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Background
Objective image quality assessment models typically require the access to a reference 
image that is assumed to have perfect quality (Wang and Simoncelli 2005; Manap and 
Shao 2015). In practice, such full-reference methods may not be applicable because the 
image for reference is not often available (Sheikh et al. 2006). On the other hand, no-
reference (NR) or “blind” image quality assessment is an extremely difficult task (Sheikh 
et al. 2005, 2006; Fang et al. 2015; Leclaire and Moisan 2015; Wang et al. 2015; Lu et al. 
2010; Saad et al. 2010; Moorthy and Bovik 2010; Marziliano et al. 2002; Liu et al. 2013; 
Gao et al. 2013; Du et al. 2004; Xue et al. 2014). The best way to assess the quality of an 
image is perhaps by visual examination because human eyes are the ultimate receivers 
in most image processing environments. The subjective quality measures mean opinion 
score (MOS) has been used for many years. However, the MOS method is inconven-
ient, slow and expensive for practical use. The goal of objective image and video qual-
ity assessment research is to supply a quality metric that can predict perceived image 
and video quality automatically. Peak signal-to-noise ratio (PSNR) and mean squared 
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error (MSE) are two widely used objective image quality distortion metrics, but they are 
widely criticized as well, for not correlating well with perceived quality measure. In the 
past three to four decades, a great deal of efforts have been made to develop a new objec-
tive image and video quality measure approaches which incorporate perceptual quality 
measures by considering human visual system (HVS) characteristics (VQEG 2000).

Most of the image quality assessments require original image as a reference. It will 
be significant that design a no-reference quality measurement. This topic has attracted 
a great deal of attention recently, and several methods have been proposed in the lit-
erature for objective NR quality assessment. But most NR quality metrics proposed are 
designed for one or a set of predefined specific distortion type and are unlikely to gen-
eralize for evaluating images degraded with other types of distortion. Recently, Sheikh 
et  al. (2005) proposed an NR image quality assessment metric that uses natural scene 
statistic (NSS) for JPEG2000 compressed images.

The existing state-of-art approach employs the NSS model to do image quality assess-
ment. This is based on the observation that natural images exhibit certain common sta-
tistical characters which can be represented by a mathematical model and disturbed by 
the distorted processing. IQA degree of distortion can be quantized by measuring the 
change of statistical model. Sheikh’s NSS model metric models the marginal distribu-
tion and the joint statistics of wavelet coefficients to evaluate JPEG2000 compressed 
natural images, which outperforms many other existing methods. However, the experi-
mental results also show that this approach is only applicable to JPEG2000 compressed 
images. Lu et al. (2010) proposed an NR image quality assessment based on the Sheikh’s 
IQA and extended to the contourlet domain to solve the inefficiency in directional infor-
mation capture. Both of them need to obtain the slope of the line which learned from 
uncompressed natural images in the training set. Because of the parameters are different 
when computed from the different training sets, the experimental results obtained are 
also different; it is inconvenient to demonstrate the performance of algorithm by run-
ning one time. Some more general NR image quality measures are reported (Saad et al. 
2010; Moorthy and Bovik 2010), the blind image quality index (Saad et al. 2010) based 
on statistics of the Discrete Cosine Transform (DCT) coefficients and with the frame-
work (Moorthy and Bovik 2010) based on natural scene statistics. Despite a promising 
step towards the general-purpose no-reference quality assessments, the image quality 
measure heavily relies on a training procedure and their scopes are dependent on the 
distortions under training. Actually, both of these methods are not real no-reference 
quality assessments. Therefore, it is necessary to find out a powerful NR quality assess-
ment method.

Authors contribution
The purpose of this research is to develop an objective NR quality assessment algorithm 
for natural images. The basic assumption behind natural image statistics-based approach 
is that most real-world image distortions disturb image statistics and make the distorted 
image “unnatural”. The distorted measurement based on natural image statistics mod-
els can then be used to quantify image quality degradation. Finding a good distortion 
measures between reference images and distorted images based on some feature set is 
a challenging task. In particular, here we observe that the marginal distribution of the 
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wavelet coefficients within a given sub-band changes in different ways for different types 
of image distortions. We then use a generalized Gaussian density model (Portilla et al. 
2003) to summarize the marginal distribution of wavelet coefficients, and measure the 
difference between reference and distortion in order to evaluate image quality. We vali-
date the performance of our algorithm using a wide range of test images and experi-
ments show its superiority. The proposed method performs well in predicting image 
quality and is easy to implement.

Methods
Motivation

The simplest and most widely used full-reference quality metric is the MSE, computed 
by averaging the squared intensity differences of distorted and reference image pixels, 
along with the related quantity of PSNR. It is appealing because it is simple to calculate, 
has clear physical meanings, and mathematically convenient in the context of optimiza-
tion. But it is not matched perceived visual quality very well (Wang and Bovik 2002). 
PSNR performs poorly in predicting subjective image quality. To find out a method 
which can match the visual quality is the main motivation for many researchers in this 
area.

Statistical modeling is much easier if some process is carried out on the input images. 
Typical preprocess is done via transformation of image pixel values into a suitable 
space where simple models with a small number of parameters can describe the data. 
Wavelet (Chui 1992; Mallet 1999) has recently emerged as an effective tool to provide 
a perfect theoretical framework and mathematical structures and it have been favored 
by researchers in many fields. It has been widely used in image enhancement (Heric 
and Potocnik 2006), image denoising (Li et  al. 2010; Li and Suen 2016), segmentation 
(Kim and Kim 2003), feature extraction (Wee et al. 2008), texture analysis (Do and Vet-
terli 2002a, b), image compression (Li et al. 2013) and so on (Li and Suen 2016). Image 
coefficients have many important statistical characters after wavelet transform, such as 
non-Gaussian marginal distribution, the joint distribution of similarity, intra-scale and 
inter-scale correlation. Which one can express the image more accurately is an impor-
tant factor in the establishment. An accurate image statistical model without a reference 
image can provide a strong theoretical basis.

Statistical model

One important discovery in the literature of natural image statistics is that the marginal 
distribution of the coefficients in individual wavelet sub-bands can be well-fitted with a 
2-parameter generalized Gaussian density (GGD) model. Mallat proved that the histo-
gram of wavelet coefficients can be fitted by GGD. Define GGD, p(x;α,β),

where,

(1)p(x;α,β) =
β

2αŴ(1/β)
exp(−|x|/α)β

(2)α = σ

√

Ŵ(1/β)

Ŵ(3/β)
β > 0
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σ is the variance of noise and Ŵ(.) is the Gamma function; Here α models the width of 
the probability density functions peak, while β is inversely proportional to the decreasing 
rate of the peak. α is referred as the scale parameter while β is called the shape param-
eter. The Gaussian and Laplacian PDFs are special cases in GGD model, when using 
β = 2 and β = 1, respectively. The histogram of wavelet coefficients can be fitted by GGD 
which using the maximum likelihood estimator. As a result, by only two parameters of 
the GGD, we can capture the marginal distribution of wavelet coefficients in a sub-band 
accurately. Otherwise, it would require hundreds of parameters by using histogram. This 
reduces the storage of the image feature significantly, as well as the computational com-
plexity in assessment.

Our purpose then, is to estimate the scale and shape parameters of a reference image 
in a distorted image. In this paper, it provides a very efficient way to distinguish the coef-
ficient histogram of different types of image distortions. So that only two parameters 
sequence {α, β} are needed to calculate. Different types of image distortions have differ-
ent value of parameters. Although GGD model is not characterized well on the wave-
let coefficients of the distorted image, the parameters of model are important factors to 
calculate the distortion. To prove this opinion, we analyzed the relation of parameters 
between reference image and distorted image.

Figure  1 shows the changes of the parameters of GGD as a function of sub-band 
number for different sigma values. Finer sub-bands coefficients and coarser sub-bands 
coefficients are uncorrelated, they are still statistically dependent. Furthermore, this 
dependency cannot be eliminated through further linear transformation. The structure of 
the relationship between finer sub-bands coefficients and coarser sub-bands coefficients 
become more apparent upon transforming to the log domain (Buccigrossi and Simoncelli 
1999). In the following section we will analyze these two parameters of GGD in detail, 
and discuss the character of them when they change in different distorted images.

It is an interesting observation that when the means of (log2 (α)) are plotted in an enu-
meration of the sub-bands, the plot is approximately linear. Figure 2 depicts the value of 
(log2 (α)) for different images under different distort degrees (solid curves) and their cor-
responding reference images (dash curve) in diagonal sub-bands.

Figure 2 shows the value of scale parameter in log domain of different distortions. The 
values of (log2 (α)) in the diagonal sub-bands of reference image are quite close to linear, 
While the values of (log2 (α)) in the diagonal sub-band of distorted images is close to 
the reference image in the low sub-bands. For JPEG2000, JPEG, Gaussian-blur and Fast-
fade images, the value of (log2 (α)) changes approximately in the same way. To the white 
Gaussian noise image, the value of (log2 (α)) is not very close to the description above, 
especially when the noise is in high density, this is shown in Fig. 2c.

To make the method adapt to the images distorted by Gaussian noise well, we used the 
deviated value of scale parameters in each sub-band to improve the accuracy of image 
quality assessment method. Deviated value is defined as,

(3)σ 2 =
1

n2

n
∑

i,j

x2i,j

(4)Di = log2(αi+1)− log2(α1) i = 1, . . . , (scale − 1)
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We calculate the deviated value (D) of some images in the LIVE database II (http://live.
ece.utexas.edu/research/quality); the result is showed in Fig. 3. The images distorted by 
Gaussian noise are not satisfying the inequality 0 < D1 < (D2,D3). So we can use this 
character to sort distorted images into two kinds, with and without Gaussian noise.

It is of interest to know the common range for the values of scale parameters in GGDs 
for natural images. For typical natural images which are dominated by smooth regions, 
the values for β are found between 0.5 and 1. Figure 4 shows the histogram of the esti-
mated values of β from reference images in LIVE database II in four decomposition 
scales. Most of estimated β in finer scales are between 0.5 and 1 in finer scales.

It is difficult to obtain the value β of reference image accurately from the distorted 
image. We search the optimal β as a value of reference image from different distorted 
images. In Table  1 we show the different values of shape parameters in the [0.5 1] 
and these different values may have different results of quality assessments. Numer-
ous experiments show that when β =  0.7 obtains a good quality assessment in most 
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distorted images, expect Gaussian noise. Therefore, before assess the test image, we first 
use the scale parameters to sort the test image into two kinds, and then choose the shape 
parameter in different way. Without the Gaussian noise distortion we set β = 0.7, other-
wise set it as a small value in search area.

Distortion measure

Let p(x) and q(x) denote the probability density functions of wavelet coefficients in the 
same sub-band of two images. Let x =  {x1,…,xN} be a set of N randomly and indepen-
dently selected coefficients. The likelihoods of x being drawn from p(x) and q(x) are
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Fig. 2  Log2 (α) for image at different type of distorted image in diagonal sub-band. a JPEG2000 compressed 
image; b Gaussian blurred image; c white Gaussian noise contaminated; d JPEG compressed image; e fast-
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Fig. 3  The deviated value of scale parameter in images of different distortions. a JPGE, b white Gaussian 
noise, c JPGE2000, d fast fade, e Gaussian blur
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respectively.
The difference of the likelihoods between p(x) and q(x) is

In previous work, a number of authors have pointed out that relationship between 
Kullback–Leibler distance (KLD) and likelihoods function, and used KLD to compare 
images, mainly for classification and retrieval purposes. We obtain the following form 
for the KLD between two GGDs as

Therefore, the KLD can be estimated very effectively by using the model parameters. 
The distance function defined in Eq.  (8) is a function of three variables: the ratio of 

(5)l(p|x) =
1

N

N
∑

n=1

log p(xn)

(6)l(q|x) =
1

N

N
∑

n=1

log q(xn)

(7)l(p|x)− l(q|x) =
1

N

N
∑

n=1

log
p(xn)

q(xn)

(8)D(p(.,α1,β1)||q(.,α2,β2)) = log

(

β1α2Ŵ(1/β2)

β2α1Ŵ(1/β1)

)

+

(

α1

α2

)β2 Ŵ((β2 + 1)/β1)

Ŵ(1/β1)
− β1

Table 1  Performance evaluation of image quality measures in different value of βe

Italic values indicate the best performance

βe 0.5 0.6 0.7 0.8 0.9 1.0

JPEG2000 (JPEG2k)

 CC 0.61 0.79 0.88 0.83 0.82 0.80

 RMS 13.2 11.3 8.6 9.4 10.5 11.0

 ROCC 0.8 0.82 0.94 0.92 0.90 0.85

JPEG (JPEG)

 CC 0.59 0.75 0.90 0.88 0.79 0.6

 RMS 14 13.6 11.5 13.3 13.4 13.9

 ROCC 0.71 0.74 0.90 0.84 0.75 0.72

White Gaussian noise (WGN)

 CC 0.95 0.91 0.88 0.84 0.75 0.65

 RMS 5.1 7.8 8.9 10.0 11.7 12.8

 ROCC 0.97 0.95 0.93 0.89 0.84 0.77

Gaussian blur (GB)

 CC 0.78 0.8 0.90 0.82 0.84 0.85

 RMS 9.9 9.7 8.7 9.4 8.8 8.5

 ROCC 0.77 0.85 0.97 0.9 0.91 0.91

Fast fading (FF)

 CC 0.59 0.65 0.85 0.75 0.73 0.68

 RMS 12.6 12 10.5 10.9 11.3 11.3

 ROCC 0.81 0.86 0.91 0.88 0.85 0.85
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two scale parameters α1/α2 and two shape parameters β1 and β2. In this paper, we only 
selected the diagonal sub-bands to reduce the complexity of this method. Wavelet coef-
ficients in each sub-band can be used to calculate two model parameters {α, β} and KLD. 
The value of KLD is small when the parameters {α1, β1} and {α2, β2} are close, which is 
true for typical natural images. So we used KLD to obtain the difference of coefficient 
distributions between a distorted image and reference image.

Implementation
Estimate GGD parameters of reference image from distorted image

In this paper, we attempt to design an efficient feature extraction method with less com-
putation complexity. The feature is calculated in each diagonal sub-bands and then esti-
mated by the GGD model. We observe from the experiments that the sub-band statistic 
result is different in different scales and orientations. As the degree of distortion increases, 
the parameters of GGD in finer sub-bands increase faster than the parameters in coarser 
sub-bands. It is interesting that parameters of GGD in the coarser diagonal sub-bands are 
plotted approximately linear, and very close to the uncompressed natural images. Figure 2 
shows each type of distorted natural images. Hence, from the coarser diagonal sub-bands, 
one could predict the slope of line and assume that reference image have the same slope. 
This line yields the estimating the value of (log2 (α)) in finer diagonal sub-bands under the 
reference image, and the distorted image quality can be evaluated by the derivation of scale 
parameters. This is shown in Fig. 2 as well, where the (log2 (α)) is plotted for an image in 
different types distorted image. The value of (log2 (α)) in distorted image (show in solid 
curves) is quite close to the reference image (dashed curve) in coarser diagonal sub-band.

The slope of the line can be calculated by (log2 (α)) in coarser diagonal sub-bands, 
while the offsets in other diagonal sub-bands can be calculated by the difference between 
dc and dp, defined as:

where i is decomposition scale, αi is the value of the parameters of GGD in diagonal 
sub-bands in a distorted image.dci can be obtained from the parameters of GGD and dpi 
is a calculated value by the parameters of GGD in diagonal sub-bands of scale i which 
behaviors the value of a natural image. So the GGD parameters in a distorted image and 
a reference image can be obtained by the method above, then we use these parameters to 
calculate the distortion between the distorted image and reference image.

where αci,βci are the parameters computed by GGD on the histogram of coefficients. αei 
is calculated by the slope of the line in Eq. (10). βe is a value of reference image about dif-
ferent distorted images.

For typical natural images which are dominated by smooth regions, the values of β 
are found between 0.5 and 1. In Table  1 we show the result of image quality assess-
ment with different values of βe in the [0.5 1]. We find that when βe = 0.7, it makes a 

(9)dci = {log(αi)|i = 3 . . . (scale)}

(10)dpi = {(log2(α2)− log2(α1))× i + (2 log2(α1)− log2(α2))|i = 3 . . . (scale)}

(11)di = (p(.,αci,βci)||q(.,αei,βei)) i ∈ {3, . . . (scale)}
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good performance in most distortions. Since it is difficult to estimate an accurate value 
of shape parameter in reference image from different distorted images, so it is a good 
choice to set βe as a fixed value, especially when input a single image without any train-
ing set.
di is calculated by Eq. (11), So the overall distortion between the distorted image and 

reference image is defined as:

where s is decomposition scales, di is the estimation of the KLD between distorted image 
and reference image, � is a constant used to control the scale of the distortion measure.

Quality assessment method

The quality analysis system for the distorted images is illustrated in Fig. 5. The biorthogo-
nal 9/7 wavelet with four levels of decomposition is used to transform. For each selected 
sub-band, the histogram of the coefficients is computed and its feature parameters are 
then estimated using GGD model. The major purpose of selecting a diagonal subset of 
all sub-bands is to reduce the algorithm complexity.

Test
We use the LIVE database II to evaluate the performance of the method we proposed. 
The database contains 29 high-resolution original images altered with five types of 
distortion at different levels. The distorted images were divided into five datasets. 

(12)Q = log2

(

1+ �

s
∑

i=3

di

)

Fig. 5  Quality analysis systems
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JPEG2000 compressed images (227 images); JPEG compressed images (233 images); 
and White Gaussian Noise (WGN), Gaussian Blur (GB), Fast Fading (FF) each contain-
ing 174 images, respectively. Subjects were asked to provide their perception of qual-
ity on a continuous linear scale that was divided into five equal regions marked with 
“Bad”, “Poor”, “Fair”, “Good” and “Excellent”, respectively. The raw scores for each subject 
were converted into Z-scores and rescaled within each dataset to fill the range from 1 to 
100. MOS and the standard deviation between subjective scores were then computed for 
each image.

The proposed method used KLD value to quantify the performance of the proposed 
quality assessment method. We used the four parameters logistic functions to provide 
a nonlinear mapping between objective and subjective scores proposed in video qual-
ity experts group (VQEG). Figure  6 shows the scatter plots (in which each data point 
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Fig. 6  Scatter plots of mean opinion score (MOS) versus model prediction in the LIVE database. a JPEG2000, 
b JPEG, c white Gaussian noise, d Gaussian blur, e fast fading
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represents one test image) of true mean opinion score versus the predicted score by the 
method proposed. After such a nonlinear mapping, the correlation coefficients between 
the predicted and true subjective scores are calculated to evaluate prediction accuracy 
and the spearman rank-order correlation coefficient is computed to evaluate prediction 
monotonicity.

The performance evaluation results are shown in Table  2. It can be seen that our 
method performs quite well for a wide range of distortion types. Specifically, it pro-
vides better prediction accuracy (higher correlation coefficients), better prediction 
monotonicity (higher Spearman rank-order correlation coefficients) and better predic-
tion efficient(Root Mean Square). Besides, our method needs no additional information 
from training sets; it is the main outstanding of our method which is better than papers 
(Sheikh et al. 2005; Lu et al. 2010). In most images except JPEG, the method we proposed 
is better than blind image quality indices (BIQI) (Moorthy and Bovik 2010) and nearly to 
the reference image quality assessment such as PSNR, structural similarity (SSIM). We 
also compare the state-of-the-art blind image quality assessment (BIQA) models pro-
posed in Ref. Xue et al. (2014). Our proposed method is very closely its performance. 
Therefore, we believe our method is a reasonable and useful choice in practical quality 
assessment systems.

To test the generalization ability of the proposed model with respect to distortion 
types, we conducted further experiments on the entire TID2008 (Ponomarenko et  al. 

Table 2  Performance evaluation of image quality measures using the LIVE database

Dataset JPEG2k JPEG WGN GB FF

Correlation coefficient

 PSNR 0.85 0.87 0.92 0.74 0.85

 SSIM 0.94 0.94 0.98 0.90 0.95

 Ref. (Sheikh et al. 2005) 0.92 0.38 0.93 0.76 0.71

 Ref. (Lu et al. 2010) 0.84 0.58 0.95 0.85 0.84

 BIQI (Moorthy and Bovik 2010) 0.80 0.90 0.95 0.82 0.73

 BIQA (Xue et al. 2014) 0.87 0.94 0.95 0.89 0.85

 Proposed method 0.88 0.90 0.95 0.90 0.85

Rank order correlation coefficient

 PSNR 0.85 0.87 0.93 0.72 0.85

 SSIM 0.93 0.94 0.96 0.90 0.94

 Ref. (Sheikh et al. 2005) 0.90 0.27 0.91 0.70 0.71

 Ref. (Lu et al. 2010) 0.82 0.57 0.63 0.85 0.82

 BIQI (Moorthy and Bovik 2010) 0.79 0.89 0.95 0.84 0.70

 BIQA (Xue et al. 2014) 0.93 0.95 0.98 0.94 0.90

 Proposed method 0.94 0.90 0.97 0.97 0.91

Root mean square

 PSNR 12.8 14.8 10.7 12.2 14.5

 SSIM 8.6 10.1 5.2 8.0 8.5

 Ref. (Sheikh et al. 2005) 10.3 30.2 10.7 13.0 19.3

 Ref. (Lu et al. 2010) 8.7 24.4 9.62 8.4 14.8

 BIQI (Moorthy and Bovik 2010) 14.9 13.8 8.4 10.3 19.3

 BIQA (Xue et al. 2014) 9.7 10.0 4.9 9.0 10.0

 Proposed method 9.4 11.5 5.1 8.7 10.5
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2009) and CISQ (Larson and Chandler 2010). The TID2008 database contains 25 ref-
erence images and 1700 distorted images (25 reference images ×  17 types of distor-
tions ×  4 levels of distortions). The CISQ database consists of 30 original images and 
their distorted counterparts with six types of distorted at four to five different levels of 
distortion. For the CISQ and TID2008 databases, we mainly consider the 4 common 
types of distortion that appear in the LIVE database II, i.e., JPEG2000, JPEG, WGN, and 
GB. We evaluated several state-of-the-art algorithms, i.e., BIQI (Moorthy and Bovik 
2010) and BIQA (Xue et al. 2014). The results are listed in Table 3. The proposed method 
shows clear advantage over the BIQI, and similar to the state-of-the-art BIQA method.

The computational complexity is also an important factor when evaluating image 
quality assessments. The complexity of proposed method is similar to BIQI (Moorthy 
and Bovik 2010), the computational complexity is O(N ), where N  is the total number 
of image pixels. As a rough comparison, the execution time for processing an image is 
about 0.5 s using MATLAB implementation.

Conclusion
In this paper, an improved image assessment model is proposed to do image quality 
assessment without any reference. The image is decomposed by wavelet into multi-scale 
and multi-directional sub-bands. The authors use the Kullback–Leibler distance on the 
marginal probability distribution of wavelet coefficients in distorted image as a measure 
of image distortion. A generalized Gaussian model is employed to summarize the mar-
ginal distribution of wavelet coefficients of images, so that only a relatively small number 
of features are needed for the evaluation of image quality. The dependencies are cap-
tured by the parameters of GGD to estimate the corresponding value in the reference 
image. The method proposed is easy to implement and efficient in computation.

The experiments on numerous images from database demonstrate the efficiency of the 
method we proposed. Several properties of the method we proposed may be of inter-
est for real-world users. First, it is a general-purpose method that performs well for a 
wide range of distortion types and need no information of reference image. Second, the 
method is easy to implement, computational efficient, and need less parameters. Third, 
since the measurement is based on marginal distributions of wavelet coefficients, the 

Table 3  Performance evaluation of image quality measure

Italic values indicate the best performance

Rank order correlation coef-
ficient

BIQI (Moorthy and Bovik 
2010)

BIQA (Xue et al. 2014) Proposed method

CSIQ

 WGN 0.62 0.94 0.92

 JPEG 0.84 0.93 0.94

 JPEG2k 0.76 0.91 0.89

 GB 0.81 0.90 0.92

TID2008

 WGN 0.55 0.90 0.88

 GB 0.89 0.88 0.92

 JPEG 0.90 0.93 0.90

 JPEG2k 0.81 0.92 0.91
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method is insensitive to small geometric distortions such as spatial translation, rotation 
and scaling. In the future, the method may be further improved by incorporating joint 
statistics of wavelet coefficients, which are much more powerful in characterizing the 
statistical structures of natural images.
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