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Background
In recent years, many studies have been developed about fractional partial differential 
equations. Fractional partial differential equations arise in many physical and engineer-
ing problems such as fractional order diffusion equations which are generalizations of 
classical diffusion equations and modelling of linear vibrations of axial moving systems 
(Saadatmandi and Dehghan 2011; Dönmez Demir et al. 2013).

In this paper, we consider the one-dimensional space fractional diffusion equation 
with variable coefficients

with the initial condition

(1)
∂u(x, t)

∂t
= c(x)

∂αu(x, t)

∂xα
+ q(x, t), 0 < x < l, 0 ≤ t ≤ τ , 1 < α ≤ 2,

u(x, 0) = k(x), 0 < x < l,

Abstract 

In this study, the Fibonacci collocation method based on the Fibonacci polynomials 
are presented to solve for the fractional diffusion equations with variable coefficients. 
The fractional derivatives are described in the Caputo sense. This method is derived by 
expanding the approximate solution with Fibonacci polynomials. Using this method 
of the fractional derivative this equation can be reduced to a set of linear algebraic 
equations. Also, an error estimation algorithm which is based on the residual func-
tions is presented for this method. The approximate solutions are improved by using 
this error estimation algorithm. If the exact solution of the problem is not known, the 
absolute error function of the problems can be approximately computed by using 
the Fibonacci polynomial solution. By using this error estimation function, we can find 
improved solutions which are more efficient than direct numerical solutions. Numerical 
examples, figures, tables are comparisons have been presented to show efficiency and 
usable of proposed method.
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and the boundary conditions

where c(x) ≠ 0 is diffusion coefficient, q(x, t), k(x), g0(t) and g1(t) are known functions 
and the function u(x, t) is unknown.

Some authors interested in the numerical solution of Eq. (1) by using various methods 
such as Tau method (Saadatmandi and Dehghan 2011), Chebyshev collocation method 
(Khader 2011), spatial extrapolation (Tadjeran et al. 2006) and finite difference method 
(Dehghan 2006).

Fibonacci polynomials
In this study, we introduce Fibonacci collocation method based on matrix relations 
which has been used to find the approximate solutions of some classes of the differen-
tial equations such as integro-differential equations, differential-difference equations, 
Fredholm integro differential-difference equations, Pantograph-type functional dif-
ferential equations and linear Volterra integro differential equations. Fibonacci collo-
cation method is presented for the solution of mth-order linear differential-difference 
equations with variable coefficients under the mixed conditions (Kurt et  al. 2013a, b) 
and this method is also used to solve both the linear Fredholm integro-differential-dif-
ference equations (Kurt et al. 2013a, b) and high-order Pantograph-type functional dif-
ferential equations (Kurt Bahşı et  al. 2015). On the other hand this method is applied 
for the linear Volterra integro differential equations (Kurt Bahşı and Yalçınbaş 2016a, b). 
Finally the mentioned method is presented for the class of the partial differential equa-
tions which are called Telegraph equations (Kurt Bahşı and Yalçınbaş 2016a, b). Also 
recently there are several using the other collocation methods to solve different types of 
the partial differential equations by using various special polynomials without Fibonacci 
polynomials such as Taylor (Bülbül and Sezer 2011), Bessel (Yüzbaşı and Şahin 2013), 
Chebyshev (Yüksel and Sezer 2014), Bernstein (Isik et  al. 2014) and Bernoulli (Erdem 
Biçer and Yalçinbas 2016). On the other hand, these matrix methods were used for the 
numerical analysis of the longitudinal vibration of rods (Çevik 2010). By developing the 
Fibonacci collocation method, we will obtain the approximate solution of Eq. (1) in the 
truncated Fibonacci series form

where amn; m, n =  1, …, N are the unknown Fibonacci coefficients and Fn(x), Fm(x);  
m, n = 1, …, N are the Fibonacci functions defined by,

u(0, t) = g0(t), 0 < t ≤ τ ,

u(l, t) = g1(t), 0 < t ≤ τ ,

(2)uN (x, t) =

N∑

m=1

N∑

n=1

amnFm(x)Fn(t)

Fn(x) =

[
(n−1)

2

]

∑

j=0

(
n− j − 1

j

)

xn−2j−1, [(n− 1)/2] =

{
n−2
2

, n even
n−1
2

, n odd
.
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The fractional derivative in the Caputo sense

Definition 1  Caputo’s definition of the fractional-order derivative is defined as

where α > 0 is the order of derivative, Γ(.) is the Gamma function and n = [α] + 1, with 
[α] denoting the integral part of α.

Recall that for α ∈ N, the Caputo differential operator coincides with the usual dif-
ferential operator of integer order. For the Caputo’s derivative we have (Diethelm 2010),

We use the ceiling function [α] to denote the smallest integer greater than or equal to 
α, the floor function [α] to denote the largest integer less than or equal to α and β > [α] to 
denote order of x.

We use also N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}. Similar to integer-order differentia-
tion, Caputo’s fractional differentiation is a linear operator.

Fundamental matrix relations
In this part, we have given some fundamental matrix relations for transforming Eq. (1) 
to matrix equation forms.

To obtain the numerical solution of the one-dimensional space fractional diffusion 
problem by using Fibonacci polynomials, we first evaluate the Fibonacci coefficients of 
the unknown function. The approximate solution (2) can be written in the matrix form

where

and

such that

Dα f (x) =
1

Γ (n− α)

x∫

0

f (n)(t)

(x − t)α+1−n
dt, n− 1 < α < n, n ∈ N

DαC = 0, (C is a constant)

Dαxβ =







0, forβ ∈ N0 andβ < [α].

Γ (β+1)
Γ (β+1−α)

,
forβ ∈ N0 andβ /∈ N and

β > [α].

(3)uN (x, t) = F(x)F(t)A

F(x) =
�
F1(x) F2(x) · · · FN (x)

�

1×N
,

F(t) =







F(t) 0 · · · 0

0 F(t) · · · 0
...

...
. . .

...

0 0 · · · F(t)







N×N 2

,

A =
[
A1 A2 · · · AN

]T

1×N 2

Ai =
[
ai1 ai2 · · · aiN

]T

1×N
, i = 1, 2, . . . ,N .
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In here, the matrix form F(x) can be written as

so that

If N is even,

If N is odd,

C is the characteristic matrix of the matrix relations (Kurt et al. 2013a, b). On the other 
hand, we can express the relations

where

(4)F(x) = X(x)CT

X(x) =
[
1 x · · · xN−1

]
.

C =


























�
0

0

�

0 0 0 · · · 0

0

�
1

0

�

0 0 · · · 0
�
1

1

�

0

�
2

0

�

0 · · · 0

0

�
2

1

�

0

�
3

0

�

· · · 0

...
...

...
...

...
...

�
(n− 2)/2

(n− 2)/2

�

0

�
n/2

(n− 4)/2

�

0 · · · 0

0

�
n/2

(n− 2)/2

�

0

�
(n+ 2)/2

(n− 4)/2

�

· · ·

�
n− 1

0

�


























.

C =


























�
0

0

�

0 0 0 · · · 0

0

�
1

0

�

0 0 · · · 0
�
1

1

�

0

�
2

0

�

0 · · · 0

0

�
2

1

�

0

�
3

0

�

· · · 0

...
...

...
...

...
...

0

�
(n− 1)/2

(n− 3)/2

�

0

�
(n+ 1)/2

(n− 5)/2

�

· · · 0
�
(n− 1)/2

(n− 1)/2

�

0

�
(n+ 1)/2

(n− 3)/2

�

0 · · ·

�
n− 1

0

�


























(5)F(t) = X(t)C
T

X(t) =







X(t)
0
...

0

0 · · · 0

X(t) · · · 0
...

· · ·

. . .

0

...

X(t)






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and

Firstly from the relations (3–5), we can obtain the desired solution u(x, t) of Eq.  (1) 
defined by the truncated Fibonacci series (2) in matrix form as follow

And secondly we can define the matrix form of the partial derivatives for each inde-
pendent variables of u(x, t) term can be written as

where

and

We introduce the relation between the matrix X(x) and its derivatives X′(x) which can 
be expressed as

Similarly, the relation between the matrix X(t)and its derivative X′(t) is written

Finally, we can explain the matrix form of ∂
αu(x,t)
∂xα  which is the fractional derivative of 

u(x, t) term, can be written as

C
T
=








CT

0
...

0

0 · · · 0

CT · · · 0

...

0

. . .

· · ·

...

CT







.

(6)u(x, t) = X(x)CTX(t)C
T
A.

(7)ux(x, t) = X(x)BCTX(t)C
T
A

(8)ut(x, t) = X(x)CTX(t)B C
T
A

B =









0 1 0

0 0 2
· · ·

0

0
...

. . .
...

0 0 0

0 0 0
· · ·

N − 1

0









B =







B

0
...

0

0 · · · 0

B · · · 0
...

0

. . .

· · ·

...

B






.

X′(x) = X(x)B.

X
′
(t) = X(t)B.

(9)

[
∂αu(x, t)

∂xα

]

= M(x)CTX(t)C
T
A
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where

such that

By using the relations (7), (8), (9) into Eq. (1), we can have the closed matrix form

Briefly form is written

We have the corresponding matrix forms for the initial condition and for the boundary 
conditions (1) by means of the relation (6)

Collocation method
For the matrix equation Eq. (10) by using collocation points defined by

We obtain the system of matrix equations

Using the system of matrix equation, the fundamental matrix equation becomes

The fundamental matrix Eq.  (4) of Eq.  (1) corresponds to a system of N2 algebraic 
equations for the N2 unknown coefficients amn; m, n = 1, 2, …, N. On the other hand, by 
using collocation points, we can obtain matrix form of the initial condition

and matrix form of the boundary conditions as follow

M(x) =
∂αX(x)

∂xα
=

[
0 Dαx Dαx2 · · · DαxN−1

]

1×N

Dαxi =
Γ (i + 1)

Γ (i + 1− α)
xi−α , i = 1, . . . ,N − 1.

X(x)CTX(t)B C
T
− c(x)M(x)CTX(t)C

T
A

︸ ︷︷ ︸

W(x,t)

= q(x, t).

(10)W(x, t)A = q(x, t).

u(x, 0) = X(x)CTX(0)C
T
A = k(x)

u(0, t) = X(0)CTX(t)C
T
A = g0(t)

u(l, t) = X(l)CTX(t)C
T
A = g1(t)

xi =
l

N − 1
(i − 1), i = 1, 2, . . . ,N

tj =
τ

N − 1

(
j − 1

)
, j = 1, 2, . . . ,N .

W
(
xi, tj

)
A = q

(
xi, tj

)
, i = 1, 2, . . . ,N , j = 1, 2, . . . ,N .

WA = Q or [W;Q]

U1A = K

U1 =

[

X(x)CTX(0)C
T
]

, K = [k(xi)]N×1, i = 1, 2, . . . ,N

U2A = G0

U2 =

[

X(0)CTX(t)C
]

, G0 =
[
g0
(
tj
)]

N×1
, j = 1, 2, . . . ,N
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and

Subsequently, in order to obtain the solution of Eq.  (1) under the initial and bound-
ary conditions we can write augmented matrix which is contain all components of this 
problem

So, the unknown Fibonacci coefficients are obtained as

where 
[

˜̃
W ;

˜̃
Q

]

 is generated by using the Gauss elimination method and then removing 
zero rows of the augmented matrix 

[

W̃ ; Q̃
]
.

Error estimation algorithm and analyses
In this section, we will give an efficient error estimation for the Fibonacci polynomial 
approximation and also a technique to obtain the corrected solution of the problem (1) 
by using the residual correction method (Oliveira 1980; Shahmorad 2005; Çelik 2006). 
For our aim, we define the residual function for the present method as

where

Note that, Fibonacci polynomial solution satisfies the following problem

with the initial and boundary conditions

Furthermore, the error function eN(x, t) can be defined as

where u(x, t) is the exact solution of the problem (1).

U3A = G1

U3 =

[

X(l)CTX(t)C
T
]

, G1 =
[
g1
(
tj
)]

N×1
, j = 1, 2, . . . ,N .

�

W̃; Q̃
�

=






U1 ; K

U2 ; G0

U3 ; G1

W ; Q




.

A =

(
˜̃
W

)−1 ˜̃
Q

RN (x, t) = L[uN (x, t)]− q(x, t)

L[uN (x, t)] =
∂uN (x, t)

∂x
− c(x)

∂αuN (x, t)

∂xα
.

(11)L[uN (x, t)] =
∂uN (x, t)

∂x
− c(x)

∂αuN (x, t)

∂xα
= q(x, t)+ RN (x, t)

(12)

uN (x, 0) = k(x), 0 < x < l

uN (0, t) = g0(t), 0 < t ≤ τ

uN (l, t) = g1(t), 0 < t ≤ τ .

(13)eN (x, t) = u(x, t)− uN (x, t)
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By using Eqs. (1) and (11–13), we have the error differential equation

with the homogenous conditions

Subsequently the error problem can be written as

Solving the problem (14) in the same way as in “The fractional derivative in the Caputo 
sense” section, we get the approximation eN,M(x, t) to eN(x, t), M > N which is the error 
function based on the residual function. We note that if the exact solution of the prob-
lem (1) is unknown, then the error function can be estimated by eN,M(x, t) which is found 
without the exact solution and also clearly seen from given error estimation algorithm. 
By means of the Fibonacci polynomial solution uN(x, t) and error estimation function 
eN,M(x, t), we obtain the corrected Fibonacci polynomial solution

Numerical examples
In this section, two examples are given to illustrate the applicability of the Fibonacci 
matrix method and all of them are performed on the computer by using MAPLE sym-
bolic program.

Example 1  Consider the one-dimensional space fractional diffusion equation 
(Dehghan 2006)

where q(x, t)  =  (6x3  −  3x2)e−t, diffusion coefficient c(x)  =  Γ(1.2)x1.8 with the initial 
condition

and the boundary conditions are

The exact solution of this problem u(x, t) = (x2 − x3)e−t.
Figure 1 shows the Fibonacci polynomial solution of this problem obtained by present 

method for N = 5 with the exact solution. 

L[eN (x, t)] = L[u(x, t)]− L[uN (x, t)] = −RN (x, t)

eN (x, 0) = 0, 0 < x < l

eN (0, t) = 0, 0 < t ≤ τ

eN (l, t) = 0, 0 < t ≤ τ .

(14)

∂eN (x, t)

∂x
− c(x)

∂αeN (x, t)

∂xα
= −RN (x, t)

eN (x, 0) = 0, 0 < x < l

eN (0, t) = 0, 0 < t ≤ τ

eN (l, t) = 0, 0 < t ≤ τ .

uN ,M(x, t) = uN (x, t)+ eN ,M(x, t).

(15)
∂u(x, t)

∂t
= c(x)

∂1.8u(x, t)

∂x1.8
+ q(x, t), 0 < x < 1, 0 < t ≤ 2

u(x, 0) = x2 − x3, 0 < x < 1

u(0, t) = 0,

u(1, t) = 0.
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In Table 1, we have presented comparison of the absolute errors of the Fibonacci pol-
ynomial solution and improved Fibonacci polynomial solution that is found by using 
error estimation algorithm with finite difference method (Dehghan 2006) and Tau 
method (Saadatmandi and Dehghan 2011) for the same order polynomial solutions at 
t =  2. We can clearly see both Fibonacci polynomial solution and improve Fibonacci 

Fig. 1  Comparison of the exact solution (a) and Fibonacci polynomial solution for N = 5 (b) of the Example 1
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polynomial solution are better approximate than the other solution for the same order 
polynomial solution.

Figure 2 is indicated the absolute error function obtained by the our method for N = 7, 
11 and is clearly showed when N is increased the absolute error values is decreased in 
the determined domain of the problem.

Example 2  In this example is the one-dimensional space fractional diffusion equation 
(Saadatmandi and Dehghan 2011)

where q(x, t) = (x2 + 1)cos(t + 1) − 2xsin(t + 1), diffusion coefficient c(x) = Γ(1.5)x0.5 
with the initial condition

and the boundary conditions are

The exact solution of this problem u(x, t) = (x2 + 1) sin(t + 1).
Figure 3 shows the absolute error functions |u(x, t) − uN(x, t)| for the Fibonacci poly-

nomial solutions for N = 8, 12. The absolute error values are decreased as N is increased.
The absolute errors values have given the Fibonacci collocation method are compared 

with Tau method (Saadatmandi and Dehghan 2011) for t = 1 and various values of first 
independent variable from 0.1 to 0.9 by 0.1 in Table 2. And also each column has given 
the same truncated numbers for the Tau and present methods.

(16)
∂u(x, t)

∂x
= c(x)

∂1.5u(x, t)

∂x1.5
+ q(x, t), 0 < x < 1, 0 < t ≤ 1

u(x, 0) =
(

x2 + 1

)

sin(1), 0 < x < 1

u(0, t) = sin (t + 1),

u(1, t) = 2 sin (t + 1).

Table 1  Comparison of  the absolute error of  the Fibonacci polynomial solution (uN(x, t)) 
and improved Fibonacci polynomial solution (uN,M(x, t)) with other methods for the same 
order polynomial solutions at t = 2 for Example 1

x Finite difference method
(Dehghan 2006)

Tau method
(Saadatmandi 
and Dehghan 2011)

Present method

m = 5 N = 6 N, M = 6, 7

0.1 4.20e−5 4.47e−6 1.35e−6 1.89e−7

0.2 3.76e−5 2.78e−7 1.46e−6 4.01e−7

0.3 8.44e−5 5.81e−6 4.09e−7 5.41e−7

0.4 3.27e−5 1.02e−5 1.49e−6 6.02e−7

0.5 3.61e−5 1.17e−5 3.76e−6 6.11e−7

0.6 1.94e−5 1.08e−5 5.84e−6 5.92e−7

0.7 2.95e−5 8.54e−6 7.07e−6 5.49e−7

0.8 4.92e−5 6.06e−6 6.86e−6 4.58e−7

0.9 2.83e−5 3.67e−6 4.65e−6 2.84e−7
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Figures 4 and 5 have been compared the absolute error function of |e6(x, t)| and error 
estimation functions |e6,7(x, t)| and |e6,8(x, t)| with respectively t = 1 and x = 1.

Conclusion
In this study, we have presented a new method using the Fibonacci polynomials to solve 
the one-dimensional space fractional diffusion equation. To this aim, we transformed 
the Fibonacci polynomials from algebraic form to matrix form. This method has been 
applied to two numerical examples which are indicated to illustrate the accuracy and 
efficiency. It can be observed from the results that the Fibonacci collocation method 

Fig. 2  Comparison the absolute error functions of Fibonacci polynomial solution for N = 7 (a) and N = 11 (b) 
for the Example 1
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yields better approximation than the mentioned methods for the exact solution of the 
illustrated problems. It is observed from discussed examples which have the exact solu-
tion, the error estimation algorithm is very effective when the compared absolute errors 
of these examples. One of the considerable advantage of this method is that the approxi-
mate solutions are found very easily by using the symbolic programs.

Fig. 3  Comparison the absolute error functions of Fibonacci polynomial solution for N = 8 (a) and N = 12 (b) 
for the Example 2



Page 13 of 14Bahşı and Yalçınbaş ﻿SpringerPlus  (2016) 5:1375 

Table 2  Comparison of  the absolute error of  the uN(x, t) with  other methods for  t  =  1 
for the Example 2

x Tau method
(Saadatmandi and  
Dehghan 2011)

Present method Tau method
(Saadatmandi 
and Dehghan 2011)

Present method

m = 6 m = 7

0.1 5.35e−5 4.19e−6 4.66e−5 9.81e−7

0.2 1.11e−4 1.11e−6 7.74e−5 1.60e−6

0.3 1.19e−4 1.89e−6 5.00e−5 1.64e−6

0.4 7.65e−5 4.40e−6 2.30e−5 1.69e−6

0.5 4.06e−5 6.04e−6 2.74e−5 1.58e−6

0.6 3.30e−5 6.74e−6 4.38e−5 1.34e−6

0.7 4.42e−5 6.46e−6 3.87e−5 1.11e−6

0.8 5.38e−5 5.20e−6 1.01e−5 9.92e−7

0.9 2.79e−5 2.99e−6 3.35e−6 8.73e−7

Fig. 4  The comparison of the absolute error function |e6(x, 1)| (black) and error estimation functions  
|e6,7(x, 1)| (blue) and |e6,8(x, 1)| (red) for the Example 2

Fig. 5  The comparison of the absolute error function |e6(1, t)| (black) and error estimation functions  
|e6,7(1, t)| (blue) and |e6,8(1, t)| (red) for the Example 2
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