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Background
For a group, it means finite, and for a simple group, it is non-abelian. If G is a group, 
then the set of element orders of G is denoted by ω(G) and the set of prime divisors 
of G is denoted by π(G). Related to the set ω(G) a graph is named a prime graph of G, 
which is written by GK(G). The vertex set of GK(G) is written by π(G), and for different 
primes p, q, there is an edge between the two vertices p, q if p · q ∈ ω(G), which is writ-
ten by p ∼ q. We let s(G) denote the number of connected components of the prime 
graph GK(G).

Moghaddamfar et al in 2005 gave the following notions which inspire some authors’ 
attention.

Definition 1  (Moghaddamfar et  al. 2005) Let G be a finite group and 
|G| = p

α1
1 p

α2
2 · · · p

αk
k , where pis are primes and αis are positive integers. For p ∈ π(G) , 

let deg(p) := |{q ∈ π(G)|p ∼ q}|, which we call the degree of p. We also define 
D(G) := (deg(p1), deg(p2), . . . , deg(pk)), where p1 < p2 < · · · < pk. We call D(G) the 
degree pattern of G.

For a given finite group M, write hOD(M) to denote the number of isomorphism classes 
of finite groups G such that (1) |G| = |M| and (2) D(G) = D(M).

Abstract 

Let An be an alternating group of degree n. We know that A10 is 2-fold OD-character-
izable and A125 is 6-fold OD-characterizable. In this note, we first show that A189 and 
A147 are 14-fold and 7-fold OD-characterizable, respectively, and second show that 
certain groups Ap+8 with that π((p+ 8)!) = π(p!) and p < 1000, are OD-characteriz-
able. The first gives a negative answer to Open Problem of Kogani-Moghaddam and 
Moghaddamfar.
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Definition 2  (Moghaddamfar et al. 2005) A finite group M is called k-fold OD-charac-
terizable if hOD(M) = k. Moreover, a 1-fold OD-characterizable group is simply called 
an OD-characterizable group.

Up to now, some groups are proved to be k-fold OD-characterizable and we can refer 
to the corresponding references of Akbari and Moghaddamfar (2015).

Concerning the alternating group G with s(G) = 1, what’s the influence of OD on the 
structure of group? Recently, the following results are given.

Theorem 3  The following statements hold:

(1)	 The alternating group A10 is 2-fold OD-characterizable (see Moghaddamfar and 
Zokayi 2010).

(2)	 The alternating group A125 is 6-fold OD-characterizable (see Liu and Zhang Submit-
ted).

(3)	 The alternating group Ap+3 except A10 is OD-characterizable (see Hoseini and 
Moghaddamfar 2010; Kogani-Moghaddam and Moghaddamfar 2012; Liu 2015; 
Moghaddamfar and Rahbariyan 2011; Moghaddamfar and Zokayi 2009; Yan and 
Chen 2012; Yan et al. 2013; Zhang and Shi 2008; Mahmoudifar and Khosravi 2015).

(4)	 All alternating groups Ap+5, where p+ 4 is a composite and p+ 6 is a prime and 
5 �= p ∈ π(1000!), are OD-characterizable (see Yan et al. 2015).

In Moghaddamfar (2015), A189 is at least 14-fold OD-characterizable. In this paper, we 
show the results as follows.

Theorem 4  The following hold:

(1)	 The alternating group A189 of degree 189 is 14-fold OD-characterizable.
(2)	 The alternating group A147 of degree 147 is 7-fold OD-characterizable.

These results give negative answers to the Open Problem (Kogani-Moghaddam and 
Moghaddamfar 2012).

Open Problem   (Kogani-Moghaddam and Moghaddamfar 2012) All alternating 
groups Am, with m �= 10, are OD-characterizable.

We also prove that some alternating groups Ap+8 with p < 1000 are 
OD-characterizable.

Theorem 5  Assume that p is a prime satisfying the following three conditions:

(1)	 p �= 139 and p �= 181,
(2)	 π((p+ 8)!) = π(p!),
(3)	 p ≤ 997.

Then the alternating group Ap+8 of degree p+ 8 is OD-characterizable.
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Let G be a finite group, then let Soc(G) denote the socle of G regarded as a subgroup 
which is generated by the minimal normal subgroup of G. Let Sylp(G) be the set of all 
Sylow p-subgroups Gp of G, where p ∈ π(G). Let Aut(G) and Out(G) be the automor-
phism and outer-automorphism group of G, respectively. Let Sn denote the symmetric 
groups of degree n. Let p be a prime divisor of a positive integer n, then the p-part of n 
is denoted by np, namely, np‖n. The other symbols are standard (see Conway et al. 1985, 
for instance).

Some preliminary results
In this section, some preliminary results are given to prove the main theorem.

Lemma 6  Let S = P1 × · · · × Pr, where Pi’s are isomorphic non-abelian simple groups. 
Then Aut(S) = Aut(P1)× · · · × Aut(Pr).Sr.

Proof  See Zavarnitsin (2000). � �

Lemma 7  Let An (or Sn) be an alternating (or a symmetric group) of degree n. Then the 
following hold.

(1)	 Let p, q ∈ π(An) be odd primes. Then p ∼ q if and only if p+ q ≤ n.
(2)	 Let p ∈ π(An) be odd prime. Then 2 ∼ p if and only if p+ 4 ≤ n.
(3)	 Let p, q ∈ π(Sn). Then p ∼ q if and only if p+ q ≤ n.

Proof  It is easy to get from Zavarnitsin and Mazurov (1999).�  �

Lemma 8  The number of groups of order 189 is 13.

Proof  See Western (1898).�  �

Lemma 9  Let P be a finite simple group and assume that r is the largest prime divi-
sor of |P| with 50 < r < 1000. Then for every prime number s satisfying the inequality 
(r − 1)/2 < s ≤ r, the order of the factor group Aut(P)/P is not divisible by s.

Proof  It is easy to check this results by Conway et al. (1985) and Zavarnitsine (2009).� �

Let n = p
α1
1 p

α2
2 · · · pαrr  where p1, p2, . . . , pr are different primes and α1,α2, . . . ,αr are 

positive integers, then exp(n, pi) = αi with pαii | n but pαi+1

i ∤ n.

Lemma 10  Let L := Ap+8 be an alternating group of degree p+ 8 with that p is a prime 
and π(p+ 8)! = π(p!). Let |π(Ap+8)| = d with d a positive integer. Then the following 
hold:

(1)	 deg(p) = 4 and deg(r) = d − 1 for r ∈ {2, 3, 5, 7}.
(2)	 exp(|L|, 2) ≤ p+ 7.
(3)	 exp(|L|, r) =

∑∞
i=1[

p+8

ri
] for each r ∈ π(L)\{2}. Furthermore, exp(|L|, r) < p+8

2  
where 5 ≤ r ∈ π(L). In particular, if r > [

p+8
2 ], then exp(|L|, r) = 1.
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Proof  By Lemma 7, it is easy to compute that for odd prime r, p · r ∈ ω(L) if and only 
if p+ r ≤ p+ 8. Hence r = 3, 5, 7. If r = 2, then since p+ 4 ≤ p+ 8, then 2 · p ∈ ω(L). 
This completes (1).

By Gaussian’s integer function,

This proves (2). Similarly, we can get (3).�  �

Lemma 11  Let a,  m be positive integers. If (a,m) = 1, then the equation ax ≡ 1(mod 
m) has solutions. In particular, if the order of a modulo m is h(a), then h(a) divides φ(m) 
where φ(m) denotes the Euler’s function of m.

Proof  See Theorem 8.12 of Burton (2002).� �

Lemma 12  Let p be a prime and L := Ap+8 be the alternating group of degree p+ 8 with 
that π((p+ 8)!) = π(p!). Given P ∈ Sylp(L) and Q ∈ Sylq(L) with 11 ≤ q < p ≤ 1000. 
Then the following results hold:

(1)	 The order of NL(P) is not divisible by qs(q), where s(q) = exp(|L|, q).
(2)	 If p ∈ {113, 139, 199, 211, 241, 283, 293, 337, 467, 509, 619, 787, 797, 839, 863, 887,  

953, 997} , then |NL(Q)| is not divisible by p.
(3)	 If p ∈ {181, 317, 409, 421, 523, 547, 577, 631, 661, 691, 709, 811, 829, 919}, then there  

is at least a prime r with that the order of r modulo p is less than p− 1, where 
11 ≤ r < p and r ∈ π(p!).

Proof  By Lemma 11, the equation qx ≡ 1(mod p) has solutions. Suppose the order of 
q modulo p is written by h(q). If h(q) = p− 1, then q is a primitive root of modulo p. 
By Lemma 11, we have h(q) | p− 1. By Lemma 10, we can get s(q). If h(q) > s(q), then 
qh(q) | |L|, a contradiction to the hypotheses. Then we can assume that h(q) ≤ s(q). We 
can get the q and h(q) by GAP (2016) as Table 1 (Note that there is certain prime which 
has order h(q) < p− 1, but h(q) > s(q). Hence we do not list in this table).

By NC Theorem, the factor group NL(P)
CL(P)

 is isomorphic to a subgroup of Aut(P) ∼= Zp−1 
where Zn is a cyclic group of order n. It follows that the order of NL(P)

CL(P)
 is less than or 

equal to p− 1. If 11 ≤ q < p and qs(q) | |NL(P)| where exp(|L|, q) = s(q), then q | |CL(P)|. 
This forces q ∼ p, a contradiction. This ends the proof of (1).

Next, assume that p ∈ {113, 139, 199, 211, 241, 283, 293, 337, 467, 509, 619, 787, 797,  
839, 863, 887, 953, 997} . If p divides the order of NL(Q), then by NC theorem and Table 1, 
p | |CL(Q)| and so p ∼ q, a contradiction. This proves (2). (3) follows from Table 1.

This completes the proof of Lemma 12.�  �

exp(|L|, 2) =

∞
∑

i=1

[

p+ 8

2i

]

− 1

=

([

p+ 8

2

]

+
p+ 8

22
+

[

p+ 8

23

]

+ · · ·

)

− 1

≤

(

p+ 8

2
+

p+ 8

22
+

p+ 8

23
+ · · ·

)

− 1

= p+ 7.
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Proof of the main theorem
In this section, we first give the proof of Theorem 4 and second prove Theorem 5.

The proof of Theorem 4

Proof  We divides the proof into two steps.

Step 1 Let M = A189. Assume that G is a finite group such that

and

By Lemma 7, the degree pattern GK(G) of G is connected, in particular, the degree pat-
tern GK(G) is the same as the degree pattern of GK(M).

|G| = |M|

D(G) = D(M).

Table 1  The values of p and h(q)

p h(q) Condition p h(q) Condition

113 2
4
.7 None 139 2.3.23 None

181 2
2
.3
2
.5 q �= 19 181 4 q = 19

199 2.3
2
.11 None 211 2.3.5.7 None

241 2
4
.3.5 None 283 2.3.47 None

293 2
2
.73 None 317 2

2
.79 q �= 73

317 4 q = 73 337 2
4
.3.7 None

409 2
3
.3.17 q �= 31, 53 409 8 q = 31

409 3 q = 53 421 2
2
.3.5.7 q �= 29

421 4 q = 29 467 2.233 None

509 2
2
.127 none 523 2.3

2
.29 q �= 11, 19, 61

523 29 q = 11 523 9 q = 19

523 6 q = 61 547 2.3.7.13 q �= 11, 13, 41

547 39 q = 11 547 21 q = 13

547 6 q = 41 577 2
6
.3
2 q �= 23

577 8 q = 23 619 2.3.103 None

631 2.3
2
.5.7 q �= 43 631 3 q = 43

661 2
3
.3.5.11 q �= 11 661 33 q = 11

691 2.3.5.23 q �= 89 691 5 q = 89

709 2
2
.3.59 q �= 227 709 3 q = 227

787 2.3.131 None 797 2
2
.199 None

811 2.3
4
.5 q �= 131 811 6 q = 131

829 2
2
.3
2
.23 q �= 11 829 23 q = 11

839 2.419 None 863 2.431 None

887 2.443 None 919 2.3
3
.17 q �= 53

919 6 q = 53 953 2
3
.7.17 None

997 2
2
.3.83 None
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Lemma 13  Let K be a maximal normal soluble subgroup of G. Then K is a {2, 3, 5, 7}
-group, in particular, G is insoluble.

Proof  Assume the contrary. First we show that K is a 181′-group. We assume 
that K contains an element x of order 181. Let C be the centralizer of x in G and 
N be the normalizer of x in G. It is easy to see from D(G) that C is a {2, 3, 5, 7, 181}-
group. By NC theorem, N/C is isomorphic to a subgroup of automorphism 
group Aut(�x�) ∼= Z22 × Z32 × Z5, where Zn is a cyclic group of order n. Hence, 
C is a {2, 3, 5, 7, 181}-group. By Frattini’s arguments, G = KNG(�x�) and so 
{11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109,  
113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181} ⊆ π(K ) . Since K is soluble, 
G has a Hall subgroup H of order 109 · 181. Obviously, 109 ∤ 181− 1,H is cyclic and so 
109 · 181 ∈ ω(G) contradicting D(G) = D(M).

Second, show that K is a p′-group, where p ∈ {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,  
53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157,  
163, 167, 173, 179}  . Let p be a prime divisor of |K| and P a Sylow p-subgroup of K. By 
Frattini’s arguments, G = KNG(P). It follows from Lemma  12, that 181 is a divi-
sor of |NG(P)| if and only if p = 19. If 181 ∤ |Aut(P)|, then 181 divides the order 
of CG(P) and so there is an element of order p · 181, a contradiction. On the 
other hand, p = 19 and 181 | |Aut(P)| , where P is the Sylow 19-subgroup of K. By 
Lemma  10, exp(|L|, 19) = 9 and so |NG(P)

CG(P)
| |

∏9
i=1 19

45 · (19i − 1). It is easy to get that 
101 ∤|

∏9
i=1 19

45 · (19i − 1). If 101 | |NG(P)|, then 101 is a prime divisor of CG(P).  
Set C = CG(P) and C101 ∈ Syl101(C) . Also exp(|L|, 101) = 1. By Frattini’s argument, 
N = CNN (C101) and so p ∤ |NN (C101)| . Thus 181 | |C| and so 181 ∼ p, a contradiction. So 
101 ∤ |NG(P)| and 101 ∈ π(K ) . Let K101 ∈ Syl101(K ). Since G = KNG(K101), 101 divides 
the order of NG(K101), then 101 ∤ |K |, a contradiction. Therefore K is a {2, 3, 5, 7}-group.

Obviously, G �= K  and so G is insoluble.�  �

Lemma 14  The quotient group G  /  K is an almost simple group. More precisely, 
there is a normal series such that S ≤ G/K ≤ Aut(S), where S is isomorphic to An for 
n ∈ {181, 182, 183, 184, 185, 186, 187, 188, 189}.

Proof  Let H = G/K  and S = Soc(H). Then S = B1 × · · · × Bn, where Bi’s are non-abelian 
simple groups and S ≤ H ≤ Aut(S). In what follows, we will prove that n = 1 and S ∼= An.

Suppose the contrary. Obviously, 181 does not divide the order of S, other-
wise, there is an element of order 109 · 181 contradicting D(G) = D(A189). Hence, 
for every i, we have that Bi ∈ F179, where Fp is the set of non-abelian simple group S 
with that p ∈ π(S) ⊆ {2, 3, · · · , p} and p is a prime. But by Lemma 13, K is a {2, 3, 5, 7}
-group. Therefore 181 ∈ π(H) ⊆ π(Aut(S)) and so 181 divides the order of Out(S) . 
By Lemma  6, Out(S) = Out(P1)× · · · ×Out(Pr), where the group Pi’s are satisfying 
S ∼= P1 × · · · × Pr . Therefore for some j 181 divides the order of an outer-automorphism 
group of a direct Pj of t isomorphic simple group Bi. Since Bi ∈ F179, the order of Out(Bi) 
is not divisible by 181 by Lemma  9. By Lemma  6, |Aut(Pj)| = |Aut(Pj)|

t · t!. It means 
t ≥ 181, and hence 4181 | |G|, a contradiction. Thus n = 1 and S = B1.
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By Lemma  13, we can assume that |S| = 2
a · 3b · 5c · 7d · 1118 · 1315 · 1711 · 199 · 238·

29
6·316·375·414 ·434 ·474 ·534 ·593·613·672·712·732·792·832·892·97·101·107·109· 113· 

127 · 131 · 137 · 139 · 149 · 151 · 157 · 163 · 167 · 173 · 179 · 181, where 2 ≤ a ≤ 182, 1 ≤ b 
≤ 93, 1 ≤ c ≤ 45 and 1 ≤ d ≤ 30. By Zavarnitsine (2009), the only possible group is iso-
morphic to An with n ∈ {181, 182, . . . , 189}.

This completes the proof.�  �

We continue the proof of Theorem  4. By Lemma  14, S is isomorphic to An with 
n ∈ {181, 182, · · · , 189}, and S ≤ G/K ≤ Aut(S).

Case 1  Let S ∼= A181.

Then A181 ≤ G/K ≤ S181. If G/K ∼= A181, then |K | = 182 · 183 · 184 · 185 · 186 · 187·

188 · 189 = 2
6 · 35 · 5 · 72 · 11 · 13 · 17 · 23 · 31 · 37 · 47 and so 11, 13, 17, 23, 31, 37, 47 ∈

π(K ) contradicting to Lemma 13.
If G/K ∼= S181, we also have that 11,  13,  17 or 19 divides |K|, contradicting to 

Lemma 13.
Similarly we can rule out these cases “S ∼= An with n ∈ {182, 183, · · · , 187}”.

Case 2  Let S ∼= A188.

Then A188 ≤ G/K ≤ S188. Therefore G/K ∼= A188 or G/K ∼= S188.

(1.1)	� Let G/K ∼= A188. Then |K | = 7 · 33. By Conway et  al. (1985), the order of 
Out(A188) is 2 and the Schur multiplier of A188 is 2. Then G is isomorphic to 
K × A188. By Lemma 8, there are 13 types of groups of order 189 satisfying that 
|G| = |M| and D(G) = D(M).

(1.2)	 Let G/K ∼= S188. Since |S188|2 = |S189|2 > |A189|2, then we rule out this case.

Case 3   Let S ∼= A189.

Then A189 ≤ G/K ≤ S189. If G/K ∼= A189, then order consideration implies that G is 
isomorphic to A189. If G/K ∼= S189, then as |S189|2 > |A189|2 = |G|2, we rule out this case.

Step 2 Similarly as the proof of (1), the following results are given:

(1)	 K is a maximal soluble normal {2, 3, 5, 7}-group.
(2)	 S ≤ G/K ≤ Aut(S), where S is isomorphic to one of the groups: A139,A140, . . . ,A146 

and A147. 

Case 1  Let S ∼= A139.

Then A139 ≤ G/K ≤ S139. If the former, then 11 | |K |, a contradiction. If the latter, we 
also have that 11 | |K | and so we rule out.

Similarly we can rule out these cases “S is isomorphic to A140,A141, . . . ,A145”.
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Case 2   Let S ∼= A146.

Then A146 ≤ G/K ≤ S146. If G/K ∼= A146, then |K | = 3 · 72. Since the order of 
Out(A147) is 2 and the Schur multiplier of A147 is 2. Then G is isomorphic to 
K × A146 . By GAP (2016), there are six types of groups of order 147. So there are 6 
groups with the hypotheses: |G| = |A147| and D(G) = D(A147). If G/K ∼= S147, then as 
|S146|2 > |A146|2 = |A147|2 = |G|2, we rule out.

Case 3   Let S ∼= A147.

Then A147 ≤ G/K ≤ S147. If the former, then K = 1 and so G ∼= A147, the desired result. 
If the latter, then as |S147|2 > |A147|2 = |G|2, we rule out.

We also can get that A147 is 7-fold OD-characterizable.
This completes the proof of Theorem 4. � �

The proof of Theorem 5

Proof  Assume that |G| = |Ap+8| and D(G) = D(Ap+8), then by Lemma  7, the 
degree pattern GK(G) of G is the same as GK (Ap+8) of Ap+8. Similarly as the proof of 
Theorem 4, the statements are gotten:

(1)	 Let K be a maximal soluble group. Then K is a {2, 3, 5, 7}-group, in particular, G is 
insoluble.

(2)	 There is a normal series such that S ≤ G/K ≤ Aut(S), where S is isomorphic to 
Ap+r with that 0 ≤ r ≤ 8 and p ∈ {113, 139, 199, 211, 241, 283, 293, 317, 337, 409, 
421, 467, 509, 523, 547, 577, 619, 631, 661, 691, 709, 787, 797, 811, 829, 839, 863, 
887, 919, 953, 997}.

In what follows, we consider the case “p = 113”.

(1)	S ∼= A113.
	 Then A113 ≤ G/K ≤ S113. If G/K ∼= A113, then 11 divides the order of K, a contradic-

tion. If G/K ∼= S113, then we also have that 11 | |K |, a contradiction. Similarly we can 
get a contradiction when S is isomorphic to one of A114,A115,A116,A117,A118,A119, 
and A120.

(2)	Let S ∼= A121.
	 Then A121 ≤ G/K ∼= S121. If G/K ∼= A121, then K = 1, the desired result. If 

G/K ∼= S121, then as |S121|2 > |G|2 = |A121|2, a contradiction.

Similarly we can deal with these cases “p ∈ {139, 199, 211, 241, 283, 293, 317, 337, 409, 421,

467, 509, 523, 547, 577, 619, 631, 661, 691, 709, 787, 797, 811, 829, 839, 863, 887, 919, 953,

997}”.
This completes the proof of Theorem 5. � �
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Non OD‑characterization of some alternating groups
Assume that p is a prime and m is an integer larger than 3. If π((p+m)!) ⊆ π(p!), then 
GK (Ap+m) is connected.

For the alternating group Ap+m, |Ap+m| = (p+m)|Ap+m−1|.
We shall use the notation v(n) to denote the number of types of groups of order n 

where n is a positive integer. We follows the method of Moghaddamfar (2015), 
hOD(Ap+m) ≥ 1+ v(p+m) where π(Ap+m) = π(Ap) and m ≥ 1 is a non-prime integer. 
We get the results as Table 2 which contains some results of Liu and Zhang (Submitted), 
Moghaddamfar (2015), Mahmoufifar and Khosravi (2014).

Note that v(n), the number of groups of given small order n can be computed by GAP 
(2016). The Gap programme is as followings.

gap> SmallGroupsInformation(n);
So we have the following conjecture.

Conjecture Assume that p is a prime and m ≥ 6 is not a prime. If π((p+m)!) ⊆ π(p!) 
and π(p+m) ⊆ π(m!), then Ap+m is not OD-characterizable.

Conclusion
In this paper, we have proved the following two results.

Result 1a: The alternating group A189 of degree 189 is 14-fold OD-characterizable.
Result 1b: The alternating group A147 of degree 147 is 7-fold OD-characterizable.
Result 2: Let p be a prime with the following three conditions:

(1)	 p �= 139 and p �= 181,
(2)	 π((p+ 8)!) = π(p!),
(3)	 p ≤ 997.

Then the alternating group Ap+8 of degree p+ 8 is OD-characterizable.

Table 2  Non OD-characterizability of alternating groups

G p m! π(p+m) hOD References

A125 113 12! {5} ≥6 Mahmoufifar and Khosravi (2014)

A147 139 8! {3, 7} ≥7 Moghaddamfar (2015)

A189 181 8! {3, 7} ≥14 Moghaddamfar (2015)

A539 523 16! {7, 11} ≥3 Moghaddamfar (2015)

A625 619 6! {5} ≥16 Moghaddamfar (2015)

A875 863 12! {13, 67} ≥6 Moghaddamfar (2015)

A1029 1019 10! {3, 7} ≥20

A1144 1129 15! {2, 11, 13} ≥40

A1274 1159 15! {2, 7, 13} ≥11

A1344 1319 25! {2, 3, 7} ≥11,721

A1352 1319 33! {2, 13} ≥53
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