
The rapidly convergent solutions 
of strongly nonlinear oscillators
M. S. Alam1*, Md. Abdur Razzak1, Md. Alal Hosen1 and Md. Riaz Parvez2

Background
The harmonic balance method (HBM) (Mickens 1996; West 1960; Mickens 1984, 1986; 
Lim and Wu 2003; Lim et al. 2005; Wu et al. 2006; Belendez et al. 2006; Alam et al. 2007; 
Hu 2006a, b; Lai et al. 2009; Hosen et al. 2012) is a widely used technique for solving 
strongly nonlinear oscillators

where f (x, ẋ) is a nonlinear function, satisfies a condition, f (−x, ẋ) = −f (x, ẋ). Multi-
plying both sides of Eq. (1) by 2ẋ and then integrating, Eq. (1) readily becomes

where dF/dx = f(x). In general f(x) is an odd polynomial function. Therefore Eq. (2) can 
be written as

When f(x) is not a simple polynomial function (e.g., pendulum equation, 
l ẍ+ g sin x = 0), Eq. (3) is valid for amplitude of oscillation, a < 1. Sometimes the non-
linear function, f depends on both x and ẋ (e.g., ẍ+ (1+ ẋ2)x = 0). In this case, the inte-
gral expression of such equations has been taken in the form of Eq. (3).

The modified Lindsted–Poincare method (Cheung et al. 1991; He 2002a, b; Ozis and 
Yildirim 2007), He’s homotopy perturbation method (Belendez et  al. 2007a, b; Belen-
dez 2007), iterative method (Mickens 1987a, b, 2005, 2010; Lim and Wu 2002; Lim et al. 

(1)ẍ+ f (x, ẋ) = 0, [x(0) = a, ẋ(0) = 0],

(2)ẋ2 + F(x) = F(a),

(3)G(ẋ2, x2 − a2, x4 − a4, . . .) = 0.

Abstract 

Based on the harmonic balance method (HBM), an approximate solution is determined 
from the integral expression (i.e., first order differential equation) of some strongly 
nonlinear oscillators. Usually such an approximate solution is obtained from second 
order differential equation. The advantage of the new approach is that the solution 
converges significantly faster than that obtained by the usual HBM as well as other 
analytical methods. By choosing some well known nonlinear oscillators, it has been 
verified that an n-th (n ≥ 2) approximate solution (concern of this article) is very close 
to (2n − 1)-th approximations obtained by usual HBM.
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2006; Hu 2006a, b; Guo et al. 2011; Haque et al. 2013), He’s energy balance method (He 
2002a, b) etc. are also used to investigate nonlinear oscillators. Though, all these ana-
lytical methods (Mickens 1984, 1986, 1987a, b, 1996, 2005, 2010; West 1960; Lim and 
Wu 2002, 2003; Lim et  al. 2005, 2006; Wu et  al. 2006; Belendez et  al. 2006, 2007a, b; 
Alam et  al. 2007; Hu 2006a, b; Lai et  al. 2009; Cheung et  al. 1991; He 2002a, b; Ozis 
and Yildirim 2007; Belendez 2007; Guo et al. 2011; Haque et al. 2013) have been devel-
oped for handling nonlinear oscillator Eq. (1), they provide almost similar results for a 
particular approximation. Recently, HBM has been modified by truncating some higher 
order terms of the algebraic equations of related variables to the solution [see Hosen 
et al. (2012) for details] and it measures more correct result than the usual HBM solu-
tions (derived in Wu et al. 2006; Belendez et al. 2006; Alam et al. 2007; Hu 2006a, b; Lai 
et  al. 2009) as well as other solutions derived by several analytical methods (Belendez 
2007; Belendez et al. 2007b; Mickens 1987a, b, 2005, 2010; Lim and Wu 2002; Lim et al. 
2006; Hu 2006a, b; Guo et al. 2011; Haque et al. 2013; He 2002a, b). However for any 
approximation, the result (even the solution obtained in Hosen et al. (2012)) is not better 
than the next higher approximation. Moreover, the modification on HBM used in Hosen 
et al. (2012) is valid for some nonlinear oscillators especially when f(x) contains a term, 
x3. In this article, a new approach (based on the HBM) has been introduced in which the 
solution rapidly converges toward its exact solution. The trial solution is similar to that 
of Hosen et al. (2012) and the determination of the related unknowns is also similar. Yet 
the solution converges faster than the usual solution. Actually an nth (n ≥  2) approx-
imate solution of Eq.  (2) is almost similar to the (2n −  1)-th approximation obtained 
from Eq. (1). To verify this statement, the second and third approximations have been 
obtained from the integral expressions of some important nonlinear oscillators. The 
new solutions are respectively close to the third and fifth approximations determined by 
usual HBM which are agree with the statement.

Methods
Let us consider a periodic solution in the form (Hosen et al. 2012)

where a (amplitude) and ϕ̇ (frequency) are constants and initial phase, ϕ0(a) = 0. This 
trial solution was early used in Hosen et al. (2012) to solve Eq. (1). In this article, Eq. (4) 
is used for solving Eq. (2).

Differentiating x, squaring and simplifying, we obtain

Then we have determined an expression for x2 − a2, as

(4)

x(t) = a ((1− u1(a)− u2(a)− · · · ) cosϕ(a, t)+ u1(a) cos 3ϕ(a, t)

+ u2(a) cos 5ϕ(a, t)+ · · · ),

(5)

ẋ
2
= a

2
0ϕ̇

2
sin

2 ϕ (1+ 4u1 + 8u2 + 22u
2
1 + 76u1u2 + 116u

2
2 + (12u1 + 20u2 + 24u

2
1

+ 148u1u2 + 180u
2
2) cos 2ϕ + (20u2 + 18u

2
1 + 100u1u2 + 130u

2
2) cos 4ϕ + · · · ).

(6)

x2 − a2 = −a2 sin2 ϕ (1+ 4u1 + 8u2 − 2u21 − 4u1u2 − 4u22 + (4u1 + 12u2 − 4u1u2

− 4u22) cos 2ϕ + (4u2 + 2u21 + 4u1u2 + 2u22) cos 4ϕ + · · · ) .
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All other expressions x4 − a4, x6 − a6, … of Eq. (3) have a factor x2 − a2; so that a com-
mon factor a2sin2ϕ must be cancelled when all these values are substituted in Eq. (3). It 
is noted that the canceling of the common (i.e., a2sin2ϕ) factor makes the solution bet-
ter than usual solution. Otherwise the solution does not converge fast. It also makes the 
solution different from that obtained by the energy balance method.

Examples
Quintic Duffing oscillator

Let us consider quintic Duffing oscillator, i.e.,

By utilization of initial conditions, [x(0) = a, ẋ(0) = 0], Eq. (7) readily takes the form

It has already been mentioned that an analytical solution can be obtained either from 
Eq. (7) or from Eq. (8). The aim of this article is to find approximate solution from Eq. (8) 
rather than Eq. (7). A third approximate solution (in which u1 and u2 are non-zero) has 
been mainly considered. Sometimes a second approximate solution has been considered 
to compare it with existing solution obtained by several authors.

Substituting solution Eq. (4) (together with uj = 0, j > 2) in Eq. (8), dividing by a2sin2ϕ 
and equating the coefficient of Constant, cos 2ϕ and cos 4ϕ, the following nonlinear alge-
braic equations are obtained

By elimination of ϕ̇ from three equations of Eq. (9), we obtain two equations of u1 and 
u2 as

In general, u1 and u2 are small. So, it is possible to divide the first and sec-
ond of Eq.  (10) respectively by 1+ 3u1 + 19u2 − 36u21 − 180u1u2 − 380u22 and 
1+ 6u1 + 8u2 − 30u21 − 100u1u2 − 150u22, and then they become

(7)ẍ+ x + x5 = 0.

(8)ẋ2 + (x2 − a2)+ (x6 − a6)/3 = 0.

(9)

ϕ̇2(1+ 4u1 + 8u2 + 22u
2
1 + 76u1u2 + 116u

2
2)− (1+ 4u1 + 8u2 − 2u

2
1 − 4u1u2 − 4u

2
2)− 5a

4(1+ 4u1

+ 10u2 − 5u
2
1 − 18u1u2 − 19u

2
2 + 8u

3
1 − 10u

4
1 + 32u

2
1u2 + 56u1u

2
2 + 36u

3
2 − 40u

3
1u2 + · · · )/8 = 0,

ϕ̇2(12u1 + 20u2 + 24u
2
1 + 148u1u2 + 180u

2
2)− (4u1 + 12u2 − 4u1u2 − 4u

2
2)

− a
4(4 + 45u1 + 123u2 − 30u

2
1 − 150u1u2 − 180u

2
2 + 20u

3
1 + · · · )/12 = 0,

ϕ̇2(20u2 + 18u
2
1 + 100u1u2 + 130u

2
2)− (4u2 + 2u

2
1 + 4u1u2 + 2u

2
2)

− a
4(1+ 36u1 + 132u2 + 60u

2
1 + 120u1u2 − 160u

3
1 + 225u

4
1 + · · · )/24 = 0.

(10)

24u1 + 24u2 + 456u1u2 + 72u
2
1 − 864u

3
1 − 4320u

2
1u2 + 552u

2
2 − 9120u1u

2
2 − 7200u

3
2

+ a
4(−4 + 45u1 + 27u2 + 1440u1u2 + 210u

2
1 − 2450u

3
1 − 13050u

2
1u2 + 1830u

2
2

− 27060u1u
2
2 − 19950u

3
2)/4 = 0, 384u

2
1 + 384u2 + 2304u1u2 + 3072u

2
2 − 11520u

2
1u2

− 38400u1u
2
2 − 57600u

3
2 + a

4(−1− 36u1 + 168u2 + 210u
2
1 + 1380u1u2 − 160u

3
1

+ 2505u
2
2 − 7020u

2
1u2 − 26880u1u

2
2 − 41060u

3
2) = 0.

(11)

− 24u1 − 24u2 + 72u1u2 − 1080u
2
1u2 − 96u

2
2 − 5400u1u

2
2 − 96u

3
2

+ a
4
(

4 − 57u1 − 103u2 + 672u1u2 + 105u
2
1 + 83u

3
1 − 4929u

2
1u2/2+ 1647u

2
2

)

/4 = 0,

− 384u
2
1 − 384u2 + 2304u

3
2 + 3072u

2
1u2 + a

4(1+ 30u1 − 176u2 − 360u
2
1 − 464u1u2 − 947u

2
2) = 0
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Now, the above equations can written as

where λ = 4a4/(96 + 57a4). It is clear that λ is much smaller than 1 for every values of a. 
As a → ∞, λ becomes 4/57 (which is the largest). Therefore, u1 and u2 can be obtained 
in powers of λ of the forms u1 = l1λ + l2λ2 + ··· and u2 = m1λ + m2λ2 + ··· [see Hosen 
et al. (2012) for details]. Substituting the series of u1 and u2 in Eq. (12) and equating the 
equal powers of λ, a set of linear algebraic equations of l1, l2, …, m1, m2, …, are obtained. 
Solving these algebraic equations, the unknown constants, l1, l2, …, m1, m2, … are deter-
mined. Thus u1 and u2 become

Now substituting these values of u1 and u2 in the first equation of Eq.  (9) and then 
simplifying, the frequency (i.e., ϕ̇) is obtained. It is noted that the series of u1 and u2 are 
valid for all values of a. For some particular values of a, the approximate frequency has 
been calculated and presented in Table 1. When a < 1, this approximate solution can be 
compare with some results obtained by usual HBM. In this case, λ can be expanded in 
powers of a and the series of ϕ̇2 becomes

The exact value of ϕ̇2 is

where ϕ̇2
3(q) and ϕ̇2

Ex(q) denote respectively, the third approximate frequency by the pre-
sent method and exact frequency of the Eq. (7).

Comparing Eqs. (14) and (15), it is clear that the first four terms of ϕ̇2
3(q) obtained in Eq. 

(14) are identical to those of its exact result, ϕ̇2
Ex(q). But the result of ϕ̇2

3(q) is different from 
that of ϕ̇2

3(q,Usual) obtained by the usual HBM [see Eq. (39) of Appendix 1: though the 
solution is obtained from Eq. (7) containing two higher harmonic terms u1 and u2]. We 
see that first three terms of ϕ̇2

3(q,Usual) are identical to its exact result. It is noted that the 
first four terms of ϕ̇2

3(q,Usual) would be same those of ϕ̇2
Ex(q), when the solution is derived 

from Eq. (7) containing four higher harmonic terms u1, u2, u3 and u4. Certainly, it is a 
laborious task to determine five unknown u1, u2, u3, u4 and ϕ̇2 for any analytical method.

(12)

u1 = λ

(

1−
103u2

4
+ 168u1u2 +

105u2
1

4
+

83u3
1

4
−

4929u2
1
u2

4
+

1647u2
2

4

)

+
(

1

24
−

19λ

32

)

×
(

−24u2 + 72u1u2 − 1080u
2
1u2 − 96u

2
2 − 5400u1u

2
2 − 96u

3
2

)

,

u2 =
(

λ

16
+

13λ2

64
+

169λ2

256

)

(

1+ 30u1 − 360u
2
1 − 464u1u2 − 947u

2
2

)

+
(

1

384
−

11λ

384
+

143λ2

1536

)

×
(

−384u
2
1 + 2304u

3
2 + 3072u

2
1u2

)

,

(13)
u1 =

15λ

16
−

105λ2

64
+

38865λ3

2048
− · · · ,

u2 =
λ

16
+

277λ2

256
−

1153λ3

4096
− · · · .

(14)ϕ̇2
3(q) = 1+

5a4

8
−

65a8

1536
+

1055a12

36864
−

129906 7
48a

16

6291456
+ · · · .

(15)ϕ̇2
Ex(q) = 1+

5a4

8
−

65a8

1536
+

1055a12

36864
−

129545a16

6291456
+ · · · ,
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Cubic Duffing oscillator

Let us consider cubic Duffing oscillator, i.e.,

By utilization of initial conditions, [x(0) = a, ẋ(0) = 0], Eq. (16) readily takes the form

First of all we consider a third approximate solution in which u1 and u2 are non-zero. 
Substituting solution Eq. (4) in Eq. (17), dividing by a2sin2ϕ and equating the coefficient 
of Constant, cos 2ϕ and cos 4ϕ, we obtain

By elimination of ϕ̇ from three equations of Eq. (18) and then simplifying (discussed in 
“Quintic Duffing oscillator” section), the following relations of u1 and u2 are obtained as

(16)ẍ+ x + x3 = 0.

(17)ẋ2 + (x2 − a2)+ (x4 − a4)/2 = 0.

(18)

ϕ̇2(1+ 4u1 + 8u2 + 22u
2
1 + 76u1u2 + 116u

2
2)− (1+ 4u1 + 8u2 − 2u

2
1 − 4u1u2 − 4u

2
2)− 3a

2(1

+ 4u1 + 28u2/3− 12u1u2 − 4u
2
1 − 12u

2
2 + 4u

3
1 − 2u

4
1 + 12u

2
1u2 − 16u

3
1u2/3+ · · · )/4 = 0,

ϕ̇2(12u1 + 20u2 + 24u
2
1 + 148u1u2 + 180u

2
2)− 4(u1 + 3u2 − u1u2 − u

2
2)− a

2(1+ 16u1

− 6u
2
1 + 2u

4
1 + 44u2 − 36u1u2 + 24u

2
1u2 − 8u

3
1u2 − 42u

2
2)/4 = 0,

ϕ̇2(20u2 + 18u
2
1 + 100u1u2 + 130u

2
2)− 2(2u2 + u

2
1 + 2u1u2 + u

2
2)

− a
2(u1 + 3u

2
1 − 4u

3
1 + 2u

4
1 + 5u2 + 6u1u2 − 12u

2
1u2 + 7u

3
1u2 + 3u

2
2) = 0.

Table 1 Comparison the approximate frequencies of Eq. (7) between the present method 
and  the usual HBM method with  the exact frequency ϕ̇Ex, obtained by  direct numerical 
integration

Er (%) denotes absolute percentage error

a ϕ̇Ex ϕ̇3(q,Usual)

Er (%)
ϕ̇3(q,Present)

Er (%)

0.5 1.0192663 1.0192661 1.0192663

0.00002 0.00000

0.7 1.0714295 1.0714202 1.0714295

0.00087 0.00000

1 1.26471 1.26446 1.26469

0.020 0.002

2 3.16666 3.16223 3.16639

0.140 0.008

3 6.80379 6.79391 6.80382

0.145 0.000

4 11.9959 11.9785 11.9963

0.145 0.003

5 18.7007 18.6736 18.7014

0.145 0.003

10 74.6909 74.5829 74.6941

0.145 0.004

50 1867.09 1864.39 1867.17

0.145 0.004

100 7468.34 7457.55 7468.66

0.145 0.004
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where μ = a2/(32 + 23a2). It is clear that μ is much smaller than 1 for every values of a. 
As a → ∞, μ becomes 1/23 (which is the largest). For every values of a, u1 and u2 can 
be express in terms of μ (as discuss in “Quintic Duffing oscillator” section) and that are 
calculated as

Substituting the values of u1 and u2 into the first equation Eq. (18), and then simplify-
ing, it becomes

The exact value of ϕ̇2 is

where ϕ̇2
3(c) and ϕ̇2

Ex(c) denote respectively, the third approximate frequency by the pre-
sent method and exact frequency of the Eq. (16).

We see that first six terms of Eq. (21) are identical to the exact result in Eq. (22), and 
error occurs slightly in 7th term. It is noted that only the four terms of Eq. (45) [see 
“Appendix  2” and also (7–10)] are identical to the exact frequency when a third approxi-
mate solution is obtained from original equation Eq. (16). On the contrary, six terms of 
the fifth approximate solution (obtained by usual HBM) would be identical to its exact 
result ϕ̇2

Ex(c). It has already been mentioned that the derivation of a fifth approximate 
solution is very laborious.

A strongly nonlinear oscillator containing ẋ2

Now we consider the nonlinear oscillator

By introducing a scaling variable ɛ, as x(t) =
√
ε y(t), 0 < ɛ < 1, Eq.  (23) can be eas-

ily transformed to a weak nonlinear equation, ÿ+ y+ ε y ẏ2 = 0 and it has a perturba-
tion solution [see Belendez et al. (2007c) for details]. The aim of this article is to obtain 
another approximate solution. An integral expression of this equation is

(19)

u1 = µ(1− 35u2 + 27u
2
1 + 194u1u2 + 3u

2
2 − 45u

3
1 − 1971u

2
1u2 + 245u

4
1 + 15232u

3
1u2

− 5451u
5
1)+ (1− 23µ)(−u2 + 3u1u2 − 4u

2
2 − 45u

2
1u2 + 315u

3
1u2),

u2 = (2µ+ 6µ2 + 18µ3 + 54µ4 + 162µ5 + 486µ6 + 1458µ7)(u1 − 33u
2
1/2− 17u1u2

− 69u
2
2/2+ 125u

3
1 + 294u

2
1u2 − 772u

4
1 − 2877u

3
1u2 + 3588u

5
1)+ (1− 20µ− 60µ2

− 180µ3 − 540µ4 − 1620µ5 − 4860µ6)(−u
2
1 + 6u

3
1 + 8u

2
1u2 − 39u

4
1 − 96u

3
1u2 + 186u

5
1),

(20)

u1 = µ− µ2 + 19µ3 − 62µ4 + 670µ5 + 1288µ6 + 18981µ7 + 384658µ8 + · · · ,
u2 = µ2 − µ3 + 45µ4 − 215µ5 + 1004µ6 − 13589µ7 + 7668µ8 + · · · .

(21)ϕ̇2
3(c) = 1+

3a2

4
−

3a4

128
+

9a6

512
−

1779a8

131072
+

5643a10

524288
−

1465421
8a

12

16777216
+ · · · .

(22)ϕ̇2
Ex(c) = 1+

3a2

4
−

3a4

128
+

9a6

512
−

1779a8

131072
+

5643a10

524288
−

146661a12

16777216
+ · · · ,

(23)ẍ+ (1+ ẋ2)x = 0.

ln(1+ ẋ2)+ x2 = a2
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or,

When a ≤  1, exp  (a2 −  x2) can be expanded in the Maclaurin series and Eq.  (24) 
becomes

Substituting solution Eq. (4) in Eq. (25), dividing by a2sin2ϕ and equating the coeffi-
cient of Constant, cos 2ϕ, we obtain

By elimination of ϕ̇ from two equations of Eq. (26), the equation of u1 is obtained as

The coefficient of u1 is much greater than the coefficients of a2, a4, a6, ···, so Eq. (27) 
can be solved by choosing u1 = l1a2 + l2a4 + l3a6 + ···, where the unknown coefficients, 
l1, l2, l3, …, to be determined. Doing all these, the solution becomes

Now substituting the value of u1 in the first equation Eq.  (26), the approximate fre-
quency (i.e., ϕ̇) for small oscillation is obtained as

The exact value of ϕ̇2 is

In a similar way, the third approximate solution of Eq. (23) can be obtained as

and

(24)ẋ2 = exp(a2 − x2)− 1

(25)ẋ2 + (x2 − a2)−
(x2 − a2)2

2
+

(x2 − a2)3

6
−

(x2 − a2)4

24
+

(x2 − a2)5

120
− · · · = 0.

(26)

ϕ̇2(1+ 4u1 + 22u21)− (1+ 4u1 − 2u21)− a2(1+ 4u1 + 4u21 + · · · )/4
− a4(1+ 4u1 + 7u21 + · · · )/16− a6(5+ 20u1 + 44u21 + · · · )/384 + · · · = 0,

ϕ̇2(12u1 + 24u21)− 4u1 + a2(1− 6u21)/4 + a4(2+ 3u1 − 6u21 + · · · )/24
+ a6(147+ 1568u1 − 392u21 + · · · )/37632+ · · · = 0.

(27)

a2 + a4/3+ 5a6/64 + 32u1 + 16a2u1 + 29a4u1/6+ 224u21 + 88a2u21 − 64u31 = 0.

(28)u1 = −
a2

32
−

5a4

3072
−

3a6

8192
− · · · .

(29)ϕ̇2
2 = 1+

a2

4
+

5a4

128
+

5a6

1536
− · · · ,

(30)ϕ̇2
Ex = 1+

a2

4
+

5a4

128
+

5a6

1536
−

3a8

131072
−

91a10

2621440
−

293a12

150994944
· · · .

(31)
u1 = −

a2

32
−

a4

256
+

a6

16384
+ · · · ,

u2 =
7a4

3072
+

7a6

32768
+ · · · ,

(32)ϕ̇2
3 = 1+

a2

4
+

5a4

128
+

5a6

1536
−

3a8

131072
−

91a10

2621440
− · · · .
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Comparing Eqs. (29) and (32) to Eq. (30), it is clear that second and third approxima-
tions respectively measure four and six terms in correct figures. On the contrary, the 
usual HBM is able to respectively measure three and four terms in correct figures (see 
“Appendix 3”). Thus the statement is true for nonlinear oscillator, Eq. (23) [or, Eq. (24)].

It is noted that the series given in Eq. (31) is converge only for the small amplitudes in 
the region a ≤ 1.

Results and discussions
A new analytical approach based on the HBM has been presented to obtain approximate 
solutions of some well known nonlinear oscillators. Usually, a harmonic balance solu-
tion is obtained from the second order equations. Earlier, He (2002a, b) obtained some 
approximate solutions (mainly first approximation) for various nonlinear oscillators 
from corresponding first order differential equations (i.e., energy balance equations). 
But the new approach (concern of this article) is entirely different from He (2002a, b) 
technique. In this article, the first order equation is rewritten in such a way that every 
term is completely divisible by a2sin2ϕ for the proposed solution Eq. (4) (see “Methods” 
section). For three well known nonlinear problems, it has been verified that the solu-
tions are better than corresponding solutions obtained by usual HBM. Recently, Hosen 
et al. (2012) have developed a technique based on the same method (i.e., HBM), but their 
solutions are significantly improved for the quadratic and cubic Duffing oscillators (see 
Hosen et al. (2012) details). On the contrary, the solution obtained by the new approach 
is better than usual harmonic solution even for the quintic Duffing oscillator.

To check the results, we have calculated the approximate frequency of Eq. (7) for some 
particular values of a (both small and large) by using Eq. (13) into the first Eq. (9) and 
compared with numerical solution together with other existing solutions (those solu-
tions obtained by Wu et al. 2006; Belendez et al. 2006; Alam et al. 2007; Hu 2006a, b; Lai 
et al. 2009; Hosen et al. 2012) (see also “Appendix 1”) and which is presented in Table 1. 
The Table 1 indicates that the approximate frequencies obtained by new approach are 
better than those obtained by usual HBM. Next, for some particular values of a (both 
small and large), we have calculated the approximate frequency of Eq.  (16) by using 
the Eq. (20) into the first Eq. (18) and compared with numerical solution together with 
other existing solutions and which is presented in Table 2. The Table 2 indicates that the 
approximate frequencies give good agreement with the corresponding numerical result 
and also give better result than those obtained by the other usual HBM. Finally, for some 
particular values of a, we have also calculated the approximate frequency of Eq. (23) by 
using the Eq. (31) into the first Eq. (26) and compared with numerical solution together 
with other existing solutions obtained by usual HBM and which is presented in Table 3. 
The Table  3 indicates that the approximate frequencies give better result than those 
obtained by the other usual HBM. Moreover, we have determined the approximate peri-
odic solution of Eqs. (7), (16), and (23) for different values of A and those solutions have 
been presented in Figs. 1a, b, 2a, b, 3a, b. All figures have been included the correspond-
ing numerical solutions obtained by fourth-order Runge–Kutta method.

From these six figures, we see that the present method provides good agreement with 
the corresponding numerical solution.
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Furthermore, the first-order approximate frequency obtained by usual harmonic bal-
ance method (HBM) is

(33)ϕ̇ =
2√

4 − a2

Table 2 Comparison the approximate frequencies of Eq. (16) between the present method 
and truncation HBM Hosen et al. (2012), the usual HBM method with the exact frequency 
ϕ̇Ex, obtained by direct numerical integration

Er (%) denotes absolute percentage error

a ϕ̇Ex ϕ̇3(c,Usual(trunc))  
(Hosen et al. 2012)
Er (%)

ϕ̇3(c,Usual)

Er (%)
ϕ̇3(c,Present)

Er (%)

0.5 1.0891582 1.0891582 1.0891582 1.0891582

0.00000 0.00000 0.00000

0.7 1.1676370 1.1676370 1.1676374 1.1676370

0.00000 0.00004 0.00000

1 1.31778 1.31778 1.31778 1.31778

0.000 0.000 0.000

2 1.97602 1.97601 1.97607 1.97602

0.000 0.003 0.000

3 2.73849 2.73847 2.73862 2.73849

0.000 0.005 0.000

4 3.53924 3.53921 3.53946 3.53926

0.000 0.006 0.000

5 4.35746 4.35741 4.35777 4.35748

0.001 0.007 0.000

10 8.53359 8.53347 8.5343 8.53363

0.002 0.008 0.000

50 42.3730 42.3724 42.3767 42.3732

0.002 0.009 0.000

100 84.7275 84.7262 84.7349 84.7279

0.002 0.009 0.000

Table 3 Comparison the approximate frequencies of Eq. (23) between the present method 
and  the usual HBM method with  the exact frequency ϕ̇Ex, obtained by  direct numerical 
integration

a ϕ̇Ex ϕ̇3(q,Usual)

Er (%)
ϕ̇3(q,Pr esent)

Er (%)

1.8 1.52154 1.52669 1.52180

0.339 0.017

2.0 1.67047 1.68325 1.67091

0.765 0.026

2.2 1.84092 1.86926 1.84103

1.540 0.006

2.4 2.03064 2.0876 2.028

2.805 0.130

2.6 2.236 2.34108 2.22324

4.700 0.571

2.8 2.45251 2.63242 2.41143

7.336 1.675
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From Eq. (33), it is observed that the approximate frequency, ϕ̇ is undefined at a = 2. It 
is a big shortcoming of usual HBM.

On the other hand, the first-order approximate frequency becomes

according to the present method. Here J0 and J1 are Bessell’s functions. From Eq. (34), it 
is clear that the first approximate frequency is finite for all values of a. However, the rela-
tive error gradually increases as the amplitude increases.

It has already been mentioned that the series Eq. (31) is mainly converged in the region 
a ≤ 1, but the series also gives significant better result for obtaining approximate fre-
quency even the amplitude increases up to a = 2.8 (see Table 3). On the contrary, the 
solution is only valid for in the region a ≤  1 while the amplitude increases, the solu-
tions are deviated from the numerical solution (see Fig. 3b). Comparing the approximate 
frequency obtained by usual HBM with the exact approximate frequency determined 
numerically, it is shown from Table 3 that the relative error of the approximate value is 

(34)ϕ̇ =
√

ea
2/2

(

J0(a2/2)− J1(a2/2)
)

,
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Fig. 1 a Comparison of approximate periodic solution of Eq. (7) obtained by present method (denoting by 
circles) with numerical solution obtained by fourth order Runge–Kutta method (denoted by solid line) for 
A = 1. b Comparison of approximate periodic solution of Eq. (7) obtained by present method (denoting by 
circles) with numerical solution obtained by fourth order Runge–Kutta method (denoted by solid line) for 
A = 10
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less than 5, 8 % for a < 2.6 and a < 2.8, respectively while the relative error of the approx-
imate frequency obtained in present method is less than 0.6, 2 % for a < 2.6 and a < 2.8, 
respectively. Therefore, the present method is faster than usual HBM.

Conclusion
Based on HBM, a new technique has been presented for solving a class of nonlinear 
oscillators. In the case of small values of amplitude, it has been verified that the fourth-
order approximate frequency obtained by usual HBM is almost same as the third-
order approximate frequency obtained by new method. For the case of large values of 
amplitude, the approximate frequencies obtained by new method not only gives better 
results than usual HBM but also gives nicely close to their exact results. Therefore, the 
results obtained in this paper are much better than those obtained by the usual HBM. 
The method also proved that it is a powerful mathematical tool for solving nonlinear 
oscillators.
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Fig. 2 a Comparison of approximate periodic solution of Eq. (16) obtained by present method (denoting 
by circles) with numerical solution obtained by fourth order Runge–Kutta method (denoted by solid line) for 
A = 1. b Comparison of approximate periodic solution of Eq. (16) obtained by present method (denoting 
by circles) with numerical solution obtained by fourth order Runge–Kutta method (denoted by solid line) for 
A = 10
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Appendix 1
Substituting solution Eq. (4) (together with uj = 0, j > 2) in Eq. (7) and equating the coeffi-
cient of cos ϕ, cos 3ϕ and cos 5ϕ, the following nonlinear algebraic equations are obtained

(35)

ϕ̇2(−1+ u1 + u2)+ (1− u1 − u2)+ 5a
4(2− 5u1 − 9u2 + 12u

2
1 + 32u1u2 + 28u

2
2

− 20u
3
1 + 20u

4
1 − 60u

2
1u2 + 60u

3
1u2 − 146u1u

2
2 − 50u

3
2 + · · · )/16 = 0,

− 9u1ϕ̇
2 + u1 + 5a

4(1+ u1 − u2 − 8u
2
1 − 8u1u2 − 2u

2
2 + 20u

3
1 − 25u

4
1 + 30u

2
1u2

+ 30u1u
2
2 − 40u

3
1u2 + 8u

3
2 + · · · )/16 = 0,

− 25u2ϕ̇
2 + u2 + 5a

4(5+ 3u1 + 5u2 − 8u
2
1 − 28u1u2 − 22u

2
2 + 10u

3
1 − 5u

4
1 + 60u

2
1u2

+ 84u1u
2
2 − 64u

3
1u2 + 46u

3
2 + · · · )/16 = 0.
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Fig. 3 a Comparison of approximate periodic solution of Eq. (23) obtained by present method (denoting 
by circles) with numerical solution obtained by fourth order Runge–Kutta method (denoted by solid line) for 
A = 1. Comparison of approximate periodic solution of Eq. (23) obtained by present method (denoting by cir-
cles) with numerical solution obtained by fourth order Runge–Kutta method (denoted by solid line) for A = 2
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By elimination of ϕ̇ from three equations of Eq. (35), we obtain two equations of u1 and 
u2 as

In general, u1 and u2 are small. So, it is possible to divide the first and second of Eq. (36) 
by 1 − u1 − u2 and then they become

Therefore, by choosing λ0 =  16a4/(384 +  225a4), the power series solution of these 
equations are obtained as

Substituting the values of u1 and u2 into first equation of Eq. (35), and then simplifying, 
we obtain

where, ϕ̇2
3(q,Usual) denotes the third approximate frequency of the Eq.  (7) by the usual 

HBM.

Appendix 2
Substituting solution Eq. (4) (together with uj = 0, j > 2) in Eq. (16) and equating the coef-
ficient of cos ϕ, cos 3ϕ and cos 5ϕ, the following nonlinear algebraic equations are obtained

By elimination of ϕ̇ from three equations of Eq. (40), we obtain two equations of u1 and 
u2 as

(36)

− 8u1 + 8u1u2 + 8u
2
1 + 5a

4(1− 18u1 − 2u2 + 73u1u2 + 36u
2
1 − 80u

3
1 − 242u

2
1u2

− u
2
2 − 212u1u

2
2 + 10u

3
2 + 135u

4
1 + 450u

3
1u2)/16 = 0,

− 24u2 + 24u1u2 + a
4(1+ 14u1 − 226u2 − 55u

2
1 + 445u1u2 + 90u

3
1 + 990u

2
2

− 1020u
2
1u2 − 3330u1u

2
2 − 3160u

3
2 − 75u

4
1 + 1830u

3
1u2)/16 = 0.

(37)

384u1 = a4(15− 225u1 − 15u2 + 825u1u2 + 285u21 − 30u22 − 915u31

− 2520u21u2 − 2385u1u
2
2 + 120u32),

384u2 = a4(1+ 15u1 − 225u2 + 235u1u2 − 40u21 + 50u31 − 825u21u2

+ 765u22 − 2330u1u
2
2 − 2395u32) = 0.

(38)
u1 =

15λ0

16
−

15λ20
256

+
73095λ30
4096

− · · · ,

u2 =
λ0

16
+

225λ20
256

−
4935λ30
4096

− · · · .

(39)ϕ̇2
3(q,Usual) = 1+

5a4

8
−

65a8

1536
+

3485a12

131072
−

3953755a16

226492416
+ · · · ,

(40)

ϕ̇2(−1+ u1 + u2)+ 1− u1 − u2 + 3a
2(1− 2u1 − 3u2 + 3u

2
1 + 6u1u2 + 5u

2
2 − 2u

3
1

− 4u
2
1u2 − 6u1u

2
2 − 3u

3
2 + · · · )/4 = 0,

− 9u1ϕ̇
2 + u1 + a

2(1+ 3u1 − 9u
2
1 − 6u1u2 − 3u

2
2 + 8u

3
1 − 25u

4
1 + 6u

2
1u2

+ 9u1u
2
2 + 2u

3
2 + · · · )/4 = 0,

− 25u2ϕ̇
2 + u2 + 3a

2(u1 + 2u2 − u
2
1 − 6u1u2 − 4u

2
2 + 5u

2
1u2 + 5u1u

2
2 + 3u

3
2 + · · · )/4 = 0.

(41)

8(−u1 + u1u2 + u
2
1)+ a

2(1− 25u1 − u2 + 72u1u2 + 42u
2
1 − 3u

2
2 − 64u

3
1

− 141u
2
1u2 − 117u1u

2
2 + 5u

3
2 + 46u

4
1 + 94u

3
1u2 + · · · )/4 = 0,

24(−u2 + u1u2 + u
2
2)+ 3a

2(u1 − 23u2 − 2u
2
1 + 41u1u2 + u

3
1

+ 69u
2
2 − 63u

2
1u2 − 3330u1u

2
2 − 118u

3
2 − 135u1u

2
2 + · · · )/4 = 0.
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Dividing the first and second of Eq. (41) by 1 − u1 − u2 and they are become

where μ1 = a2/(32 + 24a2) and μ = a2/(32 + 23a2).
The algebraic relation between μ1 and μ is

Expanding the right hand side of Eq. (43) in powers of μ and substituting this value of 
μ1 into the second equation of Eq. (42), it can be solved Eq. (42) in powers of μ1 as

Substituting the values of u1 and u2 into first equation of Eq. (40), and then simplifying, 
we obtain

where, ϕ̇2
3(c,Usual) denotes the third approximate frequency of the Eq.  (16) by the usual 

HBM.
Dividing the first equation of Eq. (40) by 1 − u1 − u2, we obtain

The third approximate solution measures better result when Eqs.  (46) and (44) are 
truncated as

and

where λ1 and μ1 are given in Eqs. (42), (43).
The power series of Eq. (48) is obtained as

Appendix 3
Substituting the second approximate solution Eq. (4) in Eq. (23) and equating the coef-
ficient of cos ϕ, cos 3ϕ, the following nonlinear algebraic equations are obtained

(42)
u1 = µ1(1+ 18u21 − 46u31 + 48u1u2 − 3u22 − 75u21u2 − 27u31u2 − · · · ),
u2 = µ(u− u2 + 19uv − 45u2v + 46v2 − 70uv2 − · · · ),

(43)µ1 = µ/(1− µ).

(44)
u1 = µ1 + 18µ3

1 + 2µ4
1 + 570µ5

1 + 129µ6
1 + 20642µ7

1 + 6296µ8
1 + · · · ,

u2 = µ2
1 + 37µ4

1 + 4µ5
1 + 1545µ6

1 + 346µ7
1 + 67039µ8

1 + · · · .

(45)ϕ̇2
3(c,Usual) = 1+

3a2

4
−

3a4

128
+

9a6

512
−

1773a8

131072
+

5589a10

524288
−

1440081
2a

12

16777216
+ · · · .

(46)

ϕ̇2 = 1+ 3a2(1− u+ 2u2 − 2v + 3uv + u2v + 3v2 + u2v2 + u2v3 + 3u3v3 · · · )/4

(47)

ϕ̇2 = 1+3a2(1−u1+2u21+u31−2u2+2u21u2+3u31u2−2u22−2u1u
2
2−2u32−4u2u

3
2+· · · )/4.

(48)

u1 = λ1(1+ 18u
2
1 − 50u

3
1 + 51u1u2 − 58u

3
1u2 + 15u

4
1u2 + 54u1u

2
2 + 48u

2
1u

2
2 + 50u1u

3
2 + · · · ),

v1 = µ1(u1 − u
2
1 + 22u1u2 − 50u

2
1u2 + 50u

2
2 − 50u

2
1u

2
2 + 50u

3
2 + 50u1u

3
2 + 50u

4
2 + 100u1u

4
2 + · · · ),

(49)

u1 = µ1 + 18µ3
1 + µ4

1 + 620µ5
1 + 7183µ6

1/25+ 657782µ7
1/25+ 819506µ8

1/25+ · · · ,
u2 = µ2

1 + 40µ4
1 + 5µ5

1 + 1874µ6
1 + 22583µ7

1/25+ 2377007µ8
1/25+ · · · .
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By elimination of ϕ̇ from three equations of Eq. (50), we obtain the equation of u1 as

Now, the above equation can written as

It is clear that u1 is much smaller than 1 when a = O(1). In this case Eq. (52) can be 
solved in powers of a2 as u1 = l1a2 + l2a4 + l3a6 + ···, where the unknown coefficients, 
l1, l2, l3, …, to be determined.

Thus we have the solution of Eq. (52), as

Now substituting the value of u1 in the first equation Eq.  (50), the approximate fre-
quency (i.e., ϕ̇) for small oscillation is obtained as

where ϕ̇2
2(Existing) denotes the second approximate solution of Eq. (23) by the usual HBM.

In a similar way, the third approximate solution of Eq. (23) can be obtained as

and

where ϕ̇2
3(Existing) denotes the third approximate solution of Eq. (23) by the usual HBM.
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