic models. The comments associated with the paper are enlightening.

As a concrete example, it may be within current computing and algorithmic tech-
nology to infer the Maxwell Equations directly from data given knowledge of vector 
calculus. This would be a formidable achievement. Indeed, the kinematic laws of the 
double pendulum problem can be inferred using symbolic regression from observations 
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(Schmidt and Lipson 2009). Latent in the Equations, however, is special relativity but it 
requires a mental shift to tease this out: specifically, Einstein’s axiom that the speed of 
light is constant in all inertial reference frames. Making this brilliant leap seems hard to 
do by computing at this time. Perhaps we need a new Turing test, one not susceptible to 
linguistic parlor tricks: given just the data and some fundamental theorems from analy-
sis, discover special relativity and general relativity.

A recent paper (2013) by Dhar, “Data science and prediction” (Dhar 2013), defines 
data science as

 ...the study of generalizable extraction of knowledge from data.
A common epistemic requirement in assessing whether new knowledge is actionable 
for decision making is its predictive power, not just its ability to explain the past.

This view is entirely consistent with the scientific method, however it does not mean 
that the way scientists do science is fixed. Indeed, in the delightful book Reinventing 
discovery Nielsen (2012) argues that network effects in scientific communications and 
access to data will dramatically accelerate scientific discovery. This prediction is almost 
certainly true.

Finally, there were a few general references such as (Han and Kamber 2011) and 
the National Academy of Sciences report on the Frontiers of Massive Data Analysis 
(National Research Council 2013).

Conclusions
Limitations It must be noted that the competition was for efforts in the natural sciences 
and methodologies, and therefor references important to social sciences are underrepre-
sented in this sample. Indeed, the social sciences are potentially one of the most impact-
ful areas for big data and we encourage funders in these fields to run an investigator 
competition in this broad area.

As mentioned in the introduction, we asked applicants to tag works as papers, books, 
or resources. The matching algorithm works very well for papers and books, but not so 
well for data resources and software tools. The fundamental problem is that there is no 
commonly accepted way of citing resources unless there is an associated paper (e.g. IPy-
thon) or the authors are very specific about how to cite the tool (e.g. R). We are sure that 
if we went through the nearly 5000 citations by hand, we would find more resources 
but we decided to stay with our deterministic, repeatable, methodology. Efforts to attach 
Digital Object Identifiers (DOIs) to resources are underway; however we believe one 
reason that articles and books are easier to reference is that they also have a standard, 
human understandable, way to identify themselves and not just some cryptic number.

Next steps The concepts behind “Big Data” are not new, and go back to at least 1609 
with Kepler’s Astronomia Nova (Kepler 1609)⋆. The great, early, data scientist reduced 
Tycho Brahe’s voluminous observational data into just three laws, the most famous 
probably being that bodies move in ellipses about a mass center.7

7  It may also be interesting to note that the publication of Nova was delayed by about 4 years, from 1605 to 1609, due to 
an intellectual property argument surrounding Mr. Brahe’s data.
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Our longer term plan is to perform further study of the influential works. The BibTeX 
file has been released as supplemental information, and the authors hope that a primary 
value of this work is in education.
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Appendix
A total of 1095 applications were received in late February 2014, containing 4790 refer-
ences. The author, title, etc. of each reference was broken into a bag of words and these 
bags were assigned to buckets based on reference similarity using weighted word fre-
quency by a sorting process. Specifically, the weight of a word i that occurred Ni times is

where Nw is the total number of unique words. In other words, words of lesser frequency 
carry somewhat more weight, leading to higher matching value. An obvious example is 
“paradigm”. Words must be of length four or greater and appear twice or more; this elim-
inates stop words, e.g. “and, the”, in English and words with no matching value, although 
it does throw out a bit of information.

References were sorted into the buckets based on the bucket’s signature. A signature 
keeps the top eight words in a bucket by Eq. 5, although when buckets are merged in 
the sorting process (see below) all words in both buckets are used to recompute the new 
merged signature so that signatures are refined over time.

The sorting algorithm is straightforward. Begin by assigning each reference to its own 
bucket and compute its signature. Take the first bucket and find a bucket whose signa-
ture matches to within a threshold; if there is a match, merge the two buckets. Repeat 
with the second bucket, and so on. The threshold is manually adjusted to produce strong 
groupings, with few extraneous references in each bucket. If the threshold is too high, 
nothing groups, and if it is too low, everything groups into one bucket. Some manual 
edits were done to clean up the buckets. Papers, books, and resources were treated sepa-
rately (this is done by giving the type tags high weights).

Four or five words of each signature were then submitted to Google Scholar to get Bib-
TeX entries. Google Scholar almost always listed the right work first, although the qual-
ity of the BibTeX entries is highly variable and often needed to be fixed.

(5)lnNw/Ni
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A note on the references
Each reference contains a note on the number of times it was cited (“n 63”), and the 
number of applicants that self-identified in a field, such as computer science, that cited 
the reference (“CS 41”). Table 3 is the key to fields.

Table 3  Key to reference tags and fields

Tag Field

ACM Applied and computational mathematics

AG Agriculture

APHYS Applied physics

ASPC Aerospace

ASTRO Astronomy and astrophysics

ASTROB Astrobiology

ATMOS Atmospheric science

BCS Brain and cognitive science

BIO Biology

BIOE Bioengineering

BIOI Bioinformatics

CBIO Computational biology

CE Computer engineering

CHEM Chemistry

CHEME Chemical engineering

CIVE Civil engineering

CLI Climate science

CS Computer science

CSS Computational social science

CSYS Complex systems

DM Data mining

EBIO Evolutionary biology

ECO Ecology

EE Electrical engineering

ENGR Engineering (general)

EPS Earth and planetary science

ESE Environmental science and engineering

EST Energy science and technology

GENE Genetics

GENOM Genomics

GEOP Geophysics

MATH Mathematics

MATS Materials science

MBIO Biochemistry and molecular biophysics

ME Mechanical engineering and solid mechanics

MED Medicine

MMO Marine microbiology and oceanography

NEURO Neuroscience

OPSR Operations research

PHYS Physics

REMS Remote sensing

SBIO Systems biology

SML Statistics and machine learning
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