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of a crossover operator and its control parameter CR, is proposed to implement the
function of the crossover operation. Meanwhile, Gaussian distribution centers the best
individuals found in each generation based on the proposed covariance matrix, which
is generated between the best individual and several better individuals. Improved
mutation operator based on the crossover matrix is randomly selected to generate the
trial population. This operator is used to generate high-quality solutions to improve the
capability of exploitation and enhance the preference of exploration. In addition, the
memory population is randomly chosen from previous generation and used to control
the search direction in the novel mutation strategy. Accordingly, the diversity of the
population is improved. Thus, CCDE, which is a novel efficient and simple DE variant,

is presented in this paper. CCDE has been tested on 30 benchmarks and 5 real-world
optimization problems from the IEEE Congress on Evolutionary Computation (CEC)
2014 and CEC 2011, respectively. Experimental and statistical results demonstrate the
effectiveness of CCDE for global numerical and engineering optimization. CCDE can
solve the test benchmark functions and engineering problems more successfully than
the other DE variants and algorithms from CEC 2014.

Keywords: Differential evolution, Numerical and engineering optimization, Crossover
matrix, Covariance matrix, Memory population

Background

Global optimization has been extensively applied in various science and engineering
fields. Unconstrained global optimization is important in optimization. Thus, numerous
studies on global optimization have been conducted using various strategies to achieve
unconstrained global optimization (Deep et al. 2009; Fan and Yan 2015; Gwizdalta 2012).
However, serious challenges in global optimization remain, such as non-linear, non-con-
vex, and non-differential problems.
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Differential evolution (DE) is one of the most efficient evolutionary algorithms (EAs)
and has wide application in numerous numerical optimization problems in diverse fields
(dos Santos Coelho et al. 2014). ED was first introduced by Storn and Price (1995). DE
is a population-based optimization algorithm similar to other EAs. This algorithm pri-
marily consists of a mutation operator and a crossover operator (Storn and Price 1997).
Each individual in the population in DE is called a target vector. First, a mutant vector
is produced by the mutation operator. Then, a trial vector is confirmed by the crossover
operator applied to the target and mutant vectors. Finally, the better solution is selected
between the trial vector and its target vector according to their objective function values.
DE has been successfully demonstrated in various continuous optimization problems in
many science and engineering fields because of its simple structure, easy operation, con-
vergence property, quality of solution, and robustness. DE has also been used in robot
control (Wang and Li 2011), sensor array interrogation (Venu et al. 2008), cluster analy-
sis (Maulik and Saha 2009), and other applications (Dong et al. 2014; Gundry et al. 2015;
Zhang and Duan 2015; Zhang et al. 2015).

DE is sensitive to the choice of the mutation and crossover operators and their two
associated control parameters, namely, the crossover control parameter CR and scaling
factor F (Qin et al. 2009). The influence of these factors has been paid much attention,
and a series of different DEs has been proposed to improve the optimization perfor-
mance. Brest et al. (2006) proposed the JDE algorithm, which is a DE with self-adaptive
parameter control. In this algorithm, CR and F are encoded into the chromosome and
participate in the evolution. Zhang and Sanderson (2009) improved F by Cauchy distri-
bution and CR by normal distribution in the parameter-adaptive DE algorithm called
JADE. Moreover, self-adaptive equations for CR and F have been proposed to control
their values with increased generation. Qin et al. (2009) proposed another self-adaptive
DE called SaDE with a strategy pool as well as different parameter settings. Mallipeddi
et al. (2011) proposed the EPSDE algorithm, which is a DE with an ensemble of control
parameter and mutation strategies. EPSDE has a distinct trial vector generation strategy
pool and controls parameter pool to self-adjust its search strategy along with the itera-
tion process. Wang et al. (2014) introduced the CoBiDE algorithm, which uses a covari-
ance matrix learning strategy based on the current population distribution to initialize
the population of DE and a bimodal distribution strategy to control the value of the two
control parameters. These DE-based algorithms and other improved DEs have enhanced
the optimization performance of DE to some extent. However, the simple structure of
standard DE has been considerably changed, resulting in the apparent difficulty in bal-
ancing between exploration (searching for better individuals) and exploitation (using the
existing material in the population to obtain the best effect) (Fraa et al. 2015).

Thus, we propose a covariance and crossover matrix-guided DE (CCDE) based on sev-
eral studies (Ghosh et al. 2012; Santucci and Milani 2011; Zhabitsky and Zhabitskaya
2013) to solve these problems. The covariance matrix between the current best individ-
ual and several better individuals can reflect the rotation information of the function to
some extent. Thus, the covariance matrix is used to guide the generation of new indi-
viduals. We introduce the Gaussian distribution that centers the best individuals found
in each generation based on the proposed covariance matrix. The crossover operator
and its parameter CR are simplified and replaced by the crossover matrix, which is a
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random binary integer-valued matrix composed of 0 and 1. In addition, the memory
population M is introduced to enhance the exploration of the CCDE and is used to con-
trol the search direction of the generation. CCDE has been tested on 30 benchmarks
chosen from the IEEE Congress on Evolutionary Computation (CEC) 2014 (Liang et al.
2013) and 5 real-world engineering problems selected from CEC 2011 (Das and Sugan-
than 2010). The performance of CCDE is compared with those of JADE, SaDE, EPSDE,
and CoBiDE, as well as five algorithms from CEC 2014. The experimental and statistical
results suggest that the performance of CCDE is better than those of other compared
algorithms.

The rest of this paper is organized as follows. Section “DEA” introduces DE briefly.
CCDE is presented in section “CCDE”. The experimental results are presented in section
“Experimental study”. Finally, section “Conclusion” elaborates the conclusion and future

work.

DEA
DE is a population-based heuristic search algorithm and has four basic processes: ini-
tialization, mutation, crossover, and selection.

Initialization
DE performs an initialization by selecting several points from the search space randomly
using Eq. (1), as follows:

Py = {xi0 = (%,1,0,%i,2,0, %,3,0, - - -»¥,D,0), i=1,2,3,...,N} (1)

where D denotes the dimension of the population and N denotes the population size.
The vector element of x;, is a random number uniformly distributed in the range [low,
up), where low and up are the boundaries of the search space.

Mutation
The standard mutation strategy used in DE is “DE/rand/1” and can be illustrated using
Eq. (2), as follows:

viG = %r1,6 + F - (%2,6 — %3,G) )

where F is the scaling factor varied from 0.4 to 1; and r,, r,, and r; are randomly chosen
from [1, NJ. i, r, 1y, and r5 are mutually different. G (G =1, 2, 3, ..., Maxgen) is the cur-
rent generation. Control parameter F is a random value for each individual. A larger F is
effective for global search, while a smaller F is useful for local search.

Crossover
After mutation, the crossover operator is used by Eq. (3), as follows:

_Jvije if rand(0,1) < CR or j=jrua
Hij,G = { XijG, otherwise )

where CR is a crossover control parameter or a factor selected from the range [0,1),
i=12.,Nandj=1,2,..,D.j,.,is an integer value randomly chosen from [1, N].
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The trial vector u;; is generated in the process. CR controls the mutation probability.
The larger CR inherits more elements from the mutant vector.

Selection
In the selection process, DE chooses the better one between the target vector x; ; and
trial vector u; ; according to their fitness value using Eq. (4), as follows:

‘ _ Jvie, if Fvig) < F(xiG)
%G+l = {xi,G; otherwise “4)

where F(x) is the fitness value of vector x.

CCDE

CCDE is a novel DE variant designed to be a global minimizer. Unlike the standard DE,
CCDE can be explained by dividing its functions into four steps: initialization, selection-
I, trial population generation, and selection-1I. The trial population is generated by the
crossover and covariance matrices. Algorithm 1 shows the general structure of CCDE.

Algorithm 1. General Structure of CCDE
1. Initialization

2. Selection-I

3. Repeat

4. Generate the Trial Population
5 The crossover matrix

6. The covariance matrix
7

8

9

1

Calculate the trial population
end
Selection-I1
0. Until meeting the stop condition

The detailed description of CCDE is presented as follows.

Initialization

The initialization population P, of CCDE is the same as those of other DEs using Eq. (1).
Contrary to the other DE variants, M in CCDE is used to store the individuals of P with
rearranged order. Moreover, M is used to control the search direction and thus enhance
the capability of exploration. Given that P, is definite, M, is initialized by Eq. (5), as
follows:

Mo = {yi,0 = (i,1,0,9i,2,0:¥i,3.05 - - -, ¥i,p0)s i =1,2,3,...,N} 5)

Selection-I
The fitness values of initialized population P, are calculated, and the best individual is
stored.

Generation of trial population

Generation of the crossover matrix

This step is the most important process in the CCDE. M is adjusted prior to the genera-
tion of the trial population to store the previous generation randomly using Eq. (6), as
follows:
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M= P, ifa<bd
| permuting(M),  otherwise (6)

where a and b are random numbers with uniform distribution in the range (0,1). Per-
muting is a function to change the order of individuals in M and thus improve its diver-
sity. As a result, the population has a memory capability and is mainly used to improve
the performance of exploration.

Then, the crossover matrix (Cr) is generated randomly instead of the crossover opera-
tor. This matrix is used to determine whether the individuals of P must be updated or
not. Crg is composed of the integer 0 and 1, and initialized by Cr, = 0 before the itera-
tion. When Crl-,]» (i=1,2,3,..,N;j=1,2,3,...,D) isequal to 0, X6 remains unchanged.
Otherwise, x;; ; is updated and generated using Eq. (7), as follows:

(7

{ Cri,u(ijmnd,vw))=l|u=permuting{1,2,34.4,D}, if rand, < rand,,

Criy = l|lu = randi{D}, otherwise

where rand, and rand, are random values selected from the uniform distribution in
the range (0,1). randi{D} is a function to randomly generate the integer value from 1 to
D. U(y4naipy tepresents the vector elements chosen from the vector u from the order
number i to randi{D}. The elements of u are generated by permuting function about the
integer numbers {1, 2, 3, ... D}. In Eq. (7), when rand,, is less than rand,, several vector
elements of individual i is updated, while the others remain unchanged. Otherwise, only
one vector element of individual i is changed.

The crossover matrix in this step is mainly used to balance the performance of the
exploration and exploitation. The crossover matrix of CCDE is more complex and effi-
cient without CR than the crossover operator of other DEs because the diversity of its
population is firmly enhanced.

Generation of covariance matrix

The best individual found during evolution is used as the leader to guide the search and thus
improve the capability of exploitation. The newly generated individual must center the best
individuals. The region around the best individual may be considered the potential region
to find the next better individual. Therefore, this method is used to generate the covariance
matrix. However, considering the avoidance of local optimum and based on the covariance
matrix adaptation evolution strategy (CMA-ES) in Hansen and Ostermeier (2001), covariance
matrix learning in CoBiDE in Wang et al. (2014), and differential covariance matrix adaptation
EA in Ghosh et al. (2012), a novel covariance matrix strategy is proposed by learning from the
previous best individual and present population. With the use of this strategy, the covariance
matrix inherits the information accumulated during evolution and learns new information

from the present population. The covariance matrix is generated by Eq. (8), as follows:
Cog+1 = rand - Cog + (1 — rand) - cov(xbesty,g, xbesty G, . . ., xbest; ) (8)

where cov(Xy.01 6 Xpesia,cr Frestr,c,) Calculates the covariance matrix of the A best indi-
viduals in the current generation and 2 = [N /4]. The covariance matrix, as indicated
by CMA-ES and CoBiDE, is used to guide the generation of trial population and fully
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utilizes the information of the individuals to improve the convergence speed. However,
contrary to CMA-ES and CoBiDE, the information of the A best individuals is consid-
ered in the covariance matrix of CCDE.

Generation of trial population

The trial population is generated in this step. The covariance matrix is used as a guide to
search the region around the best individual by Gaussian distribution and thus improve
the exploitation. The exploration is enhanced using the form of “DE/rand/1” with the
improved search direction confirmed by memory and target populations. As a result, we
choose one of the two strategies randomly to balance the exploration and exploitation,
which can be formulated as follows:

v _ | PG+ Crg-F-(Pg—Mg), if rand, < rand,,
G+ = Xbest,g + 1 - N(0, Cog), otherwise )

where M is a memory population and Pis a random-ordered individual of population
Pg. F is the scale control parameter of DE as illustrated by Eq. (2). F = R [R-C(1, 0.1),
where C(1, 0.1) is the Cauchy distribution with local parameter 1 and scale parameter
0.1] (Wang, Lib, and Huang 2014). X, ; is the current best population consisting of the

current best individual. N(0, Cog) is the Gaussian distribution with mean value 0 and

1—G
Maxgen

0.7
variance value Cog. r = rand; (1 — rand., ) ) is the adaptive step size, which is

similar to that in simulated annealing algorithm (Edmonds 1971). This step size gradu-
ally decreases the search range, and rand is a random value in [0, 1].

From Eq. (9), the search range around the current best individual narrowed with
tends to 0 and G tends to Maxgen to exploit the individual. Meanwhile, falling into local
optimum is avoided via the improved mutation operator based on the crossover matrix
using a random selection strategy as indicated by Eq. (9). Figure 1 illustrates the genera-
tion of the trial vector defined by Eq. (9).

If the kth component v;; 5,1 of v;; 5, is out of the allowed search space, then it is
regenerated by Eq. (10), as follows:

A
*2 7N(0,Cog)
. /'j(best
V60 o
P,',G B i,G
ol Global Optimal
e
e
7
e
7
7
//
////
’ >
o X
Fig. 1 Two dimensional example of an objective function showing its contour lines and the process for
generating trial vector in scheme Eq. (9)
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v, _ Jup+05-rand - (vixG+1 — up), if Vik,G+1 > up
bkGH = Jow + 0.5 - rand - (low — VikG+1)  If Vikg+1 < low (10)

where Jow and up are the boundaries of the search space.

Pseudo code for CCDE
The pseudo code can be presented in Algorithm 2 according to the description of CCDE
in the previous subsections.

Algorithm 2. The CCDE algorithm

Input: N: the number of individuals contained by the population
MaxFEs: maximum number of functioin evalutions

Objective function, D, low, up

Output: GlobalMin, xp,

1) G=0

(2) GlobalMin=inf

/I Initialization

(3) Generate Py and M, through Eq.(1) and Eq.(5)

(4) Generate initial Cry and Coy matrix, where Cry=0 and Co,=1;
/I Selection 1

(5) Evaluate the Objective function values of each individual in P,
(6) FEs=N

(7) Store the GlobalMin

(8) While FEs< MaxFEs

/I Generation of The Crossover Matrix

9) fori=1:N

(10) if a < b, MG=Pg; else Mg=permuting(Mg) // Update the Memory Population
(11) if rand,<rand,

(12) Crvimainy =111 = permuting{1,2,3..., D}
(13) else

(14) Cr,, =1|u=randi{D}

(15) end if

(16) end for
/I Generation of The Covariance Matrix

(17) Select the 4 best individuals
Co,,, =rand - Co, + (1—rand)- cov(xbest, ;, xbest, ,...,xbest, ;)
//Generation of Trial Population

(18) Calculate the adaptive step size ; = rand, 1 71'and2“7ﬁ’
(19) if rand, < rand,

20) V,, =P, +Cr;-F-(P,—M,)
(21) else

(22) Vg, = Xy +1-N(0,Cop)

(23) end if

/I Selection I1

24) fori=1:N

(25) if fitness u; g < fitness x; g

(26) fitness x; g = fitness u; ¢

27 Peu=PeaYuic

(28) else

29)  Peu=Pgn Uxig

(30) endif

(31) end for

(32) fitness Pbest=min(fitnessPg.1)

(33) if fitnessPbest < GlibalMin

(34) xbest= Pbest

(35) GlobalMin = fitnessPbest // Store the Best Individual and its associated objective values
(36) end if

(37) FEs=FEstN

(38) end While
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CCDE has a very simple structure as indicated by Algorithm 2. Combining the crossover
matrix, covariance matrix, and M can achieve a good tradeoff between exploration and
exploitation.

Experimental study

We analyze the performance of our CCDE by conducting a set of experiments as well
as a statistical analysis of the experimental results. We use MALLBA 2013a to develop
the CCDE algorithm. Non-parametric statistical tests are used in the experimental com-
parisons because numerical distributions of results sometimes do not follow the con-
ditions of normality and homoscedasticity (Garcia et al. 2009). Therefore, our analyses
are mainly focused on the mean errors of 30 or 51 independent runs. Statistical tests
are accomplished using the KEEL software, including multi-problem Wilcoxon’s test and
Friedman’s test (Alcala et al. 2009).

We also conduct a series of comparisons with the canonical versions of DE as well as
five algorithms from CEC 2014 to clarify the competitiveness of CCDE. All experiments
are performed on a computer with 2.9 GHz Intel(R) Core(TM) i5-2310 processor and
4.0 GB of RAM in Windows XP. The set of benchmarks and the parameter settings are
described in detail.

Benchmark functions

A total of 30 benchmark functions developed for IEEE CEC 2014 (Liang et al. 2013) are
used, as well as 5 real-world engineering optimization problems selected from IEEE
CEC 2011 (Das and Suganthan 2010). The 30 benchmarks are first presented and then
the 5 real-world engineering optimization problems are expressed in the following sec-
tion. The 30 benchmarks can be divided into 4 classes:

1. Unimodal Functions: F1-F3;

2. Multimodal Functions: F4-F16;
3. Hybrid Function: F17-F22; and

4. Composition Functions: F23-F30.

Each function of the above test functions has shift data. F8 and F10 are separable func-
tions, while the rest are non-separable. Some test functions are rotated using different
rotation matrices to determine the correlation among variables. The global optima of
some test functions are shifted to avoid being at the center of the search space. Con-
trary to other test functions in previous IEEE CEC, the rotation matrix for each sub-
component is generated from standard normally distributed entries by Gram—Schmidt
orthonormalization. The variables in the hybrid functions are randomly divided into
subcomponents, and then different basic functions are used for different subcompo-
nents. A local optimum with the smallest bias value is the global optimum in the com-
position functions, and is set to the origin as a trap for each composition function
included in this benchmark suite. Table 1 shows the set of the 30 test functions, which
are described in detail in Liang et al. (2013).

In this section, the mean errors and standard deviations of the function error value
[fix) — fix')] are calculated over 30 or 51 independent runs for each test function; x is the
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Table 1 IEEE CEC2014 functions with functions’ features: unimodal (U), multimodal (M),
separable (Sep.) and non-separable, rotated (Rot.) and non-rotated, asymmetrical (Asy.)
and symmetrical

Function Name u/m Asy. Sep. Optimal
F1 Rot. high conditioned elliptic function U N N 100
F2 Rot. bent cigar function U N N 200
F3 Rot. discus function u N N 300
F4 Shif. Rot. Rosenbrock’s function M N N 400
F5 Shif. Rot. Ackley’s function M N N 500
F6 Shif. Rot. Weierstrass function M N N 600
F7 Shif. Rot. Griewank’s function M N N 700
F8 Shif. Rastrigin's function M N S 800
F9 Shif. Rot. Rastrigin’s function M N N 900
F10 Shif. Schwefel's function M N S 1000
F11 Shif. Rot. Schwefel's function M N N 1100
F12 Shif. Rot. Katsuura function M N N 1200
F13 Shif. Rot. HappyCat function M N N 1300
F14 Shif. Rot. HGBat function M N N 1400
F15 Shif. Rot. Exp. Griewank’s + Rosenbrock’s function M N N 1500
F16 Shif. Rot. Exp. Scaffer’s F6 function M N N 1600
F17 Hybrid function 1 (N = 3) M N N 1700
F18 Hybrid function 2 (N = 3) M N N 1800
F19 Hybrid function 3 (N = 4) M N N 1900
F20 Hybrid function 4 (N = 4) M N N 2000
F21 Hybrid function 5 (N = 5) M N N 2100
F22 Hybrid function 6 (N =5) M N N 2200
F23 Composition function 1 (N = 5) M A N 2300
F24 Composition function 2 (N = 3) M N N 2400
F25 Composition function 3 (N = 3) M A N 2500
F26 Composition function 4 (N = 5) M A N 2600
F27 Composition Function 5 (N = 5) M A N 2700
F28 Composition Function 6 (N = 5) M A N 2800
F29 Composition Function 7 (N = 3) M A N 2900
F30 Composition function 8 (N = 3) M A N 3000
Search range: [—100, 100] Dimension: Dim = 10 and 30

Optimal stands for global optimal value

best solution in the population when the algorithm terminates, and «’ is the global opti-
mal value. Multi-problem Wilcoxon’s test and Friedman’s test at a 0.05 significance level
are performed to test the statistical significance of the experimental results among the
compared algorithms. The parameter N in this section is set to 100.

Comparison with other DEs

CCDE is compared with four other DE variants, namely, JADE (Zhang and Sanderson
2009), SaDE (Qin et al. 2009), EPSDE (Mallipeddi et al. 2011), and CoBiDE (Wang et al.
2014). The covariance matrix used in CoBiDE is also based on CMA-ES, and its per-
formance is superior to that of CMA-ES (Wang et al. 2014). Thus, we only choose the
CoBiDE, instead of CMA-ES, as the competitor for comparison. The parameter set-

tings for the four algorithms are the same as those in the original papers. JADE adopts
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self-adaptive parameter setting with F, ., = 0.5 and CR,,;,;,; = 0.9. SaDE uses the nor-
mal distribution N (0.5, 0.3) to produce F and the normal distribution N (CR,, 0.1) to
adjust CR self-adaptively. EPSDE sets F = 0.9 and CR = 0.1. CoBiDE sets pb = 0.4 and
ps = 0.5. In this experiment, D of the 30 test functions is set to 10, and each test function
independently runs 30 times with 300,000 function evaluations (FEs) and error value
Error = 10~® as the termination criterion.

The experimental results of CCDE and four other algorithms are summarized in
Table 2. The portions in italic in Table 2 represent the best results among the algorithms
in terms of the optimization of the test functions. CCDE, JADE, SaDE, and CoBiDE
exhibit the best performance on the three unimodal functions F1-F3. However, the per-
formance of EPSDE on the three functions is not better than those of the four other
algorithms. For the simple multimodal functions F4—F16, CCDE exhibits the best per-
formance on F4-F9 and F11-F14 compared with the four other algorithms. In particu-
lar, CCDE can reach the global best value on F4 and F6-F8. CoBiDE shows the best
performance on F10 and F15 among all algorithms. EPSDE outperforms the four other
algorithms in F16. The outstanding performance of CCDE can be attributed to its pro-
posed strategies that can balance exploration and exploitation. The five algorithms can-
not find the global best values for the hybrid functions F17-F22. However, Table 2 shows
that the performance of CCDE outperforms the other algorithms on the majority of the
test functions, except F18 in which CoBiDE performs better than CCDE. The results of
the five algorithms for the composition functions F23-F30, which are the most difficult
test functions among the 30 benchmarks, are far from the global optima. Table 2 shows
that CCDE is statistically better than the other algorithms on F23-F26 and F28-F30.
CoBiDE exhibits the best performance on F27.

We also perform the multi-problem Wilcoxon’s test, which is accomplished using the
KEEL software, to check the behavior of the algorithms (Alcald et al. 2009). Tables 3 and
4 summarize the results of the Wilcoxon’s and Friedman’s tests. The portions in italic in
Tables 3 and 4 represent the best results among the algorithms in terms of the optimi-
zation of the test functions. Table 3 shows that CCDE provides higher R+ values than
R— values in all cases. Wilcoxon’s test at &« = 0.05 shows significant differences among
CCDE and the competitors. This result indicates that CCDE is significantly better than
JADE, SaDE, EPSDE, and CoBiDE on the 30 test functions at &« = 0.05.

Friedman’s test based on the KEEL software is performed to further detect the sig-
nificant difference among CCDE and the four compared algorithms (Alcala et al. 2009).
Iman-Davenport’s procedure is used as the post hoc procedure. Table 4 summarizes the
ranking results of the five algorithms obtained by Friedman’s test. CCDE ranks compa-
rable with JADE, SaDE, and CoBiDE on the unimodal functions and ranks best on the
multimodal, hybrid, and composition functions. Thus, CCDE ranks the best on the 30
benchmarks of 10 dimensions compared with JADE, SaDE, EPSDE, and CoBiDE.

Figures 2 and 3 illustrate the mean function error values for the 5 algorithms with 30
independent runs for the 24 typical benchmark functions. Figure 2 shows that CCDE
can provide better convergence trends for F1, F4-F9, and F11-F12 than the other algo-
rithms. JADE shows the best convergence trends for F2 and F3. CoBiDE presents the
best convergence trends for F10. Figure 3 shows that CCDE performs better than the
other algorithms on the convergence trends for F13—-F15, F20-F22, F25, F27, and F30.



Page 11 of 22

Li et al. SpringerPlus (2016) 5:1176

L0—351°¢F 10—3cl¢C 10—379'8 F 00+381°¢ L0+38¥'¢€ F 10+3LC€ L0+32¥'L F 10+38LC 00+3796 F L0+3L0°L [4&!

10—390% F 10—360't 10—3SCC F 10—386'% ¢0+38L'L F Lo+3/66 0+36C L Feo+3LTL 00+39Lt F 00+3€€°L LA

10—369% + 10—3C9°¢ 10—=3%9'L F 10—39¢Y L0+362°L F L0+36€°L Lo+3EL'L F 10+399'L 10—3S¢'S F 10—38£9 0¢4

10—31S°€ F 10—3c€C 10—38L'L F 10—319C 00+38L°L F 00+346'L 00+3€£'L F00+35LC 10—38€'€ F L0—3I8¥'6 614

10—3€1'8 F 10—3€9/ 10—380°C ¥ 10—3LE¢C LO+3ELC F 10+3ILSC LO+3P/'L F 10+39¢€C 10—3298 F 10+396'L 814
00+3£5°C F 00+3851 00+398G F LO+3v0'L 0+39/'L F o+381'C 0+36/4L F70+396¢C L0+3ET9F L0+36L'S AE
uonaUN) pLUGAH

L0—3€T9 F 10+329'L 10—3/9C F 00+320C 10=31ES F00+3C5°1 10—38EC F L0+3SC€E 10—3ST¥ F 00+31€C 914
10—3¢8'L F 10—3699 20—35¥6 ¥ 10—3519 10—39/CF 10—38C, 10—35¢'8 F 00+38¥'L l0—36C°¢€ F L0—36L'6 Sld
C0—3£8°C F 0316/ ¢0—3¢Ce F¢0—38L6 10—36¢'L F 10—3¥8C 10—3¢0C F 10—36¥'E ¢0—30L% F 10—39C'L vl
€0—3€1/F€0—716°8 ¢0—309'L F¢0—3¢6'S ¢0—388¢ F LO—3IL'L L0—3¥6'L F 10—3£9°€ C0—318CF L0—3EE’L €ld
€0—306°G F €0—305'1 ¢0—3lec F L0—3LEL ¢0—36¢'9 F 10—38/LC 10—38Y'€ F L0—361, L0—39¢'L F 10—3L1C Cld
20+31SL F 20+3L°1 10+3+96 F ¢0+316'L ¢0+319'L F70+380C 0+3/£€ F 20+H31L9 0+398'L F 0+3€6C e
00+3SC'L F 00+36C°2 c0—391°/ F 10—3¢5'1 o0+H3ElL F20+3/91L 0+320C F 0+360°¢ 10+3289 F L0+31¢9 0l4
00+3¢6'L F 00+36¢'C 00+3€0°L F 00+3/t€E 00+36£°€ F 00+3¢CL 00+3059F 10+3r0C 00+36£°€ F 00+39¢¥'8 64
00+3000 F 00+3000 00+3000 F 00+3000 00+3¥9°€ F 00+3rCL 00+3¢6'S F 10+385°L 10—38%'6 F 10—310Z 84
00+3000 F 00+3000 €0—300% F €0—30C¢ 10—361'L F 10—3L¥'L 10—3£5'L F 10—3LLC ¢0—3€8'¢ F c0—3€eL'€ /4
00+3000 F 00+3000 10—30¢€°€ F 10—3LE'L 10—38/L F 10—3586 00+3SS'L F 10+39L°€ 00+359'L F20—3¢0°€¢ 94
00+388°€ F 10+716°] 00+3SCC F LO0+356°L 10—3406 F L0+366'L 0—316'6 F L0+3€0C €0—309'G F ¢0+3107C SE|
0043000 ¥ 00+3000 L0+390°L F Lo+3Ele L0+3¢y'L F L0+3v9C LO+3LL L F 10+369L 00+3/8'L F00+310°L ¥4
SUOISUNY [ppOWINYY

00+3000 F 00+3000 00+300°0 F 00+3000 €0—30€C F ¥0—359L 00+3000 F 00+3000 00+3000 F 00+3000 €
00+3000 F 00+3000 00+300°0 F 00+3000 €0+3vCe F €0+3cCe 00+3000 F 00+3000 00+3000 F 00+3000 &
00+3000 ¥ 00+3000 00+3000 F 00+3000 ¥0+388°€ F ¥0+3/5°L 00+3000 F 00+3000 00+3000 F 00+3000 |
SuoOUNY [ppowIuN

ds F uesw 3a@dD ds F ueaw 3Q!god ds F uesw 3Qsd3l ds F ueaw jges as F ueaw 3avr uonouny

s34 00000 Y3!M UOISUSWIP QL Ul SUOKIUNY 33} € UO suni juspuadapul o Y6noiyy 3@D Pue 3a190D ‘Iasda ‘3aes ‘Aavr £q pauterqo s pue ueay z 3|qel



Page 12 of 22

Li et al. SpringerPlus (2016) 5:1176

A|2A1309dsa1 ‘sunJ Qg Ul PaUleIgO SSN|BA J0IS UOIIDUNS 33 JO UONBIASP plepuels pue abeiaae ay3 a3edipul,ds, Pue uesp,

10+31vt F 20+308°C L0+32/'L F 20+3991 0+36€°L F 20+3€€9 0+386'¢ F ¢0+3/98 ¢0+3STL F 20+390°S 0¢4
10+380°C F C0+356'1 10—3999 F ¢0+3ccC 90+3¢0’'L F S0+3SCY SO+HISLE F ¥0+34L'S L0+3€9C F ¢0+3€lC 6¢4
10+38€°€ F 20+3ST€ L0+3¢6'¢ F C0+3IL6E 10+3/5°S F ¢0+39Ly L0+3¥8/ F ¢0+3LSY 10+38¢°S F ¢0+388°€ 8¢4
co+3cl’l F 10+3¢8°€ C0+3LL L F20+H3SLL C0+38L'L F C0+3LYT C0+391°L F L0+36/L Y 0+3Er'L F 10+36€6 A&
€0—31// ¥ 20+300'1 203/’ F C0+300°1 20—36/°CF C0+300°1 10—369°L F ¢0+300°! 20—35/°€ ¥ 2043001 94
10+36/°L F C0+30C°| L0+361Y F ¢0+359'L C0+364CF C0+358L L0+32¢S°C F ¢0+398'L 10+395°L F ¢0+38C'L G4
00+35CC F 20+380°1 00+3€8'L F 0+360°L 10+359C F ¢0+3rC'L 10+390'L F ¢0+3.€'1 00+3/¥'/ F ¢0+30C'L IZ&]
00+3000 F C0+36C°€ 00+3000 F C0+36C°€ ¥0—38C°¢ F ¢0+36C°€ 00+3000 F C0+36C°€ 00+3000 F C0+36C°€ €cd
SUO/I2UNY UOIISOdUIOD)

ds F uesaw 3a@d>d ds F ueaw 3Qigod ds F ueaw 3Qsd3 ds F ueaw jges ds F uesw 3avr uondung

panunuo> zajqel



Li et al. SpringerPlus (2016) 5:1176 Page 13 of 22

Table 3 Results of the multiple-problem Wilcoxon’s test for JADE, SaDE, EPSDE, CoBiDE
and CCDE at a 0.05 significance level

Algorithm R+ R— p value a=0.05
CCDE vs JADE 410.0 250 3.368E—06 Yes
CCDE vs SaDE 430.0 5.0 3.726E—08 Yes
CCDE vs EPSDE 448.5 16.5 3.502E—-07 Yes
CCDE vs CoBIiDE 382.5 825 1.399E—-03 Yes

Table 4 Ranking of JADE, SaDE, EPSDE, CoBiDE and CCDE according to the statistical test
of the Friedman test

Algorithms JADE SaDE EPSDE CoBiDE CCDE
Uni. Func. 2625 2.625 4.5 2,625 2.625
Multim. Func. 3.3077 4.7692 3.3846 2.1154 1.4231
Hyb. Func. 3 46667 4.3333 1.8333 1.1667
Compos. Func. 2.625 4 4 2.875 1.5
Total 29833 43167 39 23 1.5

EPSDE shows the best convergence preference on F16, whereas CoBiDE performs better
on F18. The five algorithms show comparable convergence trends on F23.

Comparision with CEC 2014 algorithms

CCDE is compared with five algorithms from CEC 2014 in terms of the single-objective
real-parameter numerical optimization. These algorithms are all participant algorithms
in such special session. They consist of modern real-coded optimizers, hybridizing with
local search or using convergence matrix methods. Some of these algorithms follow
evolutionary computation or swarm intelligence variants. The five algorithms are con-
vergence matrix learning and search preference algorithm (CMLSP) (Chen et al. 2014);
non-uniform mapping in real-coded genetic algorithm (NRGA) (Yashesh et al. 2014);
simultaneous optimistic optimization (SOO) (Preux et al. 2014); fireworks algorithm
with DE (FWA-DE) (Yu et al. 2014); and OptBees, which is inspired by the collective
decision-making of bee colonies (Maia et al. 2014). The experimental results of the com-
pared algorithms are directly taken from (Chen et al. 2014; Yashesh et al. 2014; Preux
et al. 2014; Yu et al. 2014; Maia et al. 2014) to ensure fair comparison.

In this experiment, D of the 30 test functions is set to 30. Each test function indepen-
dently runs 51 times with 300,000 FEs and error value Error = 10~% as the termination
criterion for fair comparison. The parameter N in CCDE is set to 100.

Table 5 summarizes the experimental results among CCDE and other algorithms in
terms of mean errors and standard deviations of 51 independent runs. The portions in
italic in Table 5 represent the best results among the algorithms in terms of the optimi-
zation of the test functions. CCDE performs better for the majority of the test functions
than the five other algorithms.

Wilcoxon’s and Friedman’s tests are performed to further detect significant differences
among CCDE and the five competitors (Alcald et al. 2009). Tables 6 and 7 summarize the
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Fig. 2 Evolution of the mean function error values derived from JADE, SaDE, EPSDE, CoBiDE and CCDE versus
the number of FEs from F1to F12 with D= 10

results of these tests. The portions in italic in Tables 6 and 7 represent the best results
among the algorithms in terms of the optimization of the test functions.

The R+ values in Table 6 show that CCDE has better statistical performance than
CMLSP, NRGA, SOO, FWA-DE, and OptBees. Wilcoxon’s test at & = 0.05 show sig-
nificant differences among CCDE and the competitors, except for CMLSP. Table 7 shows
that CCDE and CMLSP rank the best for the unimodal functions with 30 dimension
variables. CCDE ranks the best for the multimodal, hybrid, and composition functions.
Thus, CCDE ranks first on the 30 test functions.

Figure 4 illustrates the trace progress for typical test functions with 30 dimension
variables.
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Fig. 3 Evolution of the mean function error values derived from JADE, SaDE, EPSDE, CoBiDE and CCDE versus
the number of FEs on F13-F16, F18, F20-F23, F25, F27 and F30 with D = 10

Real-world application problems

In addition to the 30 benchmarks in the previous sections, 5 real-world engineering
optimization problems from IEEE CEC2011 are selected to evaluate the performance
of CCDE in this subsection. These five real-world engineering optimization problems
(denoted as RP;—RP;) are the parameter estimation for frequency-modulated sound
waves (TO1 in CEC 2011), Tersoff Potential Function Minimization (T06), Spread Spec-
trum Radar Polly Phase Code Design (T07), Circular Antenna Array Design Problem
(T10), Static Economic Load Dispatch Problem (T11.4), and Spacecraft Trajectory
Optimization Problem (T13) (Das and Suganthan 2010). These problems have diverse
complex characteristics and are very difficult to solve. Detailed descriptions of the five
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Table 6 Results of the multiple-problem Wilcoxon'’s test for CMLSP, NRGA, SOO, FWA-DE,
OptBees and CCDE at a 0.05 significance level

Algorithm R+ R— p value a=0.05
CCDE vs CMLSP 296.0 169.0 1.9808E—01 No
CCDE vs NRGA 432.0 3.0 1.8626E—08 Yes
CCDE vs SOO 383.0 520 1.3914E—-04 Yes
CCDE vs FWA-DE 444.0 210 8.326E—07 Yes
CCDE vs OptBees 4585 6.5 3.0739E-08 Yes

Table 7 Ranking of CMLSP, NRGA, SOO, FWA-DE, OptBees and CCDE according to the sta-
tistical test of the Friedman test at a 0.05 significance level

Algorithms CMLSP NRGA SO0 FWA-DE OptBees CCDE
Uni. Func. 2.375 4.625 5375 3 3.25 2.375

Multim. Func. 2.8077 4.5 4.0769 3.6538 4.1923 1.7692
Hyb. Func. 2.1667 4.8333 6 3 3.6667 1.3333
Compos. Func. 23125 53125 24375 3.5625 5.0625 23125
Total 24667 4.8333 4.2167 34167 42167 1.85

problems can be found in (Das and Suganthan 2010). The parameters of CCDE and other
compared DEs are the same with those for the 30 benchmarks. A total of 30 independent
runs are performed for each problem, with 150,000 FEs as the termination criterion.

Table 8 summarizes the means and standard deviations of the objective function val-
ues over 30 independent runs for each problem. Wilcoxon’s and Friedman’s tests at a
0.05 significance level are implemented on the experimental results using KEEL software
to draw statistically sound conclusions (Alcald et al. 2009). Table 9 shows that CCDE has
higher R+ values than the other algorithms in all problems. Moreover, p values are less
than 0.5 in all cases, except for CCDE versus CoBiDE. In addition, CCDE has the best
ranking according to Table 10. The portions in italic in Tables 8, 9 and 10 represent the
best results among the algorithms in terms of the optimization of the test functions.

Therefore, these experimental results verify the potential of CCDE in real-world
applications.

Conclusions

The number of works in evolutionary computation involving the solution of difficult
optimization problems has been increasing in recent years. DE is an efficient and robust
EA and is a hotspot in this field. CCDE, a DE variant based on strategies guided by the
crossover and covariance matrices, is proposed in this paper to improve the perfor-
mance of DE and simplify its structure.

In CCDE, the classical crossover operation and its associated CR in DE is simplified
by the crossover matrix, which is a binary integer-valued (0, 1) matrix of size N x D
computed by the random generation equation. Improvement is performed to enhance
the exploration capability by increasing the diversity of the population. The covariance
matrix generated by the A best individuals is used to fully utilize the information for the
best individuals and randomly search the region around the best individual by Gaussian
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Fig. 4 Evolution of the mean function error values derived from CMLSP, NRGA, SOO, FWA-DE, OptBees and
CCDE versus the number of FEs on 12 test functions with D = 30 selected from IEEE CEC2014

distribution. Accordingly, the exploitation capability is improved. In addition, M is intro-
duced to store the previous generation and control the search direction. As a result, the
diversity of the population is enhanced. CCDE has been tested on 30 benchmark test
functions developed for IEEE CEC 2014 and 5 complex real-world engineering optimi-
zation problems selected from IEEE CEC 2011. The experimental and statistical results
suggest that the performance of CCDE is better than those of the four other DE variants
and five algorithms from CEC 2014. CCDE shows high-quality solution and robustness

for the tested benchmark functions and real-world engineering problems.

Future studies can extend CCDE by applying the algorithm to various classes of prob-
lems, such as multi-objective optimization and constrained optimization problems. The
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Table 9 Results of the multiple-problem Wilcoxon’s test for JADE, SaDE, EPSDE, CoBiDE
and CCDE at a 0.05 significance level

Algorithm R+ R— p value a=0.05
CCDE vs JADE 15.0 0.0 3.0971E-02 Yes
CCDE vs SaDE 10.0 0.0 4.4610E—-02 Yes
CCDE vs EPSDE 15.0 0.0 3.0971E-02 Yes
CCDE vs CoBIiDE 8.0 20 2.0124E-02 No

Table 10 Ranking of JADE, SaDE, EPSDE, CoBiDE and CCDE according to the statistical test
of the Friedman test at a 0.05 significance level

Algorithms Ranking
JADE 44
SaDE 35
EPSDE 38
CoBIiDE 19
CCDE 14

method of CCDE and overall comparison with other evolution algorithms can also be
comprehensively studied.
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