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Background

It is stated in Koshy (2009), Stanley and Weisstein (2015) that the Catalan numbers C,
for n > 0 form a sequence of natural numbers that occur in tree enumeration problems
such as “In how many ways can a regular zn-gon be divided into # — 2 triangles if differ-
ent orientations are counted separately?” whose solution is the Catalan number C,_.
The Catalan numbers C,, can be generated by

2 1-/1-4 >
= d = chxn
14+ 41 —4x 2x s
=1+ x4+ 2x% 4+ 52% + 14x* +42x° +1324° +429x7 + 143063 +--- . (1)

Two of explicit formulas of C,, for n > 0 read that

_ 4T (n+1/2)

Cn = VaT(n+2)

=21 —n,—n2;1), )
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is the classical Euler gamma function and

o0

qu(al,...,ap; bl,...,bq;z) = Z

n=0

(@ (@p)n i
b1y (bq)n n!

is the generalized hypergeometric series defined for complex numbers a; € C and
b; € C\{0, -1, —2,.. .}, for positive integers p,q € N, and in terms of the rising factorials

(x), defined by
n—1
(x)nZH(x+€)={fo-’_l)m(x-i_n_l)’ Zi(l) 3)
£=0
and
(=) = (=D)"(x —n+ 1Dy 4)

In Graham et al. (1994), Koshy (2009), Stanley and Weisstein (2015), Vardi (1991), it was
mentioned that there exists an asymptotic expansion

c 4% 1 9 1 145 1
T m e T swr T st ©)

for the Catalan function C,. What is the general expression for the asymptotic
expansion (5)?
In Qi et al. (2015b, Remark 1) an analytical generalization of the Catalan numbers C,

and the Catalan function C, was given by

'(b) <b>zF(z+a)
C@\a) T'z+b)

Cla,byz) = R(a), R(Db) >0, NR(z) =0 (6)

and the integral representation

C(a,b; x) =

I'(b) <b>" (x + a)*
I'(a)\a/) (x+ b)y*+b—a

xexp|b—a+ 001 ;—l—a (ef‘”—e*bt)e*xtdt
P o ¢t 1—et t

for a,b > 0 and x > 0 was derived. For uniqueness and convenience of referring to the
quantity (6), we call C(a, b; x) the Catalan—Qi function. It is clear that

(7

1
C(a,b;0) =C(a,b;1)=1 and C(a,b;x) = ————.
( ) ( ) ( ) Chan)
The integral representation (7) generalizes an integral representation for C (%, 2; x) in Shi
et al. (2015). Currently we do not know and understand the combinatorial interpreta-
tions of C(a, b; x) and its integral representation (7). Here we would not like to discuss
the combinatorial interpretations of them. What we concern here is the asymptotic

expansion similar to (5) for C(a, b; x).
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In Koshy (2009) and from https://en.wikipedia.org/wiki/Catalan_number, the integral

representation

1 /4 Ja-—
Cp = —/ JEE w ®)
2w Jo X

was listed. In Nkwanta and Tefera (2013, p. 10), there is an integral representation

22n+5 1 x2 1— x2 2n
C, = / ( ) dx.
T 0 (1 + x2)2”+3

In Qi et al. (2015¢, Theorem 1.4), the integral representations

1 o0 \/; 2 [ee} t2
A s e A v L @

was established. In Qi (2015a, Theorem 1.3), the equivalence relation between (8) and (9)
was verified. What is the integral representation of the Catalan—Qi function C(a, b; x)
similar to either (8) or (9)?

From the power series (1), we observe that the Catalan numbers C,, is an increasing
sequence in n > 0 with Cp = C;. What about the monotonicity and convexity of the
Catalan numbers C,, the Catalan function Cy, and the Catalan—Qi function C(a, b; x)?
In Temme (1996, p. 67), it was listed that

Fz+a)
Tz+b)

1 > —u\b—a—1__(zt+a)u
N ) (l—e ) e qy b>a>0.
—a) Jo

Accordingly, we obtain an alternative integral representation

1 b\* [ —u\b—a=1_—(xt+a)u

for b > a > 0 and x > 0, where B(z, w) denotes the classical beta function which can be
defined (Abramowitz and Stegun 1972, p. 258, 6.2.1 and 6.2.2) by

1 00 tzfl
_ z—1 _ w1 _
B(z,w) _/0 A - de _/0 7(1 n t)z+wdt (11)
for R(z) > 0and R(w) > 0 and satisfies
_I'xr'w)
B(z,w) = Tetw B(w, z). (12)

From the integral representations (8) and (9), one can not apparently see any mes-
sage about the monotonicity and convexity of the Catalan—Qi function C(a, b; x) in
x € [0,00).

As showed by (1), the Catalan numbers C,, have a generating function ﬁ. What
is the generating function of the Catalan—Qi numbers C(a, b; n)?

The aim of this paper is to supply answers to the above problems and others.
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A new expression of the Catalan numbers

In order to establish a new expression for the Catalan numbers C,,, we need the follow-
ing lemma which was summarized up in the papers Qi (2015c, Section 2.2, p. 849), Qi
(2016, p. 94), and Wei and Qi (2015, Lemma 2.1) from Bourbaki (2004, p. 40, Exercise 5).

Lemma 1 Let u(x) and v(x) # 0 be differentiable functions, let U,41)x1(x) be an
(n+ 1) x 1 matrix whose elements uy(x) = u(k’l)(x)for 1<k <n+1,let Viyiyxn(x)
be an (n + 1) x n matrix whose elements

i—1 .
(G)) | — ]
vij(x) = </_1>v *x), i—j=0
0, i—j<0

forl<i<n+1landl <j<n,and let |W(t1)xn+1)(*)| denote the determinant of the
(n+1) x (n+ 1) matrix
W(n+1)x(n+1)(x) = [u(n+1)><1(x) V(n+1)><n(x)] .

Then the nth derivative of the ratio 4 can be computed by

v(x)
d" Tu@)] _ o [ Wt x oy @) |
daxe [V(x):| =(=D vt (x) : (13)

Making use of the formula (13) in Lemma 1, we can obtain the following new expres-
sion for the Catalan numbers C,,.

Theorem 1 Forn € N, the nth derivative of the generating function of the Catalan num-
bers C,, can be expressed as

& (1—m) _ e En:4k<1> w1 4m) /2K
2/
k=0

" 2 2ntH

and the Catalan numbers C, can be represented as

Fnl3)
Co=—| =
n+1I\2/,

where (x), is the falling factorial defined by

v

[

n—1
k=0

N

and (x),, is the rising factorial defined by (3).
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Proof Letu(x) =1— /1 —4x and v(x) = «. Since

u(k)(x) — (_1)k+14k<1> (1 _ 4x)1/2—k — (_1)k+14k<1>
2/ 2/

for k € Nas x — 0, making use of the formula (13) yields

d” [1-1—4x
dx” 2x
u(x) x 0 0 e 0 0 0
u'(x) ( (1) ) x 0 . 0 0 0
" 2
u” (x) 0 ( 1 ) X e 0 0 0
W@ 0 0 ) 0 0 0
_ " 2
T oogntl
w2 (x) 0 0 0 . n=2 x 0
n—3
(n—1) o n—1
1D (x) 0 0 0 0 (n - 2) x
(n) n
u' (x) 0 0 0 0 0 (n _1 )
u(x) x 0 0 0 0 0
u' (x) 1 x O 0 0 0
u (%) 0 2 «x 0 0 0
(_l)n u”/(x) 0 0 3 0 0 0 (_l)rl
= xnt : : ) = oentl
u"2x) 0 0 0 - wn—2 x 0
u V) 0 0 0 - 0 n-1 «
uPE)y 0 0 0 - 0 0 n
u(x) x 0 O 0O 0 O
U (x) — 4 0 x 0 0 0 0
u'(x) — 2 (x) — “2] 0 0 =« 0 0 0
w"(x) — 2{u" (x) — L[/ (v) — “2]} 0 0 0 0 0 0
X . .
_ _ _ (n—k—2)
u=2 (%) — ZZ:?(_DI{ (n(ﬁki)zl)g MTJX) 0o 0 O 0 x O
— _ (n—k—1
w0 (%) — SR (DR G ki“ 00 0 - 0 0 =
(n—k)
u™ ) — er::l (—l)k (nﬁ!k)! u — (€3]
x 0 0 0 0 0
0 x O 0 0 0
0 0 «x 0 0 0
0 0 O 0 0 0

_ I{M’“)(x)—zn:(—nk n w0 (x)
2xh+

_ k
Py (n—k)! x

(=
(=)
*

(=)
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M(n—k) (x)

1 " n!
I R ()] _ _1)k
_n{” ) Z( Vo

n w0 (x)
72(_) — k)l xkt1

n!
2xn+1 Z(_ )k k)' X"~ ku(nfk)(x)

= (-1

Z(—l)k%xku@ @)

2xn+1

1 n n )
2((n +)1)v Z(_ )k hm u(k)(x)]( +1)

(=D - X (SR O (n—t4k)
“sr i (1) e
GV LE WV 70 B P

_2(n+1)!k§( 2 k!( k )k!” ©

_ D Kk (nH 1

_2(n+1)kz( )< )M ©

_ (_l)n n+l,n k n+1
_2<n+1>( b 4< > Z( 1)< )

" k=0

- 2(n+1)< > Z( 1)k<n+l>

" k=0

_ (_1\nt+1 4" <1>
=D 2m+1)\2/,
4 1\ 4" (1
Ta+1\ 2/, n+1\2),

as x — 0. By virtue of the second function in the Eq. (1), we see that

1. d" /1—-J1—4x
Cy, = — lim —_—
n! x—0 dx” 2%
4" 1 4" 1
= (-1" —>) = )
m+D!'\ 2/, @W+DI\2/,
The proof of Theorem 1 is complete. (]

Asymptotic expansions of the Catalan-Qi function C(a, b; x)
We first derive two asymptotic expansions of the Catalan—Qi function C(g, b; x). Conse-
quently, from these two asymptotic expansions, we deduce a general expression for (5)

and an asymptotic expansion of the ratio % fora,b > 0.

Theorem 2 Let B,(:) (%) denote the generalized Bernoulli polynomials defined by

o oo B(U) x
exz< ZZ 1> :Z kk'( )zk, oeC, |z| <2m.
e~ k= (14)
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Forb > a > 0, the Catalan—Qi function C(a, b; x) has the asymptotic expansion

r'(b) B "N @rp—a+k 1
Clabix) ~ o )< ) Z( 1y B x Fh—a) (15)

as x — oo. Consequently, the Catalan function Cy has the asymptotic expansion

1
Cy = C<2,2;x>

asx — oQ.

* & B a)rk+s) 1
> (=D k! I'(3/2) xk+3/2 (16)

Proof In Temme (1996, p. 67), it was listed that, under the condition R(b — a) > 0,

00 (a—b+1)
F(z+a)  ga—b Z(—l)kBk @rb—a+k 1

Fz+b) k! Th—a) & 27

in the sector |argz| < m, where the generalized Bernoulli polynomials B,(f)(x) are
defined by (14) in Temme (1996, p. 4). Consequently, the function C(a, b; x) has the
asymptotic expansion (15) under the condition b > a > 0 as x — oc. In particular, when
taking a = % and b = 2 in (15), we obtain the asymptotic expansion (16). Theorem 2 is
thus proved. ]

Remark 1 In Qi (2015a), there are another two asymptotic expansions for C, and C,,
which were established by virtue of the integral representations (8) and (7) for a = %and

b=2.

Remark 2 'The asymptotic expansion (16) is a general expression of the asymptotic
expansion (5). Hence, the asymptotic expansion (15) is a generalization of (5).

Theorem 3 Let B; denote the Bernoulli numbers defined by

3

x % P x¥
e = i_OBii!:1_2+;sz(2])!’ x| < 2m. (17)

Then the Catalan—Qi function C(a, b; x) has the exponential expansion

Cla,b: x) = gg( ) ii UG+ a,x+ b5

e e]

By; 1 1
X exp [E 2}(2} _ 1) <(x + a)2j71 - (.?C + b)2]1>:| , a,b>0, (18)

where I(a, B) denotes the exponential mean defined by

’3/5 ) 1/(B~a)

I(e, B) = (a“ 19)
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fora, B > 0witha # B. Consequently, we have

F(a)_\ﬁa“ . By 11
re) Vap P [; 22— ) \a¥ 1 b¥1)| a,b > 0. (20)

Proof Making use of (17) in the integral representation (7) yields

) b x4+ a)* _
C(a,b; x) = F( ) (ﬂ) (x n b)x+b — exp {b a
1( > (efat _ ebt)extdt]
o ¢t

F(b) <b> (x—}—a)x ex {b—a

“T@\a) ot byro—a P
1/1 t2/ 1 a B x
t(z—a-i-z 2 (2]),> t_e bt)e tdt}

T b\ x+a) b 1 1 x+b
_F(a)<a) (x+b)x+b—“eXp[ —a+<—u> i ta

o~ By 1 1
" E 2j(2j —1) <(x +a)¥-1 - (x+ b)2j1>}

_ r(b)( ) @ a2,
- [ (a) (x + b)*+b— 1/2

o~ By 1 1
e LZI TSV ((x For T G H

which can be reformulated as the form (18).

The exponential expansion (20) follows from letting x — 0 in (18) and rearranging.
Theorem 3 is thus proved. U

Remark 3 When taking a = % and b = 2, the asymptotic expansion (18) reduces to one
of conclusions in Qi (2015a, Theorem 1.2).

Remark 4 For more information on the exponential mean /(«, 8) in (19), please refer to
the monograph (Bullen 2003) and the papers (Guo and Qi 2009, 2011).

Integral representations and complete monotonicity of the Catalan-Qi
functionC(a, b; x)

Motivated by the first integral representations (8) and (9), we guess out the following
integral representations for the Catalan—Qi function C(a, b; x).

Theorem 4 For b > a > 0 and x > 0, the Catalan—Qi function C(a, b; x) has integral
representations

b—1 b/g b—a—1
Cab.x)=(2 ¥/ b —t FFralqy
b B(a,b—a) Jy a 21
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and

a tbﬂl
C(a, b; x) = ()Bm,—w/‘a+WMH”L 22)

Proof Straightforwardly computing and directly utilizing (11) and (12) acquire

x+b oo tbfafl
——dt
o 1+ bt/a)x"'b
xtb o pN a=b (l;t)b a—1 bt
b al =
a 0 (1 + bt)x+h a
a—

x+a poo ub 1
/0 (1 + u)b—a+G+a) du

x+a
B(b—a,x+a)

[ee) tb a—1
/ T q=
o (t+a/byxtb

FAP(p— ) (x + a)
T(x+b)

N—— — 7 N~ N~

VS VS ™

I
~~

The integral representation (21) is thus proved.
Similar to the above argument, by virtue of (11) and (12), we obtain

bja s, b—a—1 b x+b—1 1 )
/ (7 _ t) tx+a—1dt — (7) / (1 _ S) —u—lsx+a—1ds
0 a a 0

b x+b—1 b x+b—1 l"(b—a)I‘(x—l—a)

Hence, the integral representation (22) follows readily. The proof of Theorem 4 is thus
complete. O

Remark 5 Letting a = 2, b =2, and x = n in (22) and (21) respectively reduce to the
first integral representation in (9) and its equivalent form (8).

Remark 6 In https://en.wikipedia.org/wiki/Catalan_number, it was said that the inte-
gral representation (8) means that the Catalan numbers C,, are a solution of the Haus-
dorff moment problem on the interval [0, 4] instead of [0, 1]. Analogously, we guess that
the integral representation (21) probably means that the Catalan—Qi numbers C(a, b; n)
are a solution of the Hausdorff moment problem on the interval |0 [ ] instead of [0, 1]
and [0, 4].

Recall from Mitrinovi¢ et al. (1993, Chapter XIII), Schilling et al. (2012, Chapter 1),
and Widder (1941, Chapter IV) that an infinitely differentiable function f is said to be
completely monotonic on an interval [ if it satisfies 0 < (—=1)*f® (x) < 0o on I for all
k > 0. It is known (Widder 1941, p. 161, Theorem 12b) that a function fis completely
monotonic on (0,00) if and only if it is a Laplace transform f(t) = [;~ e *dju(s) of a
positive measure u defined on [0, 0o) such that the above integral converges on (0, 00).
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Theorem 5 Forb > a > 0, we have

' 1 P — g 1
Clabix) = B(b—a)() E:(l) 0 xtatk @3)

where

x(x—l) x—n+1), n=>1

is the falling factorial. Consequently, the function

N

lb—a) R ok b—a—T1) 1
(-1) [(b) C(a, b; x) — Bab_a kZ:O( 1) X — (24)

for N € {0} UN and b > a > 0 is completely monotonic in x € [0, 00), where |x] denotes

the floor function whose value is the largest integer less than or equal to x.

Proof The integral representation (21) can be rearranged as

1 p\*"1 rbja a b—a—1 a \*te-l
corn=gaiala) L 0-5) () @
_é b—a— 1x+a 1
= (2 ) / 1-9 ds. @5)

Further utilizing the well-known power series expansion

A+n* =) (g <1
k=0
arrives at
1 b\* X (—DF 1
C ,b; - -  (Z b—a—1 x+k+a71ds
(@ b: %) B(a,b —a) (a) ; k! b—a >k/0 s
1 b\* X (=K 1
=—| - b—a—1)—
B(a,b—a)(a) % k! b—a >kx+az+k
which can be reformulated as (23).
Rewriting (23) as
N
a\” 1 b—a—1) 1
— by x) — ———— —1)k
<b)cm %) Mmb—m;%() K xtatk
— 1) 1
Z s
B(a, —a) Pt k! x+a+k
1 ad (b—a—1); 1
— _1 Lh—ﬂji _1 k—Lb—ﬂJ ,
=1 B(a,b — a) Z =D k! x+a+k

k=N+1

Page 10 of 20
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considering the non-negativity of (—1)¥~1»=2l(h — 4 — 1);, and employing the com-
plete monotonicity of ﬁ in x € [0, 00) reveal the complete monotonicity of the func-
tion (24). The proof of Theorem 5 is complete. O

Remark 7 When taking a = % and b = 2, Theorem 5 becomes a part of conclusions
in Qi (2015a, Theorem 1.1).

Logarithmically complete monotonicity of the Catalan-Qi function C(a, b; x)
An infinitely differentiable and positive function f is said to be logarithmically com-
pletely monotonic on an interval I if 0 < (—=DX[In f (x)]% < oo hold on I for all k € N.
The inclusions

LII1CClU] and S\ {0} C L[(0,00)] (26)

were discovered in Berg (2004), Guo and Qi (2010), Qi and Chen (2004), Qi and Guo
(2004), where L[I], C[I], and S denote respectively the set of all logarithmically com-
pletely monotonic functions on an interval /, the set of all completely monotonic func-
tions on I/, and the set of all Stieltjes transforms. See also the monograph Schilling et al.
(2012) and plenty of references therein.

Recall from monographs Mitrinovi¢ et al. (1993, pp. 372-373) and Widder
(1941, p. 108, Definition 4) that a sequence {{t,}o<n<co is said to be completely mono-
tonic if its elements are non-negative and its successive differences are alternatively non-
negative, that is,

(—DFAFu, >0

for n, k > 0, where
‘ k
Akﬂn = Z (-n" < m ) Mntk—m-
m=0
Recall from Widder (1941, p. 163, Definition 14a) that a completely monotonic sequence
{ay}n>0 is minimal if it ceases to be completely monotonic when ay is decreased.

Theorem 6 The function

1 x=0

£l gy )b
@ bix) = { [C(a, b; x)IFV*, x>0

is logarithmically completely monotonic on (0,00) if and only if a 2 b. Consequently, the
sequence

1, n=20
Co=q L neN @7)

is completely monotonic, minimal, and logarithmically convex.
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Proof In Qiand Li (2015, Theorem 1.1), it was proved that, when a 2 b, the function

1, x=0
+1 _ +1/
lhape@) ! = 3 [ Pata] =7 (28)
[(x +b)
for ¢ > 0 is logarithmically completely monotonic on [0, 00) if and only if ¢ z %. It is

easy to see that
11 b\t +1
C*(a,byx) = P [Mapr by r@ @]

Therefore, the function C*! (a, b; x) is logarithmically completely monotonic on [0, co)
if and only if a = b. Consequently, the function C_l(%,Z; x) is logarithmically com-
pletely monotonic, and then completely monotonic and logarithmically convex, on
[0, 00). As a result, the complete monotonicity, minimality, and logarithmic convexity of
the sequence (27) follows immediately from Widder (1941, p. 164, Theorem 14b) which
reads that a necessary and sufficient condition that there should exist a completely
monotonic function f{x) in 0 < x < oosuch that f(n) = a, for n > 0is that {a,}7° should
be a minimal completely monotonic sequence. The proof of Theorem 6 is complete. [

Remark 8 1t is interesting that, since the function /%, ;.. (x) defined by (28) originates
from the coding gain (see Lee and Tepedelenlioglu 2011; Qi and Li 2015), Theorem 6
and its proof imply some connections and relations among the Catalan numbers, the
coding gain, and the ratio of two gamma functions.

Theorem 7 Leta,b > 0andx > 0. Then

1. when b > a, the function C(a, b; x) is decreasing in x € [0,x¢), increasing in
x € (xp, 0o),and logarithmically convex in x € [0, 00);

2. when b < a, the function Cla, b; x) is increasing in x € [0,xp), decreasing in
x € (xp, 00), and logarithmically concave in x € [0, 00);

where x is the unique zero of the equation

Yx+b) —Y(x+a) _

Inb—1Ina

1 (29)

and satisfies xg € (0, %) Consequently, the Catalan numbers C, for n € N is strictly
increasing and logarithmically convex.

Proof In Guo and Qi (2010, Theorem 1) closely-related references therein, it was
proved that the function

O (%) = x“[Inx — ¥ (x)]

is completely monotonic on (0, 00) if and only if @ < 1. This means that
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Ina-vy(@shb-y(©b), az2b,
that is,

v —y@

mb_na " 4Fb (30)

This can also be verified by virtue of the inequality

1 1
/
w(x)>;+—2x2>;, x>0,

which is a special case of Guo and Qi (2010, Lemma 3), and by virtue of the equality

YO V@ [Py @d
Inb—Ilna fabl/xdx.

Since the function ¥ (x + b) — ¥ (x + a) is increasing (or decreasing, respectively) if and
only if b < a (or b > a, respectively) and

len;o[w(x +b)—Yx+a))=0

for all a,b > 0, we obtain that for all a,b > 0 with a # b the function Yotb) =y (xta) o

Inb—Ina
strictly decreasing on [0, o) and

b) —
lim YO —vEta 31)
X—> 00 Inb—Ina
It is clear that the first derivative

d[ln C(a, b; x)]

=(nb-Ina)— [Y@x+b) —y@+a)] 0
0x

if and only if
Inb—Ina< Y(x+b)— ¥(x+a)

which can be rewritten as

Y(x+b)— Y+ a) >

=1 b>a

Inb—1na

and

Y(x+b)— Y+ a) <

=1 b<a.

Inb—1Ina

As a result, considering (30) and (31), we see that the Catalan—Qi function C(a, b; x) for
all 4, b > 0 with a # b is not monotonic on [0, c0) and that
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1. when b > a4, the function C(a, b; x) is decreasing in x € (0,xp) and increasing in
x € (xg, 00);

2. when b < a, the function C(a, b; x) is increasing in x € (0,x0) and decreasing in
x € (%0, 00);

where x is the unique zero of the Eq. (29).
The Eq. (29) can be rearranged as

Yx+b)—Yyx+a)=Inb—Ina.

Regarding b as a variable and differentiating with respect to b give

4 +]9)_1_;
Vet == s

which can be reformulated as

x—(x—i—b)—#AM— !
- va+b) T YW
where lim,,_, g+ [u — 1/},1(“)} = 0and
d {u B } -1 v (x) _ [/ )] + ¥ (x)
du V' (u) [/ (x)]> (V' @©)>

Employing the asymptotic expansion

o0

1 1 By,
! —
V@ =_+o5+

in Abramowitz and Stegun (1972, p. 260, 6.4.11) yields

1 oo By
1 2 T 2 me1 o 1

u-— 1p/(u) = 1 1 00 Boy, - 2
b oz T 2 me

Due to [¥/(x)]> + ¥ (x) > 0 on (0, c0), see Alzer (2004), Qi (2015b), Qi and Li (2015),
Qi et al. (2013) and plenty of closely-related references therein, the function u — m is
strictly increasing, and so

—_

O<u —

- <z
Vw2
on (0, 00). Accordingly, the unique zero xg of the Eq. (29) belongs to (O, %)

It is immediate that

92[In C(a, b; x)]

P =y (@+a)—¢'(x+b).

Since the tri-gamma function ¥’ (x) is completely monotonic on (0, co), inequalities

(1) o%t1[ln C(a, b; x)]

s =yPa+a)—y®P@+bs0
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for k € N hold if and only if b < a. The proof of Theorem 7 is complete. O

Remark 9 From Theorem 7, we can derive that, forb > a > 0,

F'x+a) T /a\”
Fath > T (b) » O<xsl

In other words,
0<Clabx)S1, 0<xs<1, b>a>0.

Theorem 8 Forb > a > 0, the function
a X
(b) Clab; ) (32)
is logarithmically completely monotonic on [0, 00).

Proof By (6), it follows that

a\” . _Trx+a
(b) C@b® = Tat b

which can be straightforwardly verified to be a logarithmically completely monotonic
function on [0, 00). By the first inclusion in (26), we obtain the required complete mono-
tonicity of the function (32). O

Remark 10  The integral representation (22) can be rewritten as

1 b xX+b—a 00 tbfafl
Cabx)=—— (2 L A— P
@b = g o (a) /0 (bt/a + 1)~

for b > a > 0 and x > 0. This formula and both of the integral representations (10)
and (25) all mean that the function (32) for b > a > 0is completely monotonic on [0, o).
This conclusion is weaker than Theorem 8.

Theorem 9 Forb > a > 0, the function

<a>x (x+ b)erbfa

b Gt C(a, b; x)

is logarithmically completely monotonic on [0, 00).
Proof 'This follows from the integral representation (7). O

Remark 11 Theorems 8 and 9 imply that the sequences
(7. = {55 s
— and { —————— —
4" | 50 (n+1/2)" 4" ),

are logarithmically completely monotonic and minimal, which have been concluded
in Qi (2015a, Theorems 1.1 and 1.2).
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A generating function of the Catalan-Qi sequence C(a, b; n)
In this section, we discover that 5 F; (a, 1; b; %) is a generating function of the Catalan—
Qi numbers C(a, b; n).

Theorem 10 Fora,b > 0 and n > 0, the Catalan—Qi numbers C(a, b; n) can be gener-
ated by

bt >
2oF1 <a, 1; b; a) = Z C(a, b; myt" (33)
n=0
and, conversely, satisfy
- b
C(a,b; n) = (=1)" Z(_l)k ( /’Z >2F1 <a, —k: b; —a>. (34)
k=0

Proof Using the relation (z),I"(z) = I'(z 4+ n) for n > 0, we have

C(a,b;n):(i) EZ;”, a,b>0 n=>0.

As a result, we obtain

> o @a(Dy (BE/a)" . bt
;C(a,b, n)t —g ), o —2F1<a,1, b; a)’ a,b > 0.

Using the relation (—#),+; = 0 for i € N, which can be derived from (4), we obtain

b = (=1 (—n),
2F1 (ﬂ» —n; b; _a> = ,Z:; TC(&{, b:r).

Further using the relation

'a+1)  n
Tn—r+1) m—r)"

(_l)r(_n)r = (Vl —r—+ l)r =

we acquire

b n
2F1 <ﬂ, —Mn; b; —a) = <}:>C(a,b; r). (35)
0

r=

The formula (Graham et al. 1994, p. 192, (5.48)) reads that

glk) = Z (’2)(—1)7@) ifand only if f(k) = Z (ﬁ)(—l)“g(ﬂl

l 14

Hence, the inversion of the relation (35) gives us the relation (34). The proof of
Theorem 10 is complete. O
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Remark 12 (An alternative proof of (33) for » > 1) In Abramowitz and Stegun (1972, p.
558, 15.3.1), it is collected that
b71(1 _ t)c,b,1

1 Lt
oF1(a,b; ¢c; z) = Boc—b) /0 1) dt, fR(c) > ROb) > 0.

In order to prove the Eq. (33), it is sufficient to show
n

d bt
lim — |2Fi | a,1; b; — =n! ,b; n).
lim = [2 1<a b a)} n!C(a, b; n)

In fact, a straightforward calculation reveals

) 4" 1 1 (1 _ t)b—2
lim — dt
z—0dz" |B(1,b—1) Jo (1 — btz/a)*
R 1 (1 _ t)b72
= (b - 1Da®li D E——
( )a ZE}}, dz" Jo (a— btz)4
F+a) /1 (1 — t)b=2

F@ 250y (a—biz)n

= (b — 1a*b"

_(b=1ab"T(n+a) (', beo
= e r@ | t"(1 -’ "de
_(b—DP'T(n+a)T(b— DI (n+1)
T I'(a) C(n+b)

_ P'Tita) TG
" T@ Tu+b)
= n'C(a, b; n)

for b > 1. This gives an alternative proof of (33) for b > 1.
Remark 13 Combining (2) and (34) brings out
n " 1
2F1(1=n,—n;2;1) = (=1)" Z(—l)k( k)zﬂ (2, —k;2; —4).
k=0
A double inequality of the Catalan-Qi function C(a, b; x)

Finally we present a double inequality of the Catalan—Qi function C(a, b; x).

Theorem 11 Let B; for i € N be the Bernoulli numbers defined by (17) and let I be the
exponential mean defined by (19). Then the Catalan—Qi function C(a, b; x) satisfies the
double inequality

2m sz < 1 1 )
o {Z % -D\@x+a)y T (x+b¥] }

j=1
l"(a)(a)x\/m C(a,b; x)
“To\b) VatbUx+axt bl
2m—1
By 1 1
= eXP[ 2 252 — 1) ((x F 071 (x+b)d1 )} (36)

j=1
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Consequently, we have

b n [ By 1 1 I'(a)
\/;[I(a, b)1*7" exp [; 52— 1) (aZ/—l - sz—1>] < D)

J

b s 2m—1 By 1 1

j=1

Proof In Koumandos (2006, Theorem 3), it was obtained that

for m € N and x > 0. Substituting this double inequality into the integral representa-
tion (7) and straightforward computing lead to the double inequality (36).

The double inequality (37) follows from letting x — 0 in (36) and simplifying. The
proof of Theorem 11 is complete. (]

Remark 14 'The double inequality (36) generalizes a double inequality in Qi
(2015a, Theorem 1.2).

Conclusions

The main conclusions of this paper are stated in Theorems 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
and 11. Concretely speaking, a new expression, several asymptotic expansions, several
integral representations, logarithmic convexity, complete monotonicity, minimality, log-
arithmically complete monotonicity, a generating function, and several inequalities of
the Catalan numbers, the Catalan function, and the Catalan—Qi function are presented
and an exponential expansion and a double inequality for the ratio of two gamma func-
tions are derived. These conclusions generalize and extend some known results. More
importantly, these conclusions provide new viewpoints of understanding and supply
new methods of investigating the Catalan numbers in combinatorics and number theory.
Moreover, these conclusions connect the Catalan numbers with the ratios of two gamma
functions in the theory of special functions. In other words, the main conclusions in this
paper will deepen and promote the study of the Catalan numbers and related concepts
in combinatorics and number theory.

Remark 15 This paper is a companion of the articles Liu et al. (2015), Mahmoud and Qi
(2016), Qi (2015a, d, e), Qi and Guo (20164, b), Qi et al. (2015b, ¢, d, e), Shi et al. (2015)
and a revised version of the preprint Qi et al. (2015a).
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