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Background
Human action recognition in video sequences is a challenging research topic in com-
puter vision (Aggarwal and Ryoo 2011; Poppe 2010) and serves as a fundamental com-
ponent of several existing applications such as video surveillance human computer 
interaction, multimedia event detection and video retrieval. Extensive efforts have been 
devoted to action recognition, including: finding a robust, stable, discrimination feature 
to represent the action/video, such as the motion history image (MHI), motion trajec-
tories of human bodies (Yoon et  al. 2014), and spatio-temporal interest point (STIP) 
(Dawn and Shaikh 2015), and using effective machine learning or pattern recognition 
methods to identify human action, such as latent support vector machine (SVM) (Zhou 
et al. 2015), deep learning (Charalampous and Gasteratos 2014) and statistical methods. 
Facing complex scenes, action recognition in the depth video and multi-camera systems 
have gained increasing attention in recent years. However, in practical applications and 
real scenes, such models are not sufficient due to the variations in multiple facets and 
their high computational cost.

Modeling human actions in hybrid data, such as recognizing an action in RGB-depth 
data, multi-camera view data and mixed data, is one effective method for human action 
recognition in complex and dynamic environments. Many works have demonstrated 
the superior performance obtained when using hybrid data compared to a single data 
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source. For example, Luo et al. (2013) proposed a framework for the real-time realization 
of human action recognition in distributed camera networks. Liu et al. (2015) proposed 
the pyramid partwise bag of words (PPBoW) representation and regarded single/multi-
view human action recognition as a multi-task learning problem penalized by the graph 
structure. Due to the limitations of devices, these methods have many restrictions in real 
scenes and high computational complexity.

In contrast to previous studies, we find that motion can be represented from multi-
surfaces in a signal-view video. The video is expressed based on three surfaces: hori-
zontal–vertical (XY surface), horizontal-time (XT surface) and vertical-time surface (YT 
surface), as shown in Fig. 1. From the different surfaces, the motion history is extracted 
and represented as a histogram of the orient gradient (HOG) features to model the holis-
tic action, composing the three-surface motion feature (3SMF). Meanwhile, the STIP 
feature is extracted to represent the local motion.

However, the fusion of direct features is not sufficient or robust. To this end, we 
propose to integrate the holistic features and STIP features into an action classifier. A 
probability inference model is used to identify the action in the video. The proposed 
multi-surface video analysis method is shown in Fig. 2. In the training stage, a SVM clas-
sifier is trained by 3SMF to estimate the prior probability. The STIP feature is extracted, 
and a naïve Bayes nearest neighbor algorithm (NBNN) is used to estimate the posterior 
probability. In the testing stage, the test video is also represented as 3SMF and STIP. The 
action category is determined by probability inference using the prior probability and 
posterior probability.

The contributions of our work are threefold:

1.	 We propose a novel multi-surface video analysis strategy that is different from using 
multiple cameras.

2.	 We propose a probability method to combine the holistic and local features. In con-
trast to the majority of previous works, we use 3SMF for the prior probability rather 
than the uniform distribution.

XT surface 
Transfer

YT surface 
Transfer

Y

X

T

Fig. 1  Sketch of the multi-surface transfer of video. X indicates the horizontal direction, Y indicates the verti-
cality direction and T indicates the time direction. The image sequence in the top right corner is the result of 
XT surface transfer. And the image sequence in the lower right corner is the result of YT surface transfer
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3.	 The experimental results show that the proposed method is effective, robust to scene 
motion and provides accurate results.

The remainder of this paper is organized as follows. “Related work” section introduces 
the related works of human action recognition. “Algorithm in the proposed method” 
section describes the algorithms on which the proposed method is based. “Experimental 
results and analysis” section presents and discusses the experimental results. “Conclu-
sion” section concludes the work.

Related work
The numerous existing methods for recognizing human action from image sequences or 
video have been classified as template-based approaches, local-feature-based approaches 
(including appearance and motion features) and object/scene-context-based approaches. 
Methods of human action recognition in multi-view scenes have been proposed in many 
studies. A literature review (Aggarwal and Ryoo 2011; Poppe 2010; Dawn and Shaikh 
2015; Nissi Paul and Jayanta 2016; Paul and Singh 2014) indicated that the work related 
to our method includes human action recognition approaches based on a STIP detec-
tor, human action recognition approaches with multi-view cameras and human action 
approaches using object/scene context information.

The STIP detector captures the 3D Harris interest points from a video in the spatio-
temporal domain, which was extended from the Harris corner detection by Laptev 
(2005a). The STIP detector is widely used in human action recognition tasks due to its 
robustness and good performance. Chakraborty et  al. (2012) proposed a novel action 
recognition algorithm using selective STIPs. Yu et al. (2012) developed a spatial–tempo-
ral implicit shape model (STISM) for characterizing the space–time structure of sparse 
local features. Yan and Luo (2012) proposed a new action descriptor, named the histo-
gram of interest point locations, based on STIPs. Yuan et al. (2011a) proposed the naïve 
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Fig. 2  Outline of the workflow of the proposed approach. The 3SMF and STIP feature have been extracted 
in the training data and testing data. In training process, prior probability inference model is trained by SVM, 
and posterior probability is estimated by NBNN algorithm
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Bayes mutual information maximization (NBMIM) algorithm based on STIPs for clas-
sifying actions. Zhang et al. (2013) proposed an improved version using the ε-NN prob-
ability estimation method and the variance filter for discriminative STIP selection. In 
the proposed method, the ε-NN probability estimation method is used in the NBNN 
algorithm for the posterior probability.

Multi-camera systems can provide more information for action recognition. Liu et al. 
(2015) proposed a unified single/multi-view human action recognition method via regu-
larized multi-task learning. Gao et al. (2015) proposed a multi-view discriminative and 
structured dictionary learning method with group sparsity and a graph model to fuse 
different views and recognize human actions. Junejo et  al. (2011) presented an action 
descriptor to capture the structure of the temporal similarities and dissimilarities in 
action sequences. The latent kernelized structural SVM was proposed by Wu and Jia 
(2012) for view-invariant action recognition. These methods of multi-views have good 
performance. However, the methods cannot be applied to real scenes due to the high 
computation complexity and difficultly in correlating information among different views.

The methods discussed above are independent of human action recognition. The con-
cept of using context information for action recognition has been widely adopted in 
recent studies. Object detection and pose estimation play important roles in the pro-
cess of recognizing human action. Yao and Fei-Fei (2012) proposed a mutual context 
model to jointly model objects and human poses in human–object interaction activities. 
Ikizler-Cinbis and Sclaroff (2010) proposed an approach for human action recognition 
that integrates multiple feature channels from several entities, such as objects, scenes, 
and humans. Burghouts et al. (2014) used object tracking trajectories as the context for 
improving threat recognition. Marszalek et  al. (2009) proposed the context of natural 
dynamic scenes for action recognition. The scene information of the video was extracted 
from the movie script rather than from image sequences. Similarly, in the proposed 
method, 3SMF is regarded as the context information of the STIP to recognize human 
action. In the proposed method, 3SMF and STIP are extracted to model action. A prob-
ability inference algorithm is used to determine the action categories.

Algorithms in the proposed method
STIP and 3SMF features

In recent studies, many local features have been successfully used for human action 
recognition, such as STIP, dense sample, and dense trajectories (DTs). Numerous stud-
ies have demonstrated the good performance and robustness of STIP features. In the 
proposed method, the STIP is extracted by the 3D-Harris detector proposed by Laptev 
and Lindeberg (2006), and is described by concatenating the HOG and HOF features 
(162-dimensional feature vector).

To calculate STIP, the video is constructed a spatio-temporal scale-space represen-
tation L by convolution with spatio-temporal Gaussian kernel. The second-moment 
matrix μ of spatio-temporal scale-space representation L is calculated, which is 3-by-3 
matrix composed by first order spatial and temporal derivatives. The response function 
H is defined by combining the determinant and the trace of μ as following:
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where λ1, λ2, λ3 is the eigenvalue of matrix μ. The STIP is defined by searching the max-
ima of the point with H. In Laptev’s work, the parameter k is set to .005 through experi-
mental results.

To describe the action, we propose a new action feature named the 3SMF. The frame-
work of 3SMF is shown in Fig. 3. The 3SMF is a fusion of the features of three different 
surfaces and is represented by the HOG feature of the MHI. In the proposed method, 
STIP feature is regarded as local feature, and 3SMF is holistic feature to represent action. 
And a probability inference model is used to combine STIP feature with 3SMF feature.

For the input video, the original image sequence appears as an XY surface image 
sequence Vxy = f (x, y, t), where x ∈ {1, . . . ,Nx}, y ∈ {1, . . . ,Ny}, t ∈ {1, . . . ,Nx}. Nx is 
the width of the video, Ny is the height of the video, and Nt is the length of the video. 
The XT surface image sequence Vxt = f (x′, y′, t ′) is regarded as the original image 
sequence rotated 90° along the X direction. Similarly, the YT surface image sequence 
Vyt = f (x′′, y′′, t ′′) is regarded as the original image sequence rotated 90° along the Y 
direction. The XT and YT surface transfer are expressed by Eq. (2)

For the XY, YT and XY surface image sequences, the MHI (Ahad et  al. 2012) is 
extracted for the action description. The MHI approach is a view-based temporal tem-
plate method that is simple yet robust in representing movements and has been widely 
employed by many researchers for human action recognition, motion analysis and other 
related applications. Video is expressed as XYMHI, the XT surface image sequence is 
expressed as XTMHI and the YT surface image sequence is expressed as YTMHI.

The HOG feature is computed to represent the MHI. HOG was first developed for use 
in human detection; the method divides an image into small spatial regions called cells. 
A local histogram of the gradient direction over the pixels in the cell is constructed. 
Figure  4 shows the framework of the HOG feature. To calculating HOG feature, it 
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Fig. 3  Framework of the 3SMF. Firstly, video is regarded as three different surface image sequences. The MHI 
is calculated by frame difference. And HOG feature is detection for MHI
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contained four steps: divided image into block by rectangle partitioning, calculated 
image gradient using two masks ([−1, 0, 1] and [1, 0, −1]), accumulated histogram for 
each blocks, and concatenated block histogram.

Rectangle partitioning is the most common method for representing small spa-
tial regions in an image. An image can be divided into several rectangles of the same 
size. The ratio of the block size to the image size typically depends on the total number 
of blocks. In other words, if an image is divided into M × N blocks, the block size is 
h/M × w/N , where h and w are the image height and image width, respectively. Tradi-
tional block-partition divides an entire image into a grid, in which all blocks are the same 
size. The block size is crucial because a large block may enclose a contiguous region and 
produce conspicuous features, whereas a small block cannot adequately represent object 
characteristics. In this work, both M and N are set to 9.

The most common gradient computation method is to apply a mask in both the hori-
zontal and vertical directions. This study uses two masks to filter the intensity data of an 
image to obtain the orientation (or angle) of the current pixel.

Each pixel within a block then casts a weighted vote for an orientation-based histogram 
channel based on the values calculated by gradient computation. The histogram channels 
are evenly spread over 0°–180° or 0°–360°. In this work, angles of 0°–180° are divided into 
ten 18° intervals. To increase the tolerance for vertical and horizontal angles, angles of 0°–9° 
and 171°–180° are set to the same interval; the angles of 81°–99° form a new interval. After 
partitioning, feature extraction is applied to construct a local feature histogram for each 
block, which is concatenated to form the image representation. For a consistent measure, 
each value for bin i, h(i), is normalized to h′(i) within the range of 0–1 by the following 
equation:

where n is the total number of bins, i.e., ten in this work. So, the HOG feature length of MHI 
is 810.

Finally, the HOG feature of each block is concatenated to build the 3SMF feature, and 
the length of the 3SMF feature is 2430.
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Fig. 4  Framework of the HOG feature. The MHI is divided to M × N grids. The gradient of pixel casts a weight 
vote for an orientation-based histogram
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The 3SMF feature detection algorithm is summarized in Algorithm 1.

Algorithm 1 Three-surface motion feature (3SMF) detection algorithm

Input: Video or Image sequence Vxy

Output: Feature Vector F

1. Image sequence transfer using Eq. (2): Vxy → Vxt , Vxy → Vyt

2. �For each image sequence, calculate the motion history image (MHI) using frame difference method: 
 Vxy → XYMHI, Vxt → XTMHI, Vyt → YTMHI

3. For each MHI image I:

          (a) Divided into M × N blocks

          (b) Calculated the gradient of all pixel in I

          (c) �Each pixel within a block casts a weighted vote for an orientation-based histogram:  
 h(i), i = 1 . . .M× N

          (d) Concatenated the histogram of blocks to represent MHI: HI = {h(1), . . . , h(i), . . . , h(M× N)}

4. Concatenated MHI feature to build 3SMF feature: F = {Hxy ,Hxt ,Hyt}

Action inference algorithm

To classify the test video V, the class of V is the class c* that has the maximum probabil-
ity score between V and a specific class c corresponding to the following equation:

where Nc is the number of action categories. Given the prior p(c) and posterior p(V |c), 
we can infer the best c* by maximizing the joint distribution p(c, V). Here, we train the 
SVM classifier to inference the prior p(c) using the 3SMF feature. The posterior p(V |c) is 
solved using the NBNN algorithm.

The SVM classifier is a binary classifier in a high-dimensional hyper plane and it is a 
decision function in high-dimensional space. For the problem of multiclass classifica-
tion, one-versus-one strategy is used in SVM model training. We build the binary classi-
fier with RBF kernel for every two actions [total of Nc×(Nc−1)

2  SVM classifiers]. For testing 
data, the target is to choose the class that is selected by most classifiers. In the training 
process, fivefold cross-validation is used to find the best parameters of RBF kernel.

To compute the posterior p(V |c), the video is expressed as the set of STIPs 
V = {dv|v = 1, . . . ,Nv}, where dv is the STIP feature and Nv is the number of STIPs. The 
probability p(V |c) is transformed to the probability p(d1, . . . , dNv |c) between the STIP 
and action category. In Native Bayes algorithm, the joint probability p(d1, . . . , dNv |c) 
is transformed to the product of each STIP based on independence assumption as 
following:

And to calculate the probability p(dv|c), Gauss probability distribution is used based 
on nearest neighbors.

For a special video, NBNN approximation is used to estimate the probability as 
follows:

(4)c∗ = arg max
c∈{1,...,Nc}

p(c,V ) = arg max
c∈{1,...,Nc}

p(c)p(V |c)

(5)
p
(

d1, . . . , dNv |c
)

=
∏

Nv

p(dv|c)
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where Tci is the STIP set of the training data with action label ci. NNci
ε (dv) denotes the 

set of samples dt in the training videos Tci, with distances to dv of less than ε. Further-
more, dNN (dv) is the set of nearest neighbors of dv in the set NNci

ε (dv). Recognition per-
formance is insensitive to the choice of ε. The experimental results of Yuan et al. (2011b) 
and Zhang et al. (2013) have shown that setting ε to 2.2 yields the highest accuracy. The 
same conclusion was obtained in this work; thus, we set ε to 2.2.

The proposed action recognition approach is summarized in Algorithm 2.

Algorithm 2: Action recognition through multi-surface analysis

Input: Video or Image sequence Vxy

Output: Action category c*

Training:

1. Detection STIPs for training data: T = ∪T ci

2. Detection 3SMF using Algorithm 1 for training data

3. Using 3SMF feature to train SVM model

Testing:

1. Detection STIPs for testing data D = {dv |v = 1, . . . ,Nv}

2. Detection 3SMF feature for testing data

3. For each feature dv in D, searching nearest neighbors in the STIP set of training data, and calculate the prob‑
ability p(V |c)

4. Using SVM model to calculate the prior probability p(c)

5. Inference action by Eq. (4)

Computational complexity

In the initial of the test process, the 3SMF and STIP features are extracted from the 
input video. The computation of these features need iterate over all of pixels in the video, 
so the computation complexity of the feature extraction is Nx × Ny × Nt . The SVM algo-
rithm can calculate the classification probability of test feature in linear time. The inten-
sive computation for NBNN is to search nearest neighbors from training data for all of 
the STIP features extracted from test video. The computation complexity of searching 
nearest neighbors depend on the size of training set. In the experiments, the number of 
STIP features extracted from training set is more than hundreds of millions. The com-
putational complexity of the proposed is combination of feature detection and nearest 
neighbors searching in training data. However, due to the STIP set of training data is 
large, and the method of 3SMF detection, unfortunately, the proposed method is not 
suitable for real-time recognition.

(6)

p(V |c) =
∏

Nv

p(dv|c)

p(dv|c) =
1

∣

∣NN
ci
ε (dv)

∣

∣

∑

dt∈T
ci

K (dv − dt)

≈
1

∣

∣NN
ci
ε (dv)

∣

∣

exp

[

−
1

2σ 2

(

∥

∥dv − dNN (dv)
∥

∥

2
)

]

∥

∥dv − dNN (dv)
∥

∥ = min
dt∈NN

ci
ε (dv)

∥

∥dv − dt
∥

∥,
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Experimental results and analysis
Action dataset

This section describes the experiments used to verify the effectiveness of the proposed 
methods, as described in “Algorithms in the proposed method” section. All experimen-
tal results are obtained using the KTH dataset and UCF sport dataset (Rodriguez et al. 
2008). Figure 5 shows some examples from the dataset.

The KTH dataset contains six (K = 6) actions (i.e., walking, jogging, running, boxing, 
hand-waving, and handclapping). Each action has 25 subjects in four environments (i.e., 
outdoors, outdoors with variable scales, outdoors with different clothes, and indoors 
with lighting conditions). Subjects are selected randomly, and their corresponding 
actions are collected as a training dataset; the remaining videos are used as the dataset 
test. In our experiment, we used 25-fold leave-one-out cross-validation to measure the 
performance of the proposed method.

The UCF Sports Action dataset consists of ten different types of sports actions 
(A = 10), i.e., ‘swing-bench’, ‘swing-side’, ‘diving’, ‘kicking’, ‘lifting’, ‘riding horse’, ‘running’, 
‘skateboarding’, ‘golf swing’, and ‘walking’. The dataset consists of 150 real videos. A hor-
izontally flipped version of each video sequence was added to the dataset to increase 
the number of training samples. In our experiment, we used the leave-one-out strategy 

a

b

walking handclapping handwaving jogging running boxing

Fig. 5  Examples of action datasets. a KTH dataset, b UCF sport dataset
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to test each original action sequence, whereas the remaining original video sequences, 
together with their flipped versions, were included in the training set.

In the experiment, certain parameters affect the accuracy of action recognition. The 
relevant parameters were set as follows:

1.	 The parameters in the STIP detection are the same as those used by Laptev (2005b).
2.	 To compute the 3SMF feature, the size of the MHI image of video is the same as the 

image in the video. The size of the MHI image of the XT surface image sequence is 
Nx × Nt. The size of the MHI image of the YT surface image sequence is Ny × Nt. 
Figure 6 shows the MHI of KTH actions.

3.	 Due to the difference of the length of the video, the sizes of the XTMHI and YTMHI 
are different, as shown in Fig. 7. The general approach to normalize the XTMHI is 
image scaling. However, for certain similar actions, image scaling may eliminate the 
classified information, such as walking, running and jogging. In our study, the length 
of the video is cut to a fixed length Nc = 200. The same setting is used for YTMHI. 

HandwavingHandclapping Boxing Walkingrunning jogging

XY Surface

YT Surface

XT Surface

Fig. 6  Motion history image of six actions (handclapping, boxing, hand-waving, running, jogging and walk‑
ing) from three different surfaces. Every MHI belonged to different actions has its own appearance, as shown 
in each row. The same as the above, the MHI of specific action has different appearance in the different 
surfaces

walking

jogging

running

Nc

Fig. 7  MHI image of the XT surface image sequence (XTMHI)



Page 11 of 14Zhang et al. SpringerPlus  (2016) 5:1226 

The other parameters for detecting 3SMF are set as stated in “Action inference algo-
rithm” section.

Performance evaluation of action recognition

The experimental results of the KTH dataset are shown in Table  1. The comparison 
results illustrate that the proposed method is effective for human action recognition. 
The recognition accuracy of the proposed method was the highest among all relevant 
methods. 3SMF improved the accuracy of action recognition by more than 3  % com-
pared to the approach using STIP and the NBNN algorithm by Zhang et al. (2013).

Comparing with the approach using STIP and the NBNN algorithm in Table 1, we can 
find it is effective for action recognition by using the 3SMF feature with SVM model 
to estimate the prior probability instead of uniform distribution. And comparing with 
other methods on KTH dataset, our approach have the best performance. These results 
can verify the effective of the proposed method. The confusion matrix of the proposed 
method is shown in Table 2. 

In confusion matrix, each column represents the instances in a predict class while 
each row represents the instances with ground truth. Confusion matrix summarize 
the classification results of test samples. For example, if there are Ni test samples with 
action ci, Ni is the number of predict the test samples to action cj (in KTH dataset, 
i = 6, Ni =

∑6
j=1Nij). The value of confusion matrix in first row can been computed as 

following:

Next, the proposed method was applied to the UCF sport dataset to verify the effec-
tiveness of the proposed method in practical use. Table  3 compares the proposed 

(7)valueij =
Ni

Nij

Table 1  Comparison of the proposed method with existing methods for the KTH dataset

Italic value mean the best results

Method Accuracy (%)

3SMF + STIP + NBNN 96.50

STIP + NBNN algorithm (uniform distribution) (Zhang et al. 2013) 92.83

Yuan et al. (2011a) 94.00

Yan and Luo (2012) 93.98

Chakraborty et al. (2012) 96.35

Wang et al. (2014) 94.4

Weinland et al. (2010) 92.4

Table 2  Confusion matrix of the proposed method on the KTH dataset

Walking Running Jogging Handwaving Handclapping Boxing

Walking .98 .01 .01 .00 .00 .00

Running .00 .86 .14 .00 .00 .00

Jogging .00 .02 .98 .00 .00 .00

Handwaving .00 .00 .00 .99 .00 .01

Handclapping .00 .00 .00 .02 .98 .00

Boxing .00 .00 .00 .00 .00 1.0
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method to the existing methods. Based on the results, the proposed method has the best 
accuracy of 94.39 %. Comparing with the best accuracies of the state-of-art methods for 
the UCF dataset, the improvement of the proposed method is .99 %. Table 4 shows the 
confusion matrix of the proposed method on the UCF sport dataset.

Based on these performance evaluation, the accuracy for KTH dataset is close to other 
methods. For the UCF dataset, the differences are higher. There are two main reasons. 
Firstly, the proposed 3SMF feature is a holistic feature to representation video. The back-
ground of KTH dataset is simple, monotonous and uniformity. And from the confusion 
matrix in Table 3, we find the classification error occurred mainly in “running” category. 
This action is very similar with “jogging”. Different with KTH dataset, the special back-
ground of UCF dataset is related to respective action category. So the discriminative 
power of 3SMF for KTH dataset is weaker compared with UCF dataset. Therefore, the 
improvement of our method of UCF dataset is better than KTH dataset. On the other 
hand, the accuracy of the existing algorithm for KTH dataset has exceeded 96 %, while 
only 94  % for UCF dataset. Further improvement has greater challenge in the case of 
higher accuracy.

Conclusion
In this paper, we propose a novel multi-surface feature named 3SMF. The prior prob-
ability is estimated by an SVM, and the posterior probability is computed by the NBNN 
algorithm with STIP. We model the relationship score between each video and action as 

Table 3  Comparison of  the proposed method with  existing methods for  the UCF sports 
dataset

Italic value mean the best results

Methods Accuracy (%)

3SMF + STIP + NBNN 94.39

Wang et al. (2009) 85.60

Yan and Luo (2012) 90.67

Le et al. (2011) 86.50

Shao et al. (2014) 93.4

Zhang et al. (2015) 88.0

Table 4  Confusion matrix of the proposed method on the UCF sport dataset

Diving Golf High- 
swinging

Kicking Lifting Riding Running Skating Swing Walking

Diving 1.0 .00 .00 .00 .00 .00 .00 .00 .00 .00

Golf .00 .90 .00 .00 .00 .04 .00 .00 .00 .06

High-swing‑
ing

.00 .00 .89 .00 .00 .02 .00 .00 .09 .00

Kicking .00 .00 .00 1.0 .00 .00 .00 .00 .00 .00

Lifting .00 .00 .00 .00 1.0 .00 .00 .00 .00 .00

Riding .00 .00 .00 .00 .00 1.0 .00 .00 .00 .00

Running .00 .00 .00 .01 .00 .00 .93 .00 .00 .06

Skating .00 .00 .00 .00 .00 .00 .09 .86 .05 .00

Swing .00 .00 .00 .00 .00 .00 .05 .00 .95 .00

Walking .00 .04 .00 .00 .00 .05 .00 .00 .00 .91
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a probability inference to bridge the feature descriptors and action categories. The main 
contributions of our study is that a new holistic feature (3SMF) is proposed to represent 
video. 3SMF can reflect the difference of the action in different surfaces. The results of 
the comparisons with the state-of-the-art action recognition benchmarks demonstrate 
the effectiveness of the proposed method. However, it also has some limitations in this 
study. Due to the computation complexity of feature detection and NBNN algorithm, 
the proposed method is not suitable for real-time recognition. And our method works 
only in the case that the videos contain one action category. Therefore, in future, we will 
address the following topics: real-time action recognition and multiple action events 
recognition in videos.
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