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Introduction and main results
In this paper, we consider the existence of least energy sign-changing solutions for a 
class of Kirchhoff-type problem

where � is a bounded domain in RN , N = 1, 2, 3, with a smooth boundary ∂�, 
a > 0, b > 0 and g ∈ C0(�× R, R) satisfies the following conditions as in Shuai (2015):

(g1)  g(x, t) = o(t) uniformly in x as t → 0.
(g2)   There exists p ∈ (4, 2∗) such that g(x, t) = o(tp−1) uniformly in x as t → ∞, 

where 2∗ = 6, if N = 3, and 2∗ = +∞, if N = 1, 2.
(g3)  G(x, t)/t4 → +∞ uniformly in x as t → ∞, where G(x, t) =

∫ t
0
g(x, s)ds.

(g4)  g(x, t)/|t|3 is an increasing function on (−∞, 0) and (0,+∞) for every x ∈ �.

When b > 0, problem (1) is involving the term b
∫

�
|∇u|2dx and this term makes (1) a non-

local problem. Such kind of problems is related to the stationary analogue of the Kirchhoff 
equation

(1)

{

−
(

a+ b
∫

�
|∇u|2dx

)

�u = g(x,u), x ∈ �,

u = 0, x ∈ ∂�,
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proposed by Kirchhoff (1883) as an extension of the classical D’Alembert’s wave equation 
for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in 
length of the string produced by transverse vibrations. For more mathematical and physical 
background on Kirchhoff type problems, we refer the readers to Chipot and Lovat (1997).

In the recent years, many authors have also studied the following Kirchhoff type prob-
lems defined on the whole space RN

where V ∈ C(RN ,R) and h ∈ C(RN × R,R). There are many interesting studies on the 
existence and multiplicity of solutions to problem (1) and (2), see for example, He and 
Zou (2012), Mao and Zhang (2009), Zhang and Perera (2006) and the reference therein.

Next, we give some notations. Let X := H1
0 (�) be the Sobolev space equipped with the 

inner product and the norm

Throughout the paper, let X ′ denote the dual of X and �·, ·� be the duality pairing between 
X ′ and X. We denote by | · |r the usual Lr-norm. Since � is a bounded domain, it is well 
known that X →֒ Lr(�) continuously for r ∈ [1, 2∗], compactly for r ∈ [1, 2∗). Hence, for 
r ∈ [1, 2∗], there exists γr such that

Recall that a function u ∈ X is called a weak solution of (1) if

Seeking a weak solution of problem (1) is equivalent to finding a critical point of C1 
functional

Moreover,

We call u ∈ X is a sign-changing solution of (1), if u ∈ X is a solution of (1) and u± �= 0, 
where u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0}.

However, regarding on the existence of sign-changing solutions of problem (1), to the 
best of knowledge, there are very few results in the context. Recently, Mao and Zhang 
(2009), Zhang and Perera (2006) studied the existence of one sign-changing solution 

utt −

(

a+ b

∫

�

|∇u|2dx

)

�u = g(x, t)

(2)

{

−
(

a+ b
∫

RN
|∇u|2dx

)

△u+ V (x)u = h(x,u), for x ∈ RN ,

u(x) → 0, as |x| → ∞,

(u, v) =

∫

�

∇u · ∇vdx, �u� = (u,u)
1
2 .

(3)|u|r ≤ γr�u�, ∀ u ∈ X .

(a+ b�u�2)

∫

�

∇u · ∇vdx =

∫

�

g(x,u)vdx, ∀ v ∈ X .

Jb(u) :=
a

2
�u�2 +

b

4
�u�4 −

∫

�

G(x,u)dx.

�J ′b(u), v� = (a+ b�u�2)

∫

�

∇u∇vdx −

∫

�

g(x,u)vdx, ∀ u, v ∈ X .
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via invariant sets of descent flow with g satisfying asymptotically 3-linear condition. 
Very recently, combining constraint variational methods and quantitative deformation 
lemma, Shuai (2015) firstly obtained the existence of one least energy sign-changing 
solution of problem (1) with g(x,u) = g(u) ∈ C1(R,R) by seeking a minimizer of the 
energy functional Jb over the following constraint:

and proved that the minimizer is a sign-changing solution of (1), which is so called least 
energy sign-changing solution. Here we must point out that the most crucial ingredients 
of his proofs are to show Mb �= ∅ by using Implicit Function Theorem, and thus g ∈ C1 
is necessary. But, in the present paper we will show g ∈ C1 is not necessary. By using 
some subtle analytical skills, we can relax g ∈ C1 to g ∈ C0, and still obtain the existence 
of the least energy sign-changing of (1).

We are now in a position to state the first main result of this paper.

Theorem  1 Assume that conditions (g1)–(g4) hold. Then problem (1) has one least 
energy sign-changing solution ub ∈ Mb, which has two nodal domains.

Remark 2 Compared with Theorem  1.1 in Shuai (2015), we only need g ∈ C0 not 
C1 to ensure the existence of least energy sign-changing solutions for (1). Hence our 
Theorem 1 generalizes his result to more general nonlinearity.

When g ∈ C1, Shuai (2015) compared the energy of any sign-changing solutions with 
the ground state energy of (1). He obtained the energy of any sign-changing solutions is 
larger than that of the ground state solutions of (1), and claimed whether the energy of 
any sign-changing solutions is larger than twice that of the ground state solutions of (1) 
or not was unknown. In the present paper, we will give an affirmative answer that (1) has 
the property of the energy of any sign-changing solutions is larger than twice that of the 
ground state solutions of (1), which is called energy doubling property by Weth (2006). 
Precisely, we establish the second main result as follows.

Theorem  3 In addition that g ∈ C1 in Theorem  1, then 0 < cb is the ground state 
energy corresponding to the ground state solution vb ∈ X of (1), and

where ub is the least energy sign-changing solution of (1) obtained in Theorem 1, and

Remark 4 Since cb > 0, it follows from (4) that the ground state solution vb of (1) 
is either a positive or a negative function in X, and (1) has energy doubling property. 
Hence, our Theorem 3 improves Theorem 1.2 in Shuai (2015).

Mb = {u ∈ X : u± �= 0 and �J ′b(u),u
+� = �J ′b(u),u

−� = 0},

(4)Jb(ub) ≥ 2cb = 2Jb(vb),

Nb = {u ∈ X\{0} : �J ′b(u),u� = 0} and cb = inf
u∈Nb

Jb(u).
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Proof of main results
We assume that (g1)–(g4) are satified from now on. In order to seek the least energy sign-
changing solutions of (1), the most crucial ingredient of the proof is to show Mb �= ∅ . 
To begin with, for any fixed u ∈ X with u± �= 0, we consider a function Ju defined on 
R+ × R+ by

where R+ = [0,+∞). So, it is easy to see that Ju is well defined on R+ × R+ and Ju ∈ C1 
due to Jb ∈ C1. By a simple calculation, for (s, t) ∈ (0,+∞)× (0,+∞), it has

where

Bu = �u+�2�u−�2. Since Ju is continuous differential on (0,+∞)× (0,+∞), it follows 
from (5) that the pair (s, t) is a critical point of Ju on (0,+∞)× (0,+∞) if and only if

i.e., su+ + tu− ∈ Mb.

Next, we further give the following properties of Ju.

Lemma 5 For any fixed u ∈ X with u± �= 0, Ju has a unique critical point (su, tu) with 
su, tu > 0, which is the unique maximum point of Ju on R+ × R+.

Proof For any ǫ > 0, by (g1) and (g2), there exists Cǫ > 0 such that

Moreover, for any M > 0, from (g3), (g4) and (6), there exists CM > 0 such that

In order to obtain the desired results, next we divide the proof into three steps.
Step 1 The existence of critical points for Ju on (0,+∞)× (0,+∞).
Firstly, for any fixed t ∈ R+, there exists a unique st > 0 such that Ku(st , t) = 0. In fact, 

on one hand, by (3) and (6), it has

Ju(s, t) = Jb(su
+ + tu−), ∀(s, t) ∈ R+ × R+,

(5)

∇Ju(s, t) =

(

∂Ju

∂s
,
∂Ju

∂t

)

=
(

�J ′b(su
+ + tu−),u+�, �J ′b(su

+ + tu−),u−�
)

=

(

1

s
Ku(s, t),

1

t
Hu(s, t)

)

,

Ku(s, t) = �J ′b(su
+ + tu−), su+� = as2�u+�2 + bs4�u+�4 + bBus

2t2 −

∫

�

g(su+)su+dx,

Hu(s, t) = �J ′b(su
+ + tu−), tu−� = at2�u−�2 + bt4�u−�4 + bBus

2t2 −

∫

�

g(tu−)tu−dx,

{

Ku(s, t) = �J ′
b
(su+ + tu−), su+� = 0,

Hu(s, t) = �J ′
b
(su+ + tu−), tu−� = 0,

(6)|g(x, t)| ≤ ǫ|t| + Cǫ |t|
p−1

, ∀(x, t) ∈ �× R.

(7)g(x, t)t ≥ Mt4 − CMt2, ∀(x, t) ∈ �× R.

(8)Ku(s, t) ≥
(a

2
− ǫγ 2

2

)

�u+�2s2 − Cǫγ
p
p s

p
, ∀s ∈ R+.



Page 5 of 9Cheng  SpringerPlus  (2016) 5:1256 

Choosing 0 < ǫ < a

4γ 2
2

, then (8) implies that Ku(s, t) > 0 for s > 0 small enough. On the 
other hand, the combination of (3) and (7) implies

Choosing M > 0 such that M|u+|44 − b�u+�4 > 0, it follows from (9) that Ku(s, t) < 0 
for s > 0 large enough. Note that Ku(s, t) is continuous in s > 0, hence there exists st > 0 
such that Ku(st , t) = 0. Further, st > 0 is unique. Indeed, arguing by contradiction, we 
assume there exist 0 < s′t < s′′t  such that Ku(s

′
t , t) = Ku(s

′′
t , t) = 0. Hence

and

From (10), (11) and (g4), we conclude that

which is a contradiction. Consequently, for any fixed t ∈ R+, there exists a unique st > 0 
such that Ku(st , t) = 0. Thus, we can define a function δ : R+ �→ (0,+∞) given by 
δ(t) = st , ∀t ∈ R+, and δ(t) satisfying Ku(δ(t), t) = 0, i.e.,

By the same arguments above, for any fixed s ∈ R+, there exists a unique ts > 0 such 
that Hu(s, ts) = 0. Thus, we can also define a function ζ : R+ �→ (0,+∞) given by 
ζ(s) = ts, ∀s ∈ R+, and ζ(s) satisfying Hu(s, ζ(s)) = 0, i.e.,

Further, we claim that the functions δ(t) and ζ(s) have the following two properties:

(i)    δ(t) and ζ(s) are continuous on R+,
(ii)    δ(t) < t for t large and ζ(s) < s for s large.

Here we only prove δ(t) has properties (i) and (ii) because by the same way ζ(s) also 
satisfies (i) and (ii). Let tn → t0 ≥ 0 as n → ∞, then {δ(tn)} is bounded. Otherwise, pass-
ing to a subsequence, we may assume δ(tn) → +∞ as n → ∞. Thus, for n large, it has 
δ(tn) ≥ tn. So, it follows from (12), (g3) and (g4) that

(9)
Ku(s, t) ≤ −(M|u+|44 − b�u+�4)s4 + (a�u+�2 + bBut

2 + CMγ 2
2 �u

+�2)s2, ∀s ∈ R+.

(10)
a�u+�2

(s′t)
2

+ b�u+�4 + bBu
t2

(s′t)
2
=

∫

�

g(x, s′tu
+)

(s′tu
+)3

(u+)4dx,

(11)
a�u+�2

(s′′t )
2

+ b�u+�4 + bBu
t2

(s′′t )
2
=

∫

�

g(x, s′′t u
+)

(s′′t u
+)3

(u+)4dx.

0 <

(

1

(s′t)
2
−

1

(s′′t )
2

)

(a�u+�2 + bBut
2) =

∫

�

[

g(x, s′tu
+)

(s′tu
+)3

−
g(x, s′′t u

+)

(s′′t u
+)3

]

(u+)4dx ≤ 0,

(12)aδ(t)2�u+�2 + bδ(t)4�u+�4 + bBuδ(t)
2t2 =

∫

�

g(δ(t)u+)δ(t)u+dx, ∀t ∈ R+.

aζ(s)2�u−�2 + bζ(s)4�u−�4 + bBuζ(s)
2s2 =

∫

�

g(ζ(s)u−)ζ(s)u−dx, ∀s ∈ R+.

(13)

0 = lim
n→∞

[

a�u+�2

δ(tn)2
+ b�u+�4 + bBu

t2n
δ(tn)2

]

= lim
n→∞

∫

�

g(x, δ(tn)u
+)

(δ(tn)u+)3
(u+)4dx = +∞,
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which is a contradiction. Then {δ(tn)} is bounded. Passing to a subsequence, there exists 
s0 ≥ 0 such that δ(tn) → s0 ≥ 0 as n → ∞. Passing to the limit as n → ∞ in (12) with 
t = tn, we have

Next we show s0 > 0. Indeed, arguing by contradiction, if s0 = 0, then δ(tn) → 0+ as 
n → ∞. From (12) with t = tn, it has

Passing to the limit as n → ∞ in (15), it follows from (g1) that

which is a contradiction. Hence s0 > 0 and δ(t0) = s0 due to (14). Therefore, δ(t) satisfies 
the property (i).

Next we show that the property (ii) holds for δ(t). Arguing by contradiction, if there 
exists {tn} ⊂ R+ with tn → +∞ such that δ(tn) ≥ tn for all n ∈ N and δ(tn) → +∞ as 
n → ∞. Applying (13) again, it gives a contradiction. Hence the desired property (ii) 
holds.

By the property (ii), there exists M1 > 0 such that δ(t) ≤ t for t > M1 and ζ(s) ≤ s for 
s > M1. Since From the property (i), it has M2 := max{maxt∈[0,M1] δ(t), maxs∈[0,M1] ζ(s)} > 0.  
Setting M0 = max{M1, M2} > 0 , for any (s, t) ∈ [0,M0] × [0,M0], from the property (ii), it 
has δ(t) ≤ M0 and ζ(s) ≤ M0. Hence, we define T : [0,M0] × [0,M0] �→ [0,M0] × [0,M0] 
by T (s, t) = (δ(t), ζ(s)), ∀(s, t) ∈ [0,M0] × [0,M0]. Obviously, T(s,  t) is continu-
ous on [0,M0] × [0,M0]. Then applying Brouwer Fixed Point Theorem, there exists 
(su, tu) ∈ [0,M0] × [0,M0] such that

which implies that su = δ(tu) > 0 and tu = ζ(su) > 0. Note that Ku(δ(tu),

tu) = Hu(su, ζ(su)) = 0, hence Ku(su, tu) = Hu(su, tu) = 0, i.e., the pair (su, tu) is a critical 
point of Ju on (0,+∞)× (0,+∞). This completes the existence of critical points for Ju 
on (0,+∞)× (0,+∞).

Step 2 The uniqueness of critical point for Ju on (0,+∞)× (0,+∞).
From the Step 1, Ju has critical points on (0,+∞)× (0,+∞). We consider only two 

cases.
Case 1: u ∈ Mb. Obviously, the pair (1, 1) is a critical point of Ju on (0,+∞)× (0,+∞) . 

We claim that (1, 1) is a unique critical point of Ju on (0,+∞)× (0,+∞). In fact, let 
(s0, t0) be any critical point of Ju on (0,+∞)× (0,+∞), then Ku(s0, t0) = Hu(s0, t0) = 0 , 
that is

and

(14)as20�u
+�2 + bs40�u

+�4 + bBus
2
0t

2
0 =

∫

�

g(x, s0u
+)s0u

+dx.

(15)a�u+�2 + bδ(tn)
2�u+�4 + bBut

2
n =

∫

�

g(x, δ(tn)u
+)

δ(tn)u+
(u+)2dx.

a�u+�2 = lim
n→∞

∫

�

g(x, δ(tn)u
+)

δ(tn)u+
(u+)2dx = 0,

(δ(tu), ζ(su)) = T (su, tu) = (su, tu),

(16)as20�u
+�2 + bs40�u

+�4 + bBus
2
0t

2
0 =

∫

�

g(s0u
+)s0u

+dx,
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Note that u ∈ Mb, hence

and

Without loss of generality, we may assume that 0 < s0 ≤ t0, then the combination of (16) 
and (18) implies that

If s0 < 1, by by (g4), then the left hand of (20) is greater than 0, and the right hand is less 
than or equal to 0, which is also absurd. Hence, s0 ≥ 1. On the other hand, in view of (17) 
and (19), it has

If t0 > 1, by (g4), then the left hand of (21) is less than 0, and the right hand is greater than 
or equal to 0, which is absurd. Hence, t0 ≤ 1. Therefore, s0 = t0 = 1. Consequently, the 
pair (1, 1) is a unique critical point of Ju on (0,+∞)× (0,+∞) in the case that u ∈ Mb.

Case 2: u �∈ Mb. By the step 1, we have known that Ju has critical point (su, tu) 
on (0,+∞)× (0,+∞). Assume that (s′u, t ′u) also be a critical point of Ju on 
(0,+∞)× (0,+∞). Hence

So,

Note that v1 ∈ Mb, from the Case 1, (22) implies that s
′
u
su

=
t ′u
tu

= 1. Hence s′u = su 
and t ′u = tu, which implies that the pair (su, tu) is a unique critical point of Ju on 
(0,+∞)× (0,+∞) in the case that u �∈ Mb.

Step 3 (su, tu) is the unique maximum point of Ju on R+ × R+. The proof is same to 
the Lemma 2.3 in Shuai (2015), so we omit it here. This completes the proof.  �

Remark 6 Throughout of the proof, making use of some subtle analytical skills instead 
of Implicit Function Theorem used in Shuai (2015), we only need g(x,u) ∈ C0(�× R,R) 

(17)at20�u
−�2 + bt40�u

−�4 + bBus
2
0t

2
0 =

∫

�

g(t0u
−)t0u

−dx.

(18)a�u+�2 + b�u+�4 + bBu =

∫

�

g(u+)u+dx,

(19)a�u−�2 + b�u−�4 + bBu =

∫

�

g(u−)u−dx.

(20)a

(

1

s20
− 1

)

�u+�2 ≤

∫

�

[

g(x, s0u
+)

(s0u+)3
−

g(x,u+)

(u+)3

]

(u+)4dx.

(21)a

(

1

t20
− 1

)

�u−�2 ≥

∫

�

[

g(x, t0u
−)

(t0u−)3
−

g(x,u−)

(u−)3

]

(u−)4dx.

v1 := suu
+ + tuu

− ∈ Mb and v2 := s′uu
+ + t ′uu

− ∈ Mb.

(22)

(

s′u
su

)

v+1 +

(

t ′u
tu

)

v−1 =

(

s′u
su

)

suu
+ +

(

t ′u
tu

)

tuu
− = v2 ∈ Mb.
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not g(x,u) = g(u) ∈ C1(R,R) which is independent in x in Shuai (2015). Hence, we 
greatly relax constraints on g.

From Lemma  5, we directly deduce the following Corollary 2.3, which is crucial for 
comparing the energy of any sign-changing solutions with that of the ground state solu-
tions of (1).

Corollary 7 If u = u+ + u− ∈ Mb, then

that is,

Now we can prove Theorem  1.

Proof of Theorem 1 Using Lemma 5 to replace the Lemmas 2.1 and 2.3 in Shuai (2015), 
the rest proof can be derived by some slightly modifications of the proof of Theorem 1.1 
in Shuai (2015). But we must point out that it only needs g(x,u) ∈ C0(�× R,R) 
throughout of the proof.

In order to establish the property of the energy of any sign-changing solutions is larger 
than twice that of the ground state solutions of (1), we also need the following lemma.  �

Lemma 8 For any fixed u ∈ X\{0}, there exists a unique λu > 0 such that λuu ∈ Nb.

Proof We consider the function

By (6) and (7), we conclude that φ(λ) > 0 for λ > 0 small and φ(λ) < 0 for λ > 0 large. 
Then the continuity of φ(λ) implies there exists λu > 0 such that φ(λu) = 0, i.e.,

Assume that λ′u > 0 with λ′u �= λu such that φ(λ′u) = 0 be satisfied, i.e.,

Without loss of generality, we may assume λu < λ′u, it follows from (23), (24) and (g4) that

which is a contradiction. Hence the uniqueness of λu holds and the proof is completed. 
 □

Ju(1, 1) = max
s≥0,t≥0

Ju(s, t),

Jb(u
+ + u−) = max

s≥0,t≥0
Jb(su

+ + tu−).

φ(λ) = �J ′b(λu), λu� = aλ2�u�2 + bλ4�u�4 −

∫

�

g(x, λu)λudx, λ ≥ 0.

(23)aλ2u�u�
2 + bλ4u�u�

4 =

∫

�

g(x, λuu)λuudx.

(24)a(λ′u)
2�u�2 + b(λ′u)

4�u�4 =

∫

�

g(x, λ′uu)λ
′
uudx.

0 < a

(

1

λ2u
−

1

(λ′u)
2

)

�u�2 =

∫

�

[

g(x, λu)

|λuu|3
−

g(x, λ′u)

|λ′uu|
3

]

u4dx ≤ 0,
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Proof of Theorem 3 Note that g(x,u) ∈ C1(�× R,R), then Nb is manifold of C1 and 
the critical points of the functional Jb on Nb are critical points of Jb on X due to Corol-
lary 2.9 in He and Zou (2012). Similarly to the proof of Theorem 1.2 in Shuai (2015), we 
can prove the existence of the ground state solution vb ∈ Nb for (1) with Jb(vb) = cb.  �

For ub = u+b + u−b ∈ Mb is the least energy sign-changing solutions of (1) obtained in 
Theorem 1, by Lemma 8, there exists a unique pair (s̃+ub , t̃

−
ub
) with s̃+ub , t̃

−
ub

> 0 such that 
s̃+ubu

+
b ∈ Nb and t̃−ubu

−
b ∈ Nb. Hence, it follows from Corollary 7 that

Hence, (1) has the property of the energy of any sign-changing solutions is larger than 
twice that of the ground state solutions of (1) and the proof is completed.

Conclusion
On the one hand, using some subtle analytical skills and relaxing g ∈ C1 in Shuai 
(2015) to g ∈ C0 , the existence of the least energy sign-changing solutions of (1) is also 
obtained successfully. On the other hand, we give an affirmative answer that the energy 
of any sign-changing solutions is larger than twice that of the ground state solutions of 
(1). Hence, Our results generalize and improve Theorems 1.1 and 1.2 in Shuai (2015), 
respectively.

Acknowlegements
The author thanks the anonymous referees for their valuable suggestions and comments. This Work is partly supported 
by NNSF (11571370, 11361048), YNEF (2014Z153) and YNSF (2013FD046).

Author details
1 School of Mathematics and Statistics, Qujing Normal University, Qujing 655011, Yunnan, People’s Republic of China. 
2 School of Mathematics and Statistics, Central South University, Changsha 410083, Hunan, People’s Republic of China. 

Competing interests
He has no competing interests.

Received: 28 May 2016   Accepted: 15 July 2016

References
Chipot M, Lovat B (1997) Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal 30(7):4619–4627
He X, Zou W (2012) Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3. J Differ Equ 

2:1813–1834
Kirchhoff G (1883) Mechanik. Teubner, leipzig
Mao A, Zhang Z (2009) Sign-changing and multiple solutions of Kirchhoff type problems without the P. S. condition. 

Nonlinear Anal 70(3):1275–1287
Shuai W (2015) Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J Differ Equ 

259:1256–1274
Weth T (2006) Energy bounds for entire nodal solutions of autonomous superlinear equations. Calc Var Partial Differ Equ 

27:421–437
Zhang Z, Perera K (2006) Sign changing solutions of Kirchhoff type problems via invarint sets of descent flow. J Math 

Anal Appl 317(2):456–463

mb := Jb(ub) = Jb(u
+
b + u−b )

= max
s≥0,t≥0

Jb(su
+
b + tu−b ).

≥ Jb(s̃
+
ub
u+b + t̃−ubu

−
b )

= Jb(s̃
+
ub
u+b )+ Jb(t̃

−
ub
u−b )+ bBub(s̃

+
ub
)2(t̃−ub)

2

≥ 2Jb(vb) = 2cb.
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