
Numerical solution of the 
one‑dimensional fractional convection diffusion 
equations based on Chebyshev operational 
matrix
Jiaquan Xie*, Qingxue Huang and Xia Yang

Background
Convection diffusion equations are regarded as a kind of basic equations of motion, 
which have been applied in describing water flow movement (Hu et al. 2016; Colla et al. 
2015; Su 2014), material transport and diffusion (Liu et al. 2016; Calo et al. 2015; Karal-
ashvili et  al. 2015; Fang and Deng 2014). Convection diffusion equations are widely 
used in water conservancy project (Hu et  al. 2016; Su 2014), environmental engineer-
ing and aviation (Hernandez et al. 1995), Marine (Farahani et al. 2015), chemical (Colla 
et al. 2015; Diehl 2015), metallurgy (Zaib and Shafile 2014), so the study of numerical 
solutions of convection diffusion equations has important theoretical and practical 
significance.

There are many numerical methods for solving convection diffusion problems, such as 
finite difference methods (Kaya 2015), finite element methods (He et al. 2015; Mudun-
uru and Nakshatrala 2016; Wu et al. 2013), wavelet methods (Zhou and Xu 2014, 2016; 
Chen et al. 2010; EI-Gamel 2006), polynomials methods (Li et al. 2016), iterative meth-
ods (Das and Mehrmann 2015; Das 2015; Das and Natesan 2014). Operational matrix 
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methods are new on this area which have made great success presently. Especially in 
recent 20  years, the articles about operational matrix methods are springing up. In 
Ref. Abbasbandy et al. (2015), the authors proposed the operational matrix method of 
fractional-order Legendre functions for solving time-fractional convection–diffusion 
equations.

In the following we mention some real-world applications of convection diffusion 
equations. In this paper, we take an example of a diffusion kinetic model, the flow rate 
is u = u(x, t), dye concentration is c(x, t) and diffusion flux of dyes is q = q(x, t). We also 
set up a variety of biological, chemical and other factors to control the production rate of 
dye (Production of unit volume per unit time) Fc. In the flow field, a system (its volume 
can be arbitrary), as shown in Fig. 1, is obtained. The space occupied by the system dur-
ing the flow of V(t) is controlled at the time t.

According to the model, and the related initial-boundary conditions, we obtain the 
one-dimensional convection diffusion equations (Chen and Jin (2007)).

In this paper, a numerical approach based on Chebyshev operational matrix is pro-
posed for solving one-dimensional fractional convection diffusion equations with vari-
able coefficients of the following form:

the parameter ν refers to the fractional order of spatial derivative with 1 < ν≤2. In the 
proposed method, the operational matrices of fractional-order are employed to obtain 
the numerical solutions of Eq. (2).
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Fig. 1  The schematic diagram of dye diffusion in the system
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The paper is organized as follows: In “Preliminaries and notations” section, some basic 
definitions and mathematical preliminaries of fractional calculus are introduced. The 
fractional differential operational matrix is given in “The fractional derivative operational 
matrix P(ν)” section. We mainly illustrate the proposed method in “Description of the 
proposed method” section. In “Error analysis” section, the convergence of the proposed 
approach is proved. In “Numerical simulation” section, the proposed approach is applied 
to test several numerical examples. Finally, a conclusion is given in “Conclusion” section.

Preliminaries and notations
The basic definitions of fractional integral and differential operator

Definition 1  The Riemann–Liouville fractional integral operator Iν of order ν is 
defined as

Definition 2  The Riemann–Liouville fractional differential operator Dν of order ν is 
defined as

Definition 3  The Caputo fractional differential operator is defined as

For the Caputo derivative, we have

Properties of the Chebyshev polynomials

The well-known Chebyshev polynomials are defined on the interval (−1, 1) and can be 
determined with the aid of the following recurrence formula (Doha et al. 2011):

where T0(t) = 1 and T1(t) = t. In order to use these polynomials on the interval x ∈ (0, 1), 
we define the Chebyshev polynomials by introducing the change of variable t = 2x − 1. 
Let the Chebyshev polynomials Ti(t) = 2x − 1 are denoted by Ti(x), then Ti(x) can be 
obtained as follows:

where T0(x) = 1 and T1(x) = 2x − 1. The analytic form of the Chebyshev polynomials 
Ti(x) of degree i is given by

(3)
(

I
ν
f
)

(t) =

{

1

Γ (ν)

∫

t

0
(t − τ )ν−1
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




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





1
Γ (m−ν)

�

t

0

f (m)(τ )

(t−τ)ν−m+1 dτ , m− 1 ≤ ν < m;

d
m
f (t)

dtm
, ν = m.

(6)D
ν
t
γ
=







0, for γ ∈ N0 and γ < ⌈ν⌉;

Γ (γ+1)

Γ (γ+1−ν)
tγ−ν , for γ ∈ N0 and γ ≥ ⌈ν⌉ or γ /∈ N0 and γ > ⌊ν⌋.

Ti+1(t) = 2tTi(t)− Ti−1(t), i = 1, 2, . . .

(7)Ti+1(x) = 2(2x − 1)Ti(x)− Ti−1(x), i = 1, 2, . . .
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where Ti(0) = (−1)i and Ti(1) = 1.
The orthogonally condition is

where the weight function w(x) = 1
√

x−x2
 and hk =

{

bk
2
π , k = j,

0, k �= j,
b0 = 2, bk = 1, k ≥ 1.

Function approximation

Suppose u(x) ∈ L2(0, 1), it may be expressed in terms of the Chebyshev polynomials as

where the coefficients ci is given by

If we consider truncated series in Eq. (10), then we have:

where

Then the derivative of vector Φ can be expressed by

where P(1) is the (M + 1) × (M + 1) operational matrix of derivative given by

For example for even M, we have

(8)Ti(x) = i

i
∑

k=0

(−1)i−k (i + k − 1)!22k

(i − k)!(2k)!
xk ,

(9)

∫ 1

0

Tj(x)Tk(x)w(x)dx = hk ,

(10)u(x) =

∞
∑

i=0

ciTi(x),

(11)ci =
1

hi

∫ 1

0

u(x)Ti(x)w(x)dx, i = 0, 1, 2, . . .

(12)u(x) ≃ uM(x) =

M
∑

i=0

ciTi(x) = CT
Φ(x),

(13)C = [c0, c1, . . . , cM]
T
; Φ(x) = [T0(x),T1(x), . . . ,TM(x)]T .

(14)
dΦ(x)

dx
= P(1)

Φ(x),

(15)P(1)
=

�

pij
�

=







4i
bj
, j = 0, 1, . . . , i = j + k ,

�

k = 1, 3, 5, . . . ,M, ifM is odd,

k = 1, 3, 5, . . . ,M − 1, ifM is even,

0, otherwise

P(1)
= 2×
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
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Based on the function approximation theory which the solution function is expressed 
as orthogonal polynomials. For arbitrary function u(x, t) ∈ L2((0, 1)× (0, 1)), it can be 
expanded as the following way

where

If we consider truncated series in Eq. (16), then we have:

where

In this paper, we use the Tau method (Bhrawy et al. 2011; Dehghan and Saadatmandi 
2006) to compute the coefficients uij.

The fractional derivative operational matrix P(ν)

The main objective of this section is to prove the following theorem for the fractional 
derivatives of the Chebyshev polynomials.

Lemma 1  Let Ti(x) be a Chebyshev polynomial; then (Doha et al. 2011)

Proof  This Lemma can be easily proved by making use of relation (5) and (7).

Theorem  1  Let Φ(x) be the Chebyshev vector defined in Eq.  (12) and suppose ν > 0; 
then

where P(ν)is the (M + 1) ×  (M + 1) differential operational matrix of order ν in the 
Caputo sense and it is defined as follows:

(16)u(x, t) =

∞
∑

i=0

∞
∑

j=0

uijTi(x)Tj(t),

(17)uij =
1

hihj

∫ 1

0

∫ 1

0

u(x, t)Ti(x)Tj(t)w(x)w(t)dxdt, i, j = 0, 1, 2, . . .

(18)u(x, t) ≈

M
∑

i=0

N
∑

j=0

uijTi(x)Tj(t) = Φ(x)TUΦ(t),

(19)

Φ(x) = [T0(x),T1(x), . . . ,TM(x)]T ;Φ(t) = [T0(t),T1(t), . . . ,TN (t)]
T
;U =

{

uij
}M,N

i,j=0
.

(20)DνTi(x) = 0, i = 0, 1, 2, . . . , ⌈ν⌉ − 1, ν > 0.

(21)Dν
Φ(x) ≃ P(ν)

Φ(x),
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where

Proof  The analytical form of the Chebyshev polynomials Ti(x) of degree i is given by 
Eq. (8), using Eqs. (6) and (8) we have

Now, approximate xk−ν by (M + 1) terms of the Chebyshev series, we have

where ckj is given from Eq. (11) with u(x) = xk−ν, and

Employing Eqs. (22)–(24) we get

where Sν
(

i, j
)

=

∑i
k=⌈ν⌉ θijk, and
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=





























0 0 0 · · · 0

.

.

.
.
.
.

.

.

. · · ·

.

.

.

0 0 0 · · · 0

Sν(⌈ν⌉, 0) Sν(⌈ν⌉, 1) Sν(⌈ν⌉, 2) · · · Sν(⌈ν⌉,M)

.

.

.
.
.
.

.

.

. · · ·

.

.

.

Sν(i, 0) Sν(i, 1) Sν(i, 2) · · · Sν(i,M)

.

.

.
.
.
.

.

.
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Sν
(

i, j
)

=

i
∑

k=⌈ν⌉

(−1)i−k2i(i + k − 1)!Γ

(

k − ν +
1

2

)

bjΓ
(

k +
1
2

)

(i − k)!Γ
(

k − ν − j + 1
)

Γ
(

k − ν + j + 1
)

.

i = ⌈ν⌉, ⌈ν⌉ + 1, . . . ,M.

(22)

DνTi(x) = i

i
∑

k=0

(−1)i−k (i + k − 1)!22k

(i − k)!(2k)!
Dνxk

= i

i
∑

k=0

(−1)i−k (i + k − 1)!22kk!

(i − k)!(2k)!Γ (k + ν + 1)
xk−ν

, i = ⌈ν⌉, ⌈ν⌉ + 1, . . . ,M.

(23)xk−ν
=
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∑
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ckjTj(x),

(24)ckj =
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�
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√
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, j = 1, 2, . . .M.

(25)DνTi(x) =
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∑
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Sν
(

i, j
)

Tj(x), i = ⌈ν⌉, ⌈ν⌉ + 1, . . .M.
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After some lengthy manipulation, θi,j,k may be put in the form

where b0 = 2, bj = 1, j ≥ 1.
Accordingly, Eq. (21) can be written in a vector form as follows:

Also, according to Lemma 1, we can write

A combination of Eqs. (27) and (28) leads to the desired result.

Description of the proposed method
In the section, we will use the Chebyshev polynomials operational matrix of fractional 
derivative to obtain the numerical solutions of one-dimensional fractional convection 
diffusion equations with variable coefficients.

Here, for simplicity we consider the convection diffusion equations of the following 
form:

where ∂ν
/

∂xν denote fractional derivatives in the Caputo’s sense, with the initial-bound-
ary conditions

In order to use the Chebyshev polynomials, we first approximate

where U =

[

uij
]

(M+1)×(N+1)
 is an unknown matrix.

The following is the product of two vectors based on Chebyshev operational matrix 
method. Let (Bhrawy et al. 2015)

θijk =



































i(−1)i−k (i+k−1)!22k k!Γ
�

k−ν+ 1
2

�

(i−k)!(2k)!
√
π(Γ (k−ν+1))

2 , j = 0,

(−1)i−k ij(i+k−1)!22k+1k!

(i−k)!(2k)!Γ (k−ν+1)
√
π

×

j
�

r=0

(−1)j−r(j+r−1)!22rΓ
�

k+r−ν+ 1
2

�

(j−r)!(2r)!Γ (k+r−ν+1)
, j = 1, 2, . . .M.

(26)θijk =

(−1)i−k2i(i + k − 1)!Γ

(

k − ν +
1
2

)

bjΓ
(

k +
1
2

)

(i − k)!Γ
(

k − ν − j + 1
)

Γ
(

k − ν + j + 1
)

, j = 0, 1, . . .M.

(27)DνTi(x) ≃ [Sν(i, 0), Sν(i, 1), Sν(i, 2), . . . Sν(i,M)]Φ(x), i = ⌈ν⌉, ⌈ν⌉ + 1, . . . ,M.

(28)DνTi(x) ≃ [0, 0, 0, . . . , 0]Φ(x), i = 0, 1, . . . , ⌈ν⌉ − 1.

(29)
∂u

∂t
+ a(x)

∂u

∂x
= b(x)

∂νu

∂xν
+ f (x, t), 1 < ν ≤ 2.

(30)
u(x, 0) = h1(x), 0 < x < 1,

u(0, t) = g1(x), u(1, t) = g2(t), t > 0.

(31)u(x, t) ≈ Φ
T(x)UΦ(t),

(32)Φ(x)ΦT (x)C ≈ Q̃
T
Φ(x),
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where Q̃ is the (M + 1) × (M + 1) operational matrix with the element q̃kj. In virtue of 
Eq. (12) and above relation, enable us to write

Multiplying both sides of the above equation by Tk(x)ω(x), k = 0, 1, . . . ,M and inte-
grating the result from 0 to 1, we obtain

Equation (34) yields

Now, using Eqs. (12), (14), (21) and (32), we obtain

and

Also, using Eq. (18), the function g(x, t) in Eq. (29) can be approximated as

where F =

[

fij
]

 is a (M +  1) ×  (N +  1) known matrix. Substituting Eqs.  (31)–(39) in 
Eq. (29) yields

The entries of vector Φ(x) and Φ(t) in Eq. (40) are independent, so we get

Here, we choose MN − N equations of Eq. (41) as

We can also approximate the function h1(x), g1(t) and g2(t) as

(33)
M
∑

i=0

ciTi(x)Tj(x) =

M
∑

i=0

q̃ijTi(x), j = 0, 1, 2, . . . ,M.

(34)
M
∑

i=0

ci

∫ 1

0

Ti(x)Tj(x)Tk(x)ω(x)dx = q̃kj

∫ 1

0

Tk(x)Tk(x)ω(x)dx

(35)q̃kj =
1

hk

M
∑

i=0

(

qi

∫ 1

0

Ti(x)Tj(x)Tk(x)ω(x)

)

, k , j = 0, 1, . . . ,M.

(36)
∂u

∂t
≈ Φ

T (x)UP(1)
Φ(t),

(37)a(x)
∂u

∂x
≈ AT

Φ(x)ΦT (x)
(

P(1)
)T

UΦ(t) ≈ Φ
T (x)Ã

T
(

P(1)
)T

UΦ(t),

(38)b(x)
∂νu

∂xν
≈ BT

Φ(x)ΦT (x)
(

Pv
)T

UΦ(t) ≈ Φ
T (x)B̃

T (
Pv

)T
UΦ(t),

(39)f (x, t) ≈ Φ
T (x)FΦ(t),

(40)

Φ
T (x)UP(1)

Φ(t)+Φ
T (x)Ã

T
(

P(1)
)T

UΦ(t) ≈ Φ
T (x)B̃

T (
Pv

)T
UΦ(t)+Φ

T (x)GΦ(t)

(41)H = UP(1)
+ Ã

T
(

P(1)
)T

U − B̃
T (

Pv
)T

U − F ≈ 0

(42)Hij ≈ 0,
(

i = 2, 3, . . . ,M, j = 1, 2, . . . ,N
)
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where H1, G1, G2 are known vectors.
Applying Eqs. (31) and (44) in the boundary conditions Eq. (30), we get

The entries of vector Φ(x) and Φ(t) are independent, so from Eq. (44) we can obtain

By choosing the (M  −  1) equations of Λ1 = 0 and (N  +  1) equations of 
Λj = 0 (j = 2, 3), we get 2 N + M+1 equations, i.e.

Equation  (42) together with Eq.  (46) gives (M +  1)(N +  1) equations, which can be 
solved for uij, (i = 0, 1, …, M, j = 0, 1, …, N). So the unknown function u(x, t) can be find 
out.

Error analysis
In real problems, we often tend to solve some equations with unknown exact solutions. 
Hence, when we apply our method to these kinds of problems, it is necessary to intro-
duce a process for estimating the error function (Chen et al. 2014).

We consider en(x, t) = u(x, t) − umn(x, t) as the error function of the approximate solu-
tion umn(x, t) for u(x, t), where u(x, t) is the exact solution of Eq. (2)

Therefore, un(x, t) satisfies the following problem

The perturbation term Rmn(x, t) can be obtained by substituting the estimated solution 
umn(x, t) into the equations:

Subtracting Eq. (47) from Eq. (2), we get the following equations:

Obviously the above equation is one-dimensional fractional convection diffusion 
equation in which the error function emn(x, t), is the unknown function. We can easily 
apply our method to the above equation to find an approximation of the error function 
e′mn(x, t).

(43)h1(x) ≈ Φ
T (x)H1, g1(t) ≈ GT

1 Φ(t), g2(t) ≈ GT
2 Φ(t)

(44)
Φ

T (x)UΦ(0) ≈ Φ
T (x)H1,

Φ
T (0)UΦ(t) ≈ GT

1 Φ(t),ΦT (1)UΦ(t) ≈ GT
2 Φ(t),

(45)Λ1 = UΦ(0)−H1 ≈ 0, Λ2 = Φ
T (0)U −GT

1 ≈ 0, Λ3 = Φ
T (1)U − GT

2 ≈ 0,

(46)
Λji ≈ 0, j = 1 i = 1, . . . ,M − 1.

Λji ≈ 0, j = 2, 3, i = 0, 1, . . . ,N .

(47)
∂umn(x, t)

∂t
+ a(x)

∂umn(x, t)

∂x
= b(x)

∂νumn(x, t)

∂xν
+ f (x, t)+ Rmn(x, t)

(48)Rmn(x, t) =
∂umn(x, t)

∂t
+ a(x)

∂umn(x, t)

∂x
− b(x)

∂νumn(x, t)

∂xν
− f (x, t)

(49)
∂emn(x, t)

∂t
+ a(x)

∂emn(x, t)

∂x
− b(x)

∂νemn(x, t)

∂xν
= −Rmn(x, t)
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Numerical simulation
In this section, we apply the proposed algorithm in the previous section to obtain 
numerical solutions of some convection diffusion equations with variable coefficients.

Example 1  Consider the two-dimensional fractional convection diffusion equations 
with homogeneous initial-boundary conditions

where f (x, t) = x(x − 1)(2t − 1)+ 2t(t − 1)(2x − 1)− 4
√
xt(t − 1)

/√
π , and the ini-

tial-boundary conditions:

The exact solution of this problem is u(x, t) = xt(x − 1)(t − 1). The graphs of numeri-
cal solution for M = N = 4 is shown in Fig. 2. Absolute error between the numerical and 
analytical solutions is shown in Fig. 3. The graphs of analytical and approximate solu-
tions for some nodes in (0, 1) × (0, 1) are presented in Fig. 4. Absolute error between the 
numerical and analytical solutions are also shown at different times in Fig. 5.

Figures  2 and 4 show that the numerical solutions are very close to the analytical 
solutions. Figures  3 and 5 show that the proposed algorithm has a high convergence 
precision.

Example 2  Consider the fractional convection diffusion equations with variable 
coefficients

with the initial-boundary conditions:

(50)
∂u(x, t)

∂t
+ 2

∂u(x, t)

∂x
=

∂1.5u(x, t)

∂x1.5
+ f (x, t) 0 < x < 1, t > 0

u(x, 0) = 0,

u(0, t) = u(1, t) = 0, t > 0.

(51)
∂u

∂t
+ a(x)

∂u

∂x
= b(x)

∂2u

∂x2
+ f (x, t); 0 < x < 1, t > 0

Fig. 2  Approximate solution of Example 1
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Fig. 3  Absolute error of Example 1

Fig. 4  Numerical and exact solution in different values of t for Example 1

Fig. 5  Absolute error in different values of t for Example 1
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where a(x) = x
3
, b(x) = x2

6
; f (x, t) = x3 cosh(t). The exact solution of this problem is 

u(x, t) = x3 sinh(t). The graph of the numerical solution for M = N=7 is shown in Fig. 6. 
Absolute error between the numerical and analytical solutions is shown in Fig. 7. The 
graphs of analytical and numerical solution for different M and N in some nodes are 
shown in Fig. 8. Absolute error between the numerical and analytical solution are also 
shown at different times in Fig. 9.

From Figs. 6 and 8, we can conclude that the numerical solutions converge to the exact 
solutions very well. Figures  7 and 9 show that the proposed algorithm can get a high 

u(x, 0) = 0,

u(0, t) = 0,u(1, t) = sinh(t), t > 0

Fig. 6  Approximate solution of Example 2

Fig. 7  Absolute error of Example 2
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convergence precision for one-dimensional convection diffusion equations with variable 
coefficients. Table 1 and Fig. 11 show that the convergence and accuracy of the proposed 
algorithm is very good, with M and N increase. Moreover, a small M and N can achieve 
high precision.

Fig. 8  Numerical and exact solution in different values of t for Example 2

Fig. 9  Absolute error in different values of t for Example 2

Table 1  Absolute error between approximate and exact solutions at t = 0.3 for Example 2

x Exact solution M = N = 3 M = N = 5 M = N = 7

0.1 0.0003 1.63e−005 3.06e−006 2.68e−006

0.2 0.0024 4.85e−005 2.08e−006 1.42e−006

0.3 0.0082 5.24e−005 2.60e−007 2.06e−006

0.4 0.0195 3.67e−005 9.20e−007 4.50e−007

0.5 0.0381 1.04e−005 9.70e−007 6.90e−007

0.6 0.0658 1.76e−005 1.10e−007 6.00e−007

0.7 0.1045 3.85e−005 1.10e−006 7.00e−008

0.8 0.1559 4.33e−005 1.98e−006 3.90e−007

0.9 0.2220 2.33e−005 2.14e−006 1.84e−006
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Examples 2 and 3 show that the absolute error also can reaches to 10−6 for general 
one-dimensional fractional convection diffusion equations with variable coefficients. 
The two examples show that the proposed approach is very feasible and effective in solv-
ing fractional convection diffusion equations under real backgrounds.

Example 3  Consider the convection diffusion equations with variable coefficients

where a(x) = Γ (2.2)
6

x2.8, b(x) = x2

3
; with g(x, t) = −x3e−t and the boundary condition:

The exact solution of this problem for α = 1.8 is u(x, t) = x3e−t . The graphs of com-
parison between numerical and analytical solution for M = N = 6 in some values of t are 
shown in Fig. 10. The graphs of absolute error for different M and N in some values of t 
are also shown in Fig. 11.

Example 4  Consider the convection diffusion Eq.  (52), with a(x) = x2

6
, b(x) = x

3
 

g(x, t) = −x3e−t. The exact solution of this problem when α = 2 is u(x, t) = x3e−t. The 
values of exact solution (α = 2) and approximate solution for some different values of α 
and some nodes (x, t) in (0, 1) × (0, 1), when M = N = 3 are shown in Table 2.

By comparing the data in Table  2, we can see the numerical solutions agree with 
the analytical solution (α = 2) well with the fractional order gradually approximate to 
the order of α =  2. The example is introduced to verify the stability of the proposed 
algorithm.

(52)b(x)
∂u

∂x
+

∂u

∂t
= a(x)

∂αu

∂xα
+ g(x, t); 0 < x < 1, t > 0

(53)
u(x, 0) = x3

u(0, t) = 0, u(1, t) = e−t
, t > 0.

Fig. 10  Comparison between numerical and analytical solution for Example 3
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Conclusion
Here a new operational method to approximate the numerical solution of one-dimen-
sional fractional convection diffusion equations have been introduced. To this end, the 
new operational matrix of fractional-order differentiation is obtained. It appears that 
using Chebyshev operational matrix algorithm will give more accurate solutions than 
other existing methods. The approach is computationally efficient and the algorithm can 
be implemented easily on a computer. The advantage of the methods is that only small 
size operational matrix is required to provide the solutions at high accuracy. Numeri-
cal examples are given to show that the proposed algorithm is robust, efficient and 
applicable.
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Fig. 11  Absolute error for different M and N in some times for Example 3

Table 2  Absolute error for different fractional order

(x, t) α = 2 α = 1.95 α = 1.9 α = 1.85 α = 1.8

(0.2,0.2) 6.31e−05 0.0011 0.0025 0.0044 0.0066

(0.4,0.4) 7.45e−05 0.0006 0.0010 0.0011 0.0010

(0.6,0.6) 1.64e−04 0.0034 0.0069 0.0109 0.0154

(0.8,0.8) 5.81e−05 0.0040 0.0085 0.0140 0.0205
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