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Background
Parallel processing (Konstantopoulos 2015) has been applied to many computation 
demanding applications, especially a variety of large-scale scientific and engineering 
applications (Feitelson et al. 1997). In general, parallelism inherent in applications can 
be broadly divided into two types: data parallelism and task parallelism. For applications 
with data parallelism, usually a single program is executed on several processors simul-
taneously and each processor is responsible for processing a specific portion of data. 
Many tools and programming libraries have been developed to aid writing parallel pro-
grams with data parallelism, such as MPI (Quinn 2008), OpenMP (Chapman and Jost 
2007), and OpenCL (Munshi et al. 2011). The computational structure of an application 
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with task parallelism usually can be represented by a Directed-Acyclic-Graph (DAG) 
(Topcuoglu et  al. 2002; Ramaswamy et  al. 1997) based task dependency graph, com-
monly called a workflow, and looks like Fig. 1. Each node represents a task which usually 
executes a specific program. The number next to each node indicates the computation 
workload of the task. Based on the computation workload and processor speed, the 
required execution time of a task on a processor can be derived. The edges represent 
the dependence between tasks and the number next to an edge means the amount of 
data to transfer between two tasks. The required data transmission time depends on the 
amount of data and the communication bandwidth between the processors running the 
two tasks. A scheduler has to schedule and allocate each task according to the depend-
ence specified in the workflow. Scheduling is an important and challenging research 
field (Severino et al. 2014; Amirghasemi and Zamani 2014), and scheduling such kind 
of workflows on parallel systems has long been known to be a NP-complete problem 
(Pinedo 2008). Therefore, many heuristic methods have been proposed to produce effi-
cient schedules within a reasonable time period (Topcuoglu et  al. 2002; Ramaswamy 
et al. 1997; Radulescu et al. 2001; Radulescu and van Gemund 2001; Bansal et al. 2006; 
N’Takṕe et al. 2007; Yu and Shi 2009).

As applications become even more complex and computation demanding, recently 
many studies indicate that exploiting both task and data parallelism can be a promising 
approach to getting better efficacy compared with either pure task parallelism or pure 
data parallelism models (Hsu et al. 2011). The computational structure exploiting both 
task and data parallelism is sometimes called a mixed-parallel model (N’Takṕe et  al. 
2007), which means that each node in Fig.  1 can itself be a parallel program exploit-
ing data parallelism (Feitelson et al. 1997). Scheduling mixed-parallel workflows is more 
complicated than dealing with simple task-parallel workflows since each task might 
require more than one processor for execution, and therefore the resource fragmenta-
tion issue in scheduling data-parallel jobs also has to be considered for producing effi-
cient schedules (Hsu et al. 2011).

There is a particular class of mixed-parallel workflows where each data-parallel task 
in a workflow is moldable (Feitelson et al. 1997). A moldable job is a kind of data-par-
allel jobs which can be executed with an arbitrary number of processors depending on 
resource availability (Feitelson et  al. 1997). Such moldable jobs in the mixed-parallel 

Fig. 1 Task parallelism represented by a workflow
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workflows are called M-task in the literature (Radulescu et al. 2001; Radulescu and van 
Gemund 2001). Scheduling mixed-parallel workflows of M-tasks is even more challeng-
ing because it usually involves two different kinds of activities, allocation and mapping, 
where the allocation activities are not needed in scheduling other types of workflows. 
The allocation activities are for determining an appropriate amount of processors to be 
allocated for each M-task. The mapping activities regards mapping each M-task onto 
the processors in a parallel system to form a temporal and spatial schedule of the entire 
mixed-parallel workflow.

This paper aims at developing an effective processor allocation approach for M-tasks 
in order to improve the overall execution performance of mixed-parallel workflows. In 
general, the goal of processor allocation for M-tasks is concerned about critical path 
reduction and allocation fragmentation avoidance. Most of previous approaches adjust 
the allocation of each M-task in a monotonically increasing manner until a predefined 
scheduling criterion is reached in the iterative process. In this paper, we propose an Iter-
ative Allocation Expanding and Shrinking (IAES) approach to dealing with the above 
two concerns. IAES has two distinct features compared to existing methods. The first 
one is that IAES allows the allocation of an M-task to shrink during the iterative pro-
cedure, leading to a more flexible and effective processor allocation process. Secondly, 
IAES adopts a more accurate mechanism based on the temporarily scheduled Earli-
est-Start-Time (EST) and Earliest-Finish-Time (EFT) of each M-task to avoid possible 
processor allocation fragmentation. Based on these two features, IAES has potential to 
outperform existing methods. The proposed IAES approach has been evaluated with a 
series of simulation experiments using both workflow structures of real world applica-
tions and synthetic workflows generated by the widely used approach in (Topcuoglu 
et al. 2002). The performance results demonstrate that IAES outperforms existing meth-
ods in most situations in terms of average makespan and average SLR.

The remainder of this paper is organized as follows. Section two discusses “Related 
work” on workflow scheduling, including task-parallel and mixed-parallel workflows. 
Section “Processor allocation for M-tasks in mixed-parallel workflows” presents our 
IAES approach and illustrates how it could outperform existing methods. Section “Per-
formance evaluation and discussion” presents the experimental results and discussions. 
Section “Conclusions and future work” concludes the paper.

Related work
Most previous research works on workflow scheduling deal with task-parallel work-
flows, where each task in a workflow is a serial job requiring only one processor for exe-
cution. The taxonomy proposed in (Yu et al. 2010) classifies such workflow scheduling 
algorithms into two groups: heuristics-based and meta-heuristics-based, and further, 
heuristics-based scheduling algorithms fall into several categories, including (1) imme-
diate task scheduling, (2) list-based scheduling, (3) cluster-based scheduling, and (4) 
duplication-based scheduling.

Immediate task scheduling is the simplest heuristic for workflow applications. It 
makes schedule decisions based on the availability of tasks only. One typical exam-
ple is the Myopic algorithm (Sakellariou et  al. 2005), which has been implemented in 
some Grid systems such as Condor DAGMan (Tannenbaum et  al. 2002). A list-based 
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scheduling algorithm comprises two phases: the task prioritizing phase and the resource 
selection phase. The task prioritizing phase sets the priority of each task and generates a 
scheduling list by sorting the tasks according to their priorities. Then, the resource selec-
tion phase picks tasks from the list in order and maps each task to a most appropriate 
resource for it. List-based heuristics (Topcuoglu et al. 2002; Kwok and Ahmad 1996; Wu 
and Gajski 1990) received the most attention because of their simplicity and flexibility. 
For example, HEFT (Topcuoglu et al. 2002) is a well-known list-based workflow sched-
uling algorithm for heterogeneous environments. It first traverses a workflow from the 
exit node to the entry node in order to calculate an upward rank value for each task. The 
tasks are then sorted in non-ascending order of their ranks. According to the order, each 
task is assigned to the resource that minimizes its Earliest Finish Time (EFT). Many heu-
ristics have been developed based on HEFT (Yu and Shi 2009; Bittencourt et al. 2010; 
Ghanem et al. 2010).

Both cluster-based heuristics and duplication-based heuristics are designed to reduce 
the communication costs between interdependent tasks (Yang and Gerasoulis 1994; 
Darbha and Agrawal 1998; Park et al. 1997; Bajaj and Agrawal 2004). In cluster-based 
heuristics, several tasks with data dependency are put into the same group (cluster) first, 
and then are assigned onto the same resource for communication cost reduction. On the 
other hand, duplicated-based heuristics try to reduce the communication cost for a task 
to transmit data to the resource of its succeeding task(s) through duplicating the task 
on the destination processors. Duplication-based heuristics were shown potential to 
achieve good performance when scheduling a single workflow (Park et al. 1997). How-
ever, they might not be appropriate when scheduling multiple concurrent workflows 
since task duplication in a workflow would consume extra computation resources and 
thus degrade the performance of other workflows.

The meta-heuristics-based approaches provide both a general structure and strategy 
guidelines for developing a heuristic to fit a particular kind of problem. Meta-heuris-
tics-based algorithms, generally applied to large and complicated problems, provide 
an efficient way of moving quickly toward a very good solution, although not optimal. 
There are in general three kinds of meta-heuristics-based approaches based on Greedy 
Randomized Adaptive Search Procedure (GRASP) (Resende and Ribeiro 2002), Genetic 
Algorithm (Singh and Youssef 1996), and Simulated Annealing (YarKhan and Dongarra 
2002). There are comparisons (Tannenbaum et al. 2002; Blythe et al. 2005) between the 
heuristics-based approaches and meta-heuristics-based approaches. The comparison 
shows that meta-heuristics-based approaches usually perform better than heuristics-
based approaches, since a meta-heuristics-based method has more chance to approach 
the globally optimal solution than heuristics-based methods. However, the schedul-
ing time in meta-heuristics-based algorithms is significantly higher than heuristics-
based algorithms, and the time complexity of the meta-heuristics based algorithms 
grows more rapidly than that of the heuristics-based algorithms if the size of workflows 
become larger.

As workflow applications become more complex and computation-demanding, 
mixed-parallel workflow computing (N’Takṕe et  al. 2007) becomes a promising and 
important computing model where each task in a workflow might be a data-parallel 
program requiring multiple processors for execution. Many studies have shown that 
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mixed-parallel computation achieves better performance compared to either pure data 
parallelism or pure task parallelism (Ramaswamy et al. 1997; Radulescu et al. 2001; Rad-
ulescu and van Gemund 2001; Hunold 2010). According to (Feitelson et al. 1997) data-
parallel jobs usually can be classified into four categories: rigid, moldable, malleable, and 
evolving. The work on mixed-parallel workflow scheduling in (Hsu et al. 2011) deals with 
the case that each data-parallel task within the workflow is rigid which means that each 
data-parallel task comes with a pre-specified number of processors to use and the sched-
uler has to allocate exactly that amount of processors to the task. On the other hand, in 
Radulescu et al. (2001), Radulescu and van Gemund (2001), N’Takṕe et al. (2007) and 
some other research works, the data-parallel tasks are assumed to be moldable and the 
focus is on how to determine a most appropriate number of processors to use for each 
moldable task, M-task, within a mixed-parallel workflow. This is also the research issue 
to be dealt with in this paper.

For mixed-parallel workflows of M-tasks, according to how allocation and mapping 
activities are arranged during the scheduling process, existing scheduling approaches in 
the literature can be broadly divided into two categories: one step and two steps. One-
step approaches produce the schedule in an iterative manner. Each scheduling iteration 
consists of two steps where the first step adjusts the allocation of each M-task and the 
second step maps all M-tasks onto processors to check whether an improved schedule is 
achieved or not. The feedback of the second step will then guide the next iteration’s first 
step. A typical example of one-step approaches is CPR (Radulescu et al. 2001), which is a 
greedy iterative algorithm. At first, the algorithm assigns one processor for each M-task 
and computes the resultant makespan based on the list-scheduling approach. Then, an 
iterative procedure is applied to increase the number of assigned processors for each 
M-task until the entire workflow’s makespan cannot be improved further.

To reduce scheduling overhead, many two-step approaches have been proposed in the 
literature, such as TSAS (Ramaswamy et  al. 1997), CPA (Radulescu and van Gemund 
2001), MCPA (Bansal et al. 2006), and MCPA2 (Hunold 2010). In two-step approaches, 
the iterative process is only applied to the allocation step, which determines the most 
appropriate allocation of each M-task simply based on the static structural property of 
the workflow to be scheduled. Then, the mapping step decides the spatial and temporal 
assignment of each M-task onto the parallel computing platforms to produce the work-
flow execution schedule according to the allocation result in the first step. CPA (Rad-
ulescu and van Gemund 2001) is one of the most famous two-step algorithms. Many 
later two-step algorithms were developed based on its critical path strategy, such as 
MCPA (Bansal et al. 2006), MCPA2 (Hunold 2010). They differ in how to decide the allo-
cation limit of each M-task.

Processor allocation for M‑tasks in mixed‑parallel workflows
In this section, we explore the issues of processor allocation for M-tasks when sched-
uling mixed-parallel workflows, discuss the pros and cons of previous methods, and 
then propose a new Iterative Allocation Expanding and Shrinking (IAES) approach to 
the processor allocation problem. We use an example mixed-parallel workflow, shown 
in Fig. 2, to illustrate the characteristics of each method and demonstrate the superior-
ity of our IAES approach. Each node in Fig. 2 represents an M-task with its ID shown in 
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the circle, and the number next to each node is the computation workload of the corre-
sponding M-task.

Workflow model

As in most of the literatures (Topcuoglu et  al. 2002; Ramaswamy et  al. 1997; Rad-
ulescu et  al. 2001; Radulescu and van Gemund 2001; Bansal et  al. 2006), we assume 
that a mixed-parallel workflow application of moldable jobs can be modeled as a 
Directed Acyclic Graph (DAG), e.g. Figure  2, to represent the constituent tasks and 
their execution order. The DAG is defined as a pair (V, E), where V and E are finite sets. 
V = {ti|i = 1, . . . , n} denotes the set of n nodes representing the constituent data-paral-
lel tasks, each of which is a moldable job (Feitelson et al. 1997) and can be executed with 
an arbitrary number of processors depending on resource availability. E denotes the set 
of edges {ei,j|1 ≤ i, j ≤ n} where ei,j, is an arc from ti to tj, representing that tj can only be 
executed after ti finishes its computation due to the control or data dependency between 
them. ti is thus usually called the parent of tj. A task without ancestor is called an entry 
task and a task without any descendant is an exit task. It is assumed that there is only 
one entry task and one exit task in a workflow application.

Each node in the task graph is called an M-task (Radulescu and van Gemund 2001) 
since it is moldable and can run with an arbitrary number of processors. Each node is 
annotated with the computation workload of the corresponding M-task. The required 
computation time of an M-task with a specific number of processors can be obtained 
either by user estimation or by applications’ speedup models (Ramaswamy et al. 1997; 
Rauber and Rünger 1998). In our study, the execution time of an M-task with different 
number of processors is calculated by Amdahl’s law (Kleinrock and Huang 1992), and 
the fraction of workload that must be executed serially within an M-task is assumed to 
be 0.2. A task can be executed only when it receives all the required data from its par-
ents. The data transfer between two tasks incurs a communication cost that depends 
on network capabilities. In traditional research works on task-parallel workflows 
(Prasanna et  al. 1994; Kwok and Ahmad 1996; Wu and Gajski 1990), the communica-
tion cost between two tasks is assumed to be negligible if these two tasks are allocated 
on the same processor. Therefore, reducing inter-task communication costs becomes an 

Fig. 2 An example mixed‑parallel workflow
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important part when scheduling task-parallel workflows. However, for mixed-parallel 
workflows, since each M-task might use a different number of processors for execu-
tion, there is always data communication or redistribution costs between two connected 
tasks. Therefore, in this paper we focus on the processor allocation issues of M-tasks and 
ignore the data communication costs.

Common notations and terms used in M‑task allocation algorithms

Before elaborating on the M-task allocation methods, we first introduce several key 
notations and terms (Sinnen 2007) as follows, which will be used in describing the 
M-task allocation algorithms.

  • P The number of processors in a parallel computing system.
  • Schedule A schedule determines the spatial and temporal assignment of tasks in a 

DAG to processors. A schedule is usually generated by a specific scheduling algo-
rithm on a specific number of processors.

  • np(t) The number of processors allocated to task t.
  • Tw(t, np(t)) The computation cost of a node t, representing the required computa-

tion time of the corresponding M-task with np(t) processors.
  • Path length The length of a path is the summation of the computation cost of each 

node on the path. Since we don’t consider data communication costs in the study as 
explained in the previous section, the path length defined here excludes the commu-
nication costs between nodes on the path.

  • Allocated path length Based on a schedule, the allocated path length is defined to be 
the finish time of the last node on the path subtracted by the start time of the first 
node on the path.

  • tl(n) The top level of a node n in a DAG, which is the length of the longest path end-
ing in n, but excludes the computation cost of n.

  • bl(n) The bottom level of a node n in a DAG, which is the length of the longest path 
starting with n.

  • Schedule length The length of a schedule is the finish time of the exit task on it, 
assuming the entry task starts at time zero.

  • Critical path It is a longest path in a DAG. The critical path gains its importance for 
workflow scheduling from the fact that its length is a lower bound for the schedule 
length.

  • Allocated critical path The path of the longest allocated path length in a schedule.
  • Critical tasks The nodes on critical paths or allocated critical paths, which are of par-

ticular importance in the following M-task allocation methods.
  • MLS M-task list scheduling, which is a procedure applying simple list scheduling to 

produce the execution schedule of a workflow on a parallel system of a specific num-
ber of processors after the number of allocated processors for each M-task is known 
(Radulescu et al. 2001). This procedure can provide the estimated execution time, i.e. 
makespan, of a workflow.

  • Makespan The total execution time for a workflow application. It is used to measure 
the performance of a scheduling algorithm from the perspective of workflow applications. 
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However, makespan usually varies widely among workflows with different sizes and 
other properties.

  • Schedule Length Ratio (SLR) The ratio of a workflow’s makespan over the length of its 
critical path. SLR tries to measure the performance of scheduling algorithms regard-
less of the variation in workflow’s size. In the experiments, the length of the critical 
path is calculated by assuming each M-task runs with only one processor.

Previous methods

This section presents several most well-known processor allocation methods for M-tasks 
in mixed-parallel workflows and discusses their pros and cons.

CPA

One of the most famous methods for scheduling mixed-parallel workflows of M-tasks is 
the Critical Path and Allocation (CPA) algorithm (Radulescu and van Gemund 2001). It 
continues to increase the number of processors, starting from one, for each task on the 
critical path while the condition, TCP > TA, holds, where

Both TCP and TA represent theoretical lower bounds for a workflow’s makespan, but 
characterize two different aspects. TCP is a measure of the dependence paths, that can 
be shortened by increasing the number of processors for the tasks on the critical paths. 
On the other hand, TA is a measure of processor utilization, which would become larger 
when allocating more processors to tasks. The detailed algorithm of CPA is shown in 
Algorithm 1

CPA is in general efficient. However, since CPA allocates processors to tasks at a per 
task basis, in many cases, it might lead to unnecessary resource fragmentation and 
wasting because the total allocated processors of concurrent tasks exceed the system’s 
capacity. Figure 3 is the schedule generated by CPA for the mixed-parallel workflow in 
Fig. 2 and shows an example for such situation. As shown in Fig. 2, t1, t2, and t3 are three 
concurrent tasks at the same level and can be run in parallel to exploit task parallelism. 
However, in the schedule generated by CPA, as shown in Fig. 3, t1, t2, and t3 do not run 
in parallel since the total number of processors allocated to these three tasks is more 

TCP = maxt∈V
{

bl(t)
}

and TA =
1

P

∑

t∈V

(Tw(t, np(t))× np(t)).
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than the available number of processors in the system. Therefore, the potential task par-
allelism among tasks t1, t2, and t3 is deteriorated which leads to increased makespan of 
the workflow and reduced resource utilization rate of the system.

MCPA

The Modified Critical Path and Area-based (MPCA) algorithm (Bansal et al. 2006) was 
developed based on improving the processor allocation phase of CPA, which aims to 
make better processor allocation for data-parallel tasks without sacrificing the essen-
tial task parallelism available in the workflow applications. MCPA divides the tasks of a 
workflow into different layers according to their dependency relationship. Thus, poten-
tial task parallelism within a workflow comes from the tasks at the same layer, which 
can run concurrently. MCPA bounds the number of processors that can be allocated to 
each layer’s tasks by the system’s capacity. The detailed algorithm of MCPA is shown in 
Algorithm 2.

Fig. 3 Schedule generated by CPA
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Figure 4 shows the schedule generated by MCPA for the same mixed-parallel work-
flow. In contrast to the schedule in Fig. 3, tasks t1, t2, and t3 are now running in parallel, 
demonstrating MCPA’s advantage of retaining task parallelism among tasks at the same 
layer (Bansal et al. 2006). However, the makespan in Fig. 4 is worse than that in Fig. 3, 
indicating the drawback of MCPA (Hunold 2010) that it fails to deliver efficient sched-
ules for irregular workflows where concurrent tasks differ significantly in the computa-
tion costs or there are more concurrent tasks than processors in the system.

MCPA2

MCPA2 (Hunold 2010) was proposed to overcome the drawbacks of CPA and MCPA. 
The detailed approach of MPCA2 is shown in the following Algorithm  3. We first 
define a set of specific notations as follows, which are used in the algorithm description 
(Hunold 2010).

  • pl(v): precedence level of node v.
  • DFS_DEPTH(v): depth of node v determined by a depth-first search procedure.
  • prec_alloc(l): number of processors allocated to tasks at precedence layer l.
  • PL: set of precedence levels.
  • prec_p(l): bound for number of processors at layer l.
  • lp(v): nodes in the same precedence layer as v.
  • wr: a scaling factor of P defined by users in order to loosen the restrictions when allo-

cating processors; 0 < wr ≤ 1.
  • W(v): work area, i.e. the product of np(v) and Tw(v, np(v)), when executing v.
  • hmin

t
: minimum height of the precedence layer of t.

  • crmin: a minimum cover ratio defined by users.

Fig. 4 Schedule generated by MCPA
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The main idea of MCPA2 is that it would allow more processors to be allocated to 
tasks on the critical paths, called critical tasks, even though that would lead to a situa-
tion where the total allocated processors of the tasks at the same layer would exceed the 
system’s capacity. Therefore, the most important part of the algorithm is to define a vari-
able cr that denotes the cover ratio of a layer which is the sum of works done by all tasks 
of a layer divided by the minimum height of the layer. The works done by a layer, L, of 
tasks is defined by WL =

∑

v∈L W (v) and the minimum height of a layer is LA = hmin
t · P. 

Based on these two variables, the cover ratio is given by cr = WL
/

LA. Figure 5 shows that 
MCPA2 has the potential to outperform CPA and MCPA2, compared to Figs. 3 and 4.

CPR

The above three approaches, CPA, MCPA, MCPA2, are well known two-step approaches 
for scheduling mixed-parallel workflows of M-tasks. They can quickly produce a sched-
ule but at the cost of schedule efficiency. On the other hand, the Critical Path Reduction 
(CPR) (Radulescu et  al. 2001) approach is a one-step algorithm that can deliver more 
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efficient schedules than two-step approaches through an iterative process of M-task allo-
cation and M-task list scheduling (MLS for short), while leading to a longer algorithm 
computation time. At each iteration, CPR increases the number of processors allocated 
to a particular M-task and then tests whether the execution time of the entire workflow 
decreases through the MLS procedure. CPR commits such an allocation increment only 
if the execution time decreases. The iterative process of CPR stops when there is no task 
for which increasing the allocated processor number can reduce the workflow execu-
tion time further. Algorithm 4 shows the detailed operations of CPR. Figure 6 shows the 
schedule generated by CPR, demonstrating it outperforms the previous three two-step 
approaches in terms of makespan.

Fig. 5 Schedule generated by MCPA2



Page 13 of 24Huang et al. SpringerPlus  (2016) 5:1138 

An Iterative Allocation Expanding and Shrinking approach

In the following, we present an Iterative Allocation Expanding and Shrinking (IAES) 
approach to the processor allocation problem when scheduling mixed-parallel work-
flows of M-tasks. IAES is a one-step approach and has two distinguishing features com-
pared to previous approaches. The first is reducing the lengths of allocated critical paths 
(Sinnen 2007) instead of the static critical paths in workflows. The second is allowing to 
shrink the number of processors allocated to an M-task during the iterative process, 
while most previous approaches adopt non-decreasing M-task allocation mechanisms.

Previous one-step and two-step approaches aim to decrease the length of critical paths in 
the M-task allocation phase. Most of them determine the critical paths based on the origi-
nal static properties of DAGs. However, due to the limitation of available processors, tasks 
might not start immediately once becoming ready and therefore the critical path in the final 
schedule, called allocated critical path (Sinnen 2007), might be different from the one in the 
DAG. Figure 7 shows such an example, where the lower left part is the original DAG and 
the lower right part is the DAG modified according to the schedule, shown in the upper 
part, to reflect the allocated critical path t1 → t4 → t5. Although task 5 can run concurrent 
to task 4 according to the original DAG structure, in the schedule task 5 has to run after task 
4 due to the limitation of system capacity. Therefore, the critical path changes. Increasing 
the processor allocation of tasks on the static critical path might not improve the makespan 
of the entire workflow execution. Our IAES increases the processor allocation of tasks on 
the allocated critical paths which can effectively reduce the required workflow execution 
time.

IAES allows the processor allocation of an M-task to shrink during the iterative pro-
cedure, leading to a more flexible and effective process which is promising in finding 
better schedules. The detailed approach of IAES is shown in Algorithm 5. The algorithm 

Fig. 6 Schedule generated by CPR
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starts with allocating one processor to each task. Then, it calculates the makespan of the 
entire workflow execution with this allocation (lines 1–3). Next, the algorithm iteratively 
increases or shrinks the number of processors allocated to each task until the resultant 
makespan remains unchanged after an iteration (lines 5–36). The distinguishing shrink-
ing process in IAES is described in lines 18–30 which is applied when the expanding of 
a critical task results in worse makespan. The shrinking process first find tasks which 
might be affected by the allocation expansion of the critical task, i.e. whose execution 
periods overlap the time period between the expanded task’s start time and finish time. 
Then, it tries to shrink some of those tasks’ allocation to check whether an improved 
schedule can be achieved. Figure  8 shows the schedule produced by IAES, which 
achieves the shortest makespan among all the methods discussed in this section, dem-
onstrating the superiority of IAES over CPA, MCPA, MCPA2, and CPR.

Fig. 7 Allocated critical path
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Fig. 8 Schedule generated by IAES
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Performance evaluation and discussion
This section evaluates the proposed IAES approach and compares it to several well-
known previous algorithms discussed in section  “Processor allocation for m-tasks in 
mixed-parallel workflows” with a series of simulation experiments. Section “Experimen-
tal setup and performance metrics” introduces the setup for the following experiments 
and the metrics used in the performance analysis. Section “Experimental results” pre-
sents and compare the experimental results.

Experimental setup and performance metrics

The experiments were conducted on a software simulator developed by ourselves in 
C++ based on the discrete-event simulation methodology (Fishman 2001). The simula-
tor maintains the task interdependence in each workflow and calls the chosen algorithm 
to schedule the workflows. To make thorough performance evaluation, like in most 
related works (Radulescu et  al. 2001; Radulescu and van Gemund 2001; Bansal et  al. 
2006; Hunold 2010), we conducted various experiments of different configurations, e.g. 
different workflow structures, different number of processors, and different number of 
nodes within a workflow. For workflow structures, we experimented with two real world 
applications and synthetic workflows. The structures of synthetic workflows were gen-
erated using the approach described in (Topcuoglu et al. 2002), which has been widely 
used in many research works of workflow scheduling. In the following experiments, 
the execution time of an M-task with different number of processors is calculated by 
Amdahl’s law (Kleinrock and Huang 1992) as follows,

where τ is the task’s execution time on a single processor, α is the fraction of workload 
that must be executed serially and was set to 0.2. The performance metrics used in the 
experiments are described below. In each experiment, the average values of 30 runs with 
different workflows in terms of makspan and SLR, respectively, are used to evaluate dif-
ferent methods.

Experimental results

This section presents the experimental results comparing our IAES with CPR (Rad-
ulescu et al. 2001), CPA (Radulescu and van Gemund 2001), MCPA (Bansal et al. 2006), 
and MCPA2 (Hunold 2010). Figure 9 is the workflow structure of a real world applica-
tion, Matrix Multiplication (Matmul), which has been used in the experiments of many 
research works on mixed-parallel workflow scheduling, such as (Radulescu et al. 2001; 
Radulescu and van Gemund 2001; Bansal et al. 2006).

Tables 1, 2, 3 and 4 present performance evaluation of the five M-task allocation meth-
ods using the real world workflow structure in Fig.  9. The italic and underlined num-
bers in the tables indicate the best performance in each experiment. To make thorough 
performance evaluation, we conducted two types of experiments. In the experiments of 
Tables 1 and 2, tasks of the same layer in the workflow are assumed to have equal work-
loads, while unequal workloads are assumed in the experiments of Tables  3 and 4. A 
task’s workload is the amount of work to compute. Based on the workload and processor 

w(t, np(t)) =

(

α +
1− α

np(t)

)

τ ,
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speed, the required execution time of a task on a processor can be derived. Since in our 
experiments, the processors are assumed to be homogeneous, equal workload implies 
the same execution time and unequal workload indicates different execution time. 
Unequal-workload cases were also studied in (Hunold 2010) where the term irregular 
was used. There are real applications corresponding to the unequal-workload cases in 
our experiments, such as sparse matrix computation and other irregular computational 

Fig. 9 Workflow structure of Matmul

Table 1 Average makespan (s) for Matmul structure of equal workloads

np = 8 np = 16 np = 32 np = 64

CPA 188,162 136,645 111,903 78,397

MCPA 117,603 84,003 67,203 58,802

MCPA2 117,603 84,003 67,203 58,802

CPR 117,603 84,003 67,203 58,802

IAES 117,603 84,003 67,203 58,802

Table 2 Average SLR for Matmul structure of equal workloads

np = 8 np = 16 np = 32 np = 64

CPA 0.30 0.21 0.18 0.12

MCPA 0.18 0.13 0.11 0.09

MCPA2 0.18 0.13 0.11 0.09

CPR 0.18 0.13 0.11 0.09

IAES 0.18 0.13 0.11 0.09

Table 3 Average makespan (s) for Matmul structure of unequal workloads

np = 8 np = 16 np = 32 np = 64

CPA 17,301 13,217 11,480 11,132

MCPA 13,857 10,006 8299 7642

MCPA2 16,351 10,410 8835 8329

CPR 14,064 10,920 9433 8788

IAES 13,280 9583 7888 7351
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problems. In both types of experiments, we evaluated the M-task allocation methods 
across parallel computer systems of four different numbers of processors, i.e. 8, 16, 32, 
and 64. Tables 1 and 3 show the performance comparison in terms of average makespan 
and Tables 2 and 4 present the performance evaluation in terms of average SLR.

The experimental results in Tables  1 and 2 show that for the workflow structure of 
Matmul, MCPA, MCPA2, CPR, and our IAES achieve the same performance when 
nodes of the same layer have equal workloads. On the other hand, Tables 3 and 4 indicate 
that the five M-task allocation methods lead to significantly different performance when 
nodes of the same layer might have unequal workloads. In both types of experiments, 
our IAES can achieve the best performance, while CPA performs the worst because it 
allocates processors to tasks at a per task basis and thus leads to unnecessary resource 
fragmentation and wasting. The experimental results in Tables 3 and 4 indicate that the 
number of processors might influence the relative performance of the M-task allocation 
methods. For example, CPR outperforms MCPA2 when the system has eight processors, 
while MCPA2 achieves better performance than CPR for systems of more processors.

Figure 10 is the workflow structure of another real world application, Strassen Matrix 
Multiplication (Strassen), which has also been used in the experiments of many research 
works on mixed-parallel workflow scheduling, including (Radulescu et  al. 2001; Rad-
ulescu and van Gemund 2001; Bansal et al. 2006).

Tables 5, 6, 7 and 8 present the performance evaluation using the real world workflow 
structure of Strassen in Fig. 10. In the experiments of equal workloads for nodes of the 
same layer, as shown in Tables 5 and 6, MCPA2 outperforms the others when the system 

Table 4 Average SLR for Matmul structure of unequal workloads

np = 8 np = 16 np = 32 np = 64

CPA 0.31 0.24 0.21 0.20

MCPA 0.25 0.18 0.15 0.14

MCPA2 0.29 0.19 0.16 0.15

CPR 0.25 0.20 0.17 0.16

IAES 0.24 0.17 0.15 0.13

Fig. 10 Workflow structure of Strassen
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has only eight processors, while CPR achieves the best performance for systems of more 
processors, e.g. 16, 32, or 64 processors. CPR has the potential to outperform other two-
step algorithms because its one-step nature can deliver more efficient schedules due to 
tight integration of M-task allocation and scheduling at the cost of longer algorithm exe-
cution time. For the experiments in Tables 7 and 8 where nodes of the same layer might 
have unequal workloads, our IAES outperforms all the other methods across systems of 
different number of processors, while the relative performance of the other four meth-
ods varies when the number of processors changes. Our IAES has the potential to out-
perform all other methods for the cases of unequal workloads because it allows to shrink 

Table 5 Average makespan (s) for Strassen structure of equal workloads

np = 8 np = 16 np = 32 np = 64

CPA 33,888 20,723 15,153 12,587

MCPA 39,202 17,844 14,544 13,985

MCPA2 30,244 19,826 13,275 10,841

CPR 31,363 15,456 11,100 8940

IAES 32,483 20,444 12,506 9984

Table 6 Average SLR for Strassen structure of equal workloads

np = 8 np = 16 np = 32 np = 64

CPA 0.45 0.28 0.20 0.17

MCPA 0.52 0.24 0.19 0.19

MCPA2 0.40 0.27 0.18 0.15

CPR 0.42 0.21 0.15 0.12

IAES 0.43 0.27 0.17 0.13

Table 7 Average makespan (s) for Strassen structure of unequal workloads

np = 8 np = 16 np = 32 np = 64

CPA 47,882 28,738 20,614 18,996

MCPA 45,577 27,320 19,208 19,041

MCPA2 47,682 28,658 19,748 17,952

CPR 49,590 26,893 18,717 16,233

IAES 43,775 26,681 17,593 15,608

Table 8 Average SLR for Strassen structure of unequal workloads

np = 8 np = 16 np = 32 np = 64

CPA 0.60 0.38 0.27 0.22

MCPA 0.57 0.37 0.26 0.22

MCPA2 0.60 0.38 0.27 0.21

CPR 0.63 0.35 0.25 0.19

IAES 0.55 0.35 0.24 0.18
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the number of processors allocated to an M-task during the iterative process, leading to 
more flexible schedules.

The following presents the experimental results with synthetic workflow structures 
generated by the widely used approach described in (Topcuoglu et al. 2002). We used 
the following parameters to generate different workflow structures.

  • Node: the number of nodes in a workflow.
  • Shape: a number controlling the shape of a workflow. A higher shape value results in 

a shorter workflow with a higher parallelism degree. Otherwise, a longer workflow 
with a lower parallelism degree is generated. Shape is randomly selected from the set 
{0.5, 1.0, 2.0}.

  • OutDegree: the maximum number of immediate descendants of a task. OutDegree 
is randomly selected from the set {1, 2, 3, 4, 5}.

Each experiment was repeated 30 times with different randomly generated workflows 
and the average performance values are presented in the following tables. Tables 9, 10, 
11 and 12 show the experimental results across systems of different numbers of proces-
sors, where each workflow contains ten nodes, but might have different structure. In the 
experiments of Tables 9 and 10 where nodes of the same layer have equal workloads, our 

Table 9 Average makespan (s) for synthetic workflows of nodes with equal workloads

np = 8 np = 16 np = 32 np = 64

CPA 43,932 34,206 28,855 26,166

MCPA 44,658 25,712 18,960 15,569

MCPA2 42,623 27,291 20,688 17,398

CPR 27,537 20,879 18,165 16,810

IAES 30,606 20,134 16,116 14,243

Table 10 Average SLR for synthetic workflows of nodes with equal workloads

np = 8 np = 16 np = 32 np = 64

CPA 0.42 0.33 0.28 0.25

MCPA 0.42 0.24 0.18 0.15

MCPA2 0.41 0.26 0.20 0.17

CPR 0.27 0.20 0.17 0.16

IAES 0.30 0.19 0.15 0.14

Table 11 Average makespan (s) for synthetic workflows of nodes with unequal workloads

np = 8 np = 16 np = 32 np = 64

CPA 23,687 18,618 16,086 15,139

MCPA 27,295 16,600 12,664 10,839

MCPA2 23,696 17,712 13,789 11,995

CPR 19,285 14,135 12,496 11,814

IAES 18,507 13,322 11,107 10,155
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IAES outperforms the other methods in most situations except the system of eight pro-
cessors, where CPR achieves the best performance. When nodes of the same layer might 
have unequal workloads, as in Tables  11 and 12, our IAES outperforms all the other 
methods across systems of different number of processors, while the relative strength of 
the other four methods might be different when the number of processors changes.

Tables 13, 14, 15 and 16 present experiments across workflows of four different num-
bers of nodes, i.e. 30, 40, 50, and 60. In the experiments, workflows were scheduled onto 
a parallel system of 64 processors. Tables  13 and 14 show performance results of the 
experiments where nodes of the same layer in the workflow are assumed to have equal 
workloads. Tables 15 and 16 are for experiments where nodes of the same layer might 

Table 12 Average SLR for synthetic workflows of nodes with unequal workloads

np = 8 np = 16 np = 32 np = 64

CPA 0.33 0.26 0.23 0.21

MCPA 0.37 0.23 0.17 0.15

MCPA2 0.33 0.24 0.19 0.17

CPR 0.27 0.20 0.17 0.16

IAES 0.26 0.19 0.15 0.14

Table 13 Average makespan (s) for synthetic workflows of nodes with equal workloads

30 nodes 40 nodes 50 nodes 60 nodes

CPA 39,209 44,023 49,117 68,521

MCPA 30,496 43,750 48,942 73,699

MCPA2 35,115 39,740 48,655 54,891

CPR 46,649 54,030 56,507 66,616

IAES 28,481 33,991 38,508 48,018

Table 14 Average SLR for synthetic workflows of nodes with equal workloads

30 nodes 40 nodes 50 nodes 60 nodes

CPA 0.27 0.25 0.28 0.32

MCPA 0.21 0.25 0.28 0.34

MCPA2 0.25 0.23 0.28 0.26

CPR 0.32 0.30 0.32 0.31

IAES 0.20 0.20 0.23 0.23

Table 15 Average makespan (s) for synthetic workflows of nodes with unequal workloads

30 nodes 40 nodes 50 nodes 60 nodes

CPA 21,229 22,829 25,162 26,118

MCPA 19,166 22,717 23,861 28,512

MCPA2 20,704 22,337 23,999 25,879

CPR 27,211 27,923 27,179 35,546

IAES 18,314 21,088 21,757 24,035
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have unequal workloads. Our IAES outperforms the other methods significantly in all 
the experiments, while the relative performance of the other four methods varies when 
the number of processors changes.

In summary, among all the M-task allocation methods evaluated, our IAES achieves 
the best performance in most situations. For very simple and regular workflow structure 
of few nodes, e.g. Matmul in Fig. 9, most M-task allocation methods might achieve simi-
lar or even the same performance as shown in Tables 1 and 2. When nodes of the same 
layer in a workflow have equal workloads, CPR might have advantage over other meth-
ods for specific kinds of workflow structure, e.g. Strassen in Fig. 10, as shown in Tables 5 
and 6. On the other hand, our IAES has superiority over the other methods when nodes 
of the same layer in a workflow might have unequal workloads, consistently achieving 
the best performance across different workflow structures, different numbers of nodes, 
and different numbers of processors, as shown in the experimental results.

Table 17 compares the execution overhead of different M-task allocation algorithms 
in terms of algorithm computation time for scheduling a workflow. The time shown in 
Table 17 is the average number of 30 runs with different workflows in the experiments. 
All the workflows used in the experiment of each method contain 30 nodes but have 
different structures. MCPA requires the least computation time because it enforces a 
limit on the total number of processors allocated to tasks at the same layer, leading to 
a smaller search space. Our IAES needs the longest computation time among all meth-
ods. However, the algorithm overhead is negligible, compared to the performance gain 
shown in the experimental results and the long execution time commonly seen for real 
world workflow applications.

Conclusions and future work
This paper presents our study on scheduling mixed-parallel workflows of moldable 
tasks, M-tasks, in parallel computing systems. We propose a new one-step algorithm, 
called Iterative Allocation Expending and Shrinking (IAES), which has two distinct fea-
tures compared to existing methods. The first one is that IAES allows the allocation of an 
M-task to shrink during the iterative procedure, avoiding possible processor allocation 
fragmentation and making the scheduling process more flexible and effective for finding 

Table 16 Average SLR for synthetic workflows of nodes with unequal workloads

30 nodes 40 nodes 50 nodes 60 nodes

CPA 0.22 0.23 0.25 0.25

MCPA 0.20 0.22 0.23 0.28

MCPA2 0.21 0.22 0.23 0.25

CPR 0.27 0.28 0.28 0.33

IAES 0.19 0.22 0.21 0.23

Table 17 Algorithm computation time (s)

CPA MCPA MCPA2 CPR IAES

Time 0.0019 0.0015 0.0020 0.0101 0.0172
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better schedules. Secondly, IAES adopts a dynamic mechanism to find critical tasks and 
allocate more processors to them based on the concept of allocated critical path, which 
can effectively reduce the makespan of workflow execution. Based on these two distin-
guishing features, our IAES outperforms well-known previous approaches, including 
CPA, MCPA, MCPA2, and CPR, significantly in a series of simulation experiments using 
both workflow structures of real world applications and synthetic workflows.

In this paper, we investigate mixed-parallel workflow scheduling for single workflow. A 
promising future research direction is to expand our research work to deal with sched-
uling online multiple mixed-parallel workflows, which is a common need in modern 
shared parallel computing environments.
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