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Background
Weighted Gini–Simpson index may be considered a recent analytical tool since explicit 
mentions don’t seem available before the end of last century, and few empirical applica-
tions are yet available, though its number seems to be increasing fast. The problem that 
will be addressed in this paper concerns the location of maximum point and evaluation 
of the maximum value of the index, which are not trivial issues, as standard formulas 
referred to in the main literature just are straightforwardly applicable when a full set of 
inequalities are simultaneously verified. Otherwise, one has to proceed using algorithms 
as will be outlined in this paper. First, as background, the literature and main character-
istics of Simpson and Gini–Simpson indices and of the correspondent weighted versions 
will be reviewed, followed by results and discussion of the methodology here proposed. 
Last, some conclusions are drawn.

Abstract 

Weighted Gini–Simpson index is an analytical tool that promises to be widely used 
concerning biological and economics applications, relative to the assessment of diver‑
sity measured by compositional proportions of a system defined with a finite number 
of elementary states characterized by positive weights. In this paper, a current literature 
review on the theme is presented and the mathematical properties of the index are 
outlined, focusing on the location of the maximizer (maximum point) and evaluation 
of the maximum value, with emphasis in the role of the Lagrange multiplier critical 
value—closely related with the harmonic mean of the weights—which is shown to be 
a barrier concerning the feasibility of the solution. Sequential procedures are pre‑
sented, either backward or forward, which are used to obtain the correct values of the 
maximum point coordinates, thus allowing for the computation of the right maximum 
value of the index. Also, new theoretical results are provided, such as the calculus of 
limits and partial derivatives related to the critical solution, used to assess of the effec‑
tiveness of the algorithms herein proposed and discussed.

Keywords:  Weighted Gini–Simpson index, Critical solution, Feasibility of solution, 
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Simpson and Gini–Simpson indices

Considering a simplex of dimension m  −  1 defined as 
�m−1 =

{

pi ≥ 0, i = 1, . . .m;
∑m

i=1 pi = 1
}

, where the numbers pi denote relative exten-
sion measures, usually probabilities or proportions,1 Simpson’s index, originally men-
tioned as a measure of the concentration of a classification (Simpson 1949) is evaluated 
with the formula C =

∑m
i=1 p

2
i  and its symmetric form D =  1 − C is usually named2 

Gini–Simpson index (e.g., Rao 1982), and used as a measure of biological or phyloge-
netic diversity until today (e.g., Tryjanowski et  al. 2015; Zaller et  al. 2015; Brocchieri 
2015), since we can rewrite the correspondent formula as D =

∑m
i=1 pi(1− pi) and 

interpret it associated to the probability that any two random individuals in a population 
are assigned to different populations or genetic clusters (e.g., Chybicki et  al. 2014). In 
biological studies, more than seven decades ago, the term pi(1 − pi) was already men-
tioned as the contribution to the sampling variance due to any one species being some-
times observed and sometimes not (Fisher et al. 1943), later stated as the probability of 
interspecific encounters (Hurlbert 1971), or the probability of drawing two individuals of 
different type from a given collection (Gregorius and Gillet 2008). Good (1953), in a 
paper inspired by Alan Turing, defined parametric measures of heterogeneity of popula-
tions of s species, evaluated as cm,n =

∑s
i=1 p

m
i

(

− log pi
)n with m, n =  0,1,2,…. Using 

this formalism it follows that the case c2,0 is Simpson’s concentration index C, while c1,1 is 
Shannon (1948) statistical entropy.

The attribution to Corrado Gini of the earliest formulation of index D, more than a 
century ago, was related with the themes of variability devoted to the measurement of 
quantitative phenomena, and mutability, this one concerned with the measurement of 
qualitative phenomena. It is mentioned that Gini presented about 13 versions of the 
index (Ceriani and Verme 2012) and measuring variability is considered to be at the core 
of his procedure (de Finetti 1931). Sen (2005) says that Gini index opened the avenue for 
research in diversity analysis of qualitative categorical data models.

Weighted Simpson and Gini–Simpson indices

It is not easy finding references relative to the use of weighted Simpson’s concentration 
index Cw =

∑m
i=1 wip

2
i  which seems to have been first explicitly stated and used as an 

inverse measure for antigenic diversity of a virus population (Nowak 1994); it was also 
used recently as a price-weighted biodiversity index of catch in freshwater fisheries in 
Malawi (Kasulo and Perrings 2006).

Sharma et al. (1978) discussed a non-additive information measure they named “gen-
eralized useful information of degree α” relative to a utility information scheme with m 
positive real numbers wi also defined in  the simplex Δm−1, denoted parametrically3 as 
Iα(W ) =

∑m
i=1 wipi

(

pα−1
i − 1

)

/
(

21−α − 1
)

 with α  ≠  1, from which we can retrieve 
weighted Gini–Simpson index evaluating the semi-value of Iα(W) with α = 2, obtaining 
∑m

i=1 wipi(1− pi). The weights {wi}i=1,…,m allow for taking into account different features 

1  In biodiversity studies, proportions of populations in a community are commonly designated as relative abundances of 
species.
2  Also referred to as Simpson’s index of diversity (e.g., Crist et al 2003; Niane et al. 2014).
3  Aggarwal and Picard (1978) say that Emptoz had outlined an equivalent formula in 1976.
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related to ecological or economic values of species or other components of a system 
characterized by the proportions {pi}i=1,…,m including the sampling effort, the phyloge-
netic distances or conservation values, to name a few possible applications.

Weighted Gini–Simpson (WGS) index seems to have been formerly conceived and 
studied as an analytical tool addressing the diagnosis of landscape mosaics composition 
(Casquilho 1999) where the maximum point of the index and its maximum value were 
discussed using Lagrange multipliers method. It  was also stated as an approach used 
to assess inequality measures under the scope of utility theory (Sen 1999). Guiasu and 
Guiasu (2003) outlined conditional and weighted measures of ecological diversity pre-
senting the formulas for the maximum value of WGS index and the optimal proportions, 
results which were further retrieved and generalized for triads of species (Guiasu and 
Guiasu 2010). Also, Casquilho (2009) discussed an issue relative to habitats valuation 
with complex numbers, conceiving weighted Gini–Simpson index as a sum of variances 
of interdependent Bernoulli variables indexed by positive characteristic values, either 
ecological or economic.

Several theoretical developments were presented in the following, from which stand 
out, concerning ecological or related biological fields: the application of weighted Gini–
Simpson to assess ecomosaics compositional scenarios (Casquilho 2011); the application 
to biodiversity partitioning and measuring of diversity with respect to the pairs of species 
(Guiasu and Guiasu 2012); Ricotta et al. (2012), discussing Rao’s quadratic index under 
the scope of functional rarefaction, claim that their method is suitable to be extended 
to any concave diversity measure including WGS index; also, weighted Gini–Simpson 
index was said to be closely related to a unified framework based on Hill numbers con-
cerning specific, phylogenetic, functional and other diversity measures (Chiu and Chao 
2012; Chao et al. 2014); Guiasu and Guiasu (2014) proceeded with developments con-
cerning the use of the index as a biodiversity assessment tool for interdependent spe-
cies; Pavoine and Izsák (2014) formulated a new parametric index of diversity related to 
Rao’s quadratic entropy and discuss connections relative to other indices including WGS 
index; last, WGS index was combined with expected utility generating a non-expected 
utility device (Casquilho 2015). Other  empirical studies or applications using WGS 
index will be mentioned in the discussion of results.

Stating the problem

The problem addressed and discussed in this paper is that, in general, the maximum 
point coordinates of WGS index must be computed with a sequential procedure, because 
the formulas available in the most relevant literature concerning the issue (e.g., Guiasu 
and Guiasu 2003, 2010) are valid only within limited ranges of values of the set of pre-
defined nonnegative weights {wi}i=1,…,m. If this remark is not scrutinized, the blind use of 
those formulas may inflate the proportions of the heaviest weighted components and lead 
to an erroneous “maximum value” evaluation, which can have pernicious consequences 
in subsequent normalization procedures or other inferences on the subject. Though the 
problem was previously mentioned (Casquilho 1999, 2009, 2011), it was not fully systema-
tized and analytically focused, and one of the procedures proposed in this paper is new.

In fact, the problem at stake has an old root, as Jaynes (1957) had already pointed out that 
the negative term −

∑

p2i  has the difficulty arising from the fact that conditional maxima 



Page 4 of 10Casquilho ﻿SpringerPlus  (2016) 5:1143 

cannot be found by a stationary property involving Lagrange multipliers, because the results 
do not, in general, satisfy the axiomatic condition pi ≥ 0. We will see that it is such a kind of 
problem which is at the core of the subject that will be discussed in the following.

Next, the main mathematical properties of weighted Gini–Simpson index will be 
reviewed, focusing on the critical solution and the meaning of the Lagrange multiplier 
value as a parameter controlling the feasibility of the solution. Then, sequential backward 
and forward procedures or algorithms are outlined, associated with simple numerical 
examples illustrating the performance of the method, and last, results will be discussed.

Review of the theoretical framework
Consider m interdependent Bernoulli variables Bi where vi is a characteristic posi-
tive value, with associated probabilities P[Bi  =  vi]  =  pi satisfying normalized meas-
ure space definition Δm−1, and P[Bi = 0] = qi, with qi = 1 − pi; thus 

∑m
i=1 qi = m− 1 

equates the dimension of the simplex with m vertices. Computing the variance 
of Bi we obtain Var(Bi) = v2i pi(1− pi) from what follows the sum of variances 
∑m

i=1 Var(Bi) =
∑m

i=1 v
2
i pi(1− pi). Renaming v2i  as v2i = wi, the weighted Gini–Simpson 

index, measuring the variability of a system with such a characterization, is defined with 
the formula (1):

Index Dw is a continuous real function with domain in a compact set, the m − 1 sim-
plex, what entails Bolzano–Weierstrass theorem to ensure that the index attains maxi-
mum and minimum values, as well as all the intermediate in its range. The inequality 
Dw ≥ 0 is easily seen to be true as the index is conceived as a sum of nonnegative terms, 
thus one can conclude straightforwardly that the minimum value Dw = 0 is reached at 
every vertex of the simplex (pj = 1 and pi = 0 if i ≠ j). Moreover, it is shown that index 
Dw is a concave function (e.g. Casquilho 1999; Guiasu and Guiasu 2010).

Lagrange multiplier method and feasibility of solution

Also, index Dw is a real differentiable function, hence one can use the auxiliary Lagran-
gian function denoted as L =

∑m
i=1 wipi(1− pi)− α

(
∑m

i=1 pi − 1
)

 as an analytical tool 
for finding candidates to constrained extreme points of Dw (e.g. Bertsekas 1996) located 
in the hyperplane defined by the equation 

∑m
i=1 pi = 1. The calculus of generic partial 

derivative(s) in the variable(s) pi entails the following result: ∂L/∂pi = wi − 2wipi − α.
Searching the critical or stationary point of function L implies the system of equations:

As the weights are positive real numbers by hypothesis (wi  >  0) one can state the 
immediate conclusion that the optimal proportions should verify the conditions 
pi ≥ 0 ⇔ wi ≥ α, from what follows that the value of the Lagrange multiplier is a bar-
rier, or limit value, concerning the feasibility of the solution evaluated with this method.

Computing the associated closure condition 
∑m

i=1 pi = 1 using (2), one obtains the 
critical value of the Lagrange multiplier:

(1)Dw =

m
∑

i=1

wipi(1− pi)

(2)pi = (wi − α)/(2wi) for i = 1, . . . ,m.
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From what follows that the critical point evaluated combining (2) and (3) is defined by 
the equations:

Formula (5) presented next, relative to the presumed maximum value of the index4 is 
the result of the evaluation of (1) replacing {pi}i=1,…,m with the critical proportions 
defined in (4).

Results and discussion
From Eq. (3) one can conclude immediately that for m ≥ 3 the inequality α* > 0 is ver-
ified and for m =  2 reduces to α* =  0 which implies the trivial result when the sim-
plex is 1-dimensional: p∗1 = p∗2 = 0.5; also, the critical coordinates p∗i  evaluated 
with (2) verify intrinsically the condition p∗i ≤ 1, as the following equivalences show 
p∗i ≤ 1 ⇔ wi − α∗ ≤ 2wi ⇔ −α∗ ≤ wi which is true because α* ≥  0, the equality sign 
just holding for the 1-simplex; last, whether wi = α* one gets the value p∗i = 0. Next, it 
will be proved that the critical solution defined by Eq. (4) may not be feasible and, subse-
quently, cannot be used straightforwardly to evaluate the maximum value of the index as 
defined by formula (5).

Analytical study of the critical point

Both formulas (4) and (5) are the right results whenever we have wi ≥ α* for i = 1,…,m 
meaning that m inequalities must be verified simultaneously. Whether there is at least 
one value that verifies wi < α* the evaluation of the optimal solution needs a revision in a 
sequential procedure, though that can only happen if m ≥ 4. In fact, successive replace-
ments and simplifications allow for obtaining the equivalent results:

Thus, for m = 3 one can see that the condition wi > 0 is trivially verified and the critical 
proportions are properly defined as the maximizer coordinates:

(3)α∗ = (m− 2)

/(

m
∑

i=1

1

wi

)

.

(4)p∗i =
1

2
+

�

1−
m

2

�

�



wi

m
�

j=1

1

wj



 for i = 1, . . . ,m

4  Here we use the notation of Guiasu and Guiasu (2003); an equivalent formula with a different notation may be found 
in Casquilho (1999:121,122).

(5)D∗
w =

1

4

m
�

j=1

wj −

�

1−
m

2

�2
�





m
�

j=1

1

wj



 .

(6)wi > α∗ i=1,...,m
⇔ wi > (m− 3)

�





�

j �=i

1

wj





(7)p∗i =
1

2
− 1

�



2wi

3
�

j=1

1

wj



 for i = 1,2,3 .
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A direct inspection of formula (4)—for which may be helpful to rewrite the denomina-
tor as wi

∑m
j=1

1
wj

= 1+
∑

j �=i
wi
wj

—shows that the critical proportion p∗i  increases with 
the value of the corresponding wi when all the other weights remain fixed, and, on the 
contrary, decreases with the increasing value(s) of other wj(j ≠ i).

The calculus of limits on formulas (4) for m  ≥  3 also clarifies the issue: 
limwi→+∞ p∗i = limwi→+∞

(

1
2 +

(

1− m
2

)

/

(

1+
∑

j �=i
wi
wj

))

= 1
2, and from this result one 

can conclude that there is a supremum (least upper bound) for the optimal point coor-
dinates: p∗i < 0.5 in the context (and p∗i = 0.5 if m = 2); also, limwi→0+ p∗i = 3/2−m/2 
which is the same result that is obtained when wi is fixed and all the other weights 
wk(k ≠ i) tend simultaneously to positive infinite. For example, if m = 5 we get the result 
lim{wk }k �=i→+∞ p∗i = −1. This negative value shows that when applying formulas (4) we 
can obtain non-feasible solutions, becoming negative without bound as the dimension of 
the simplex increases.

Also, the calculus of partial derivatives in Eq. (4) shows that the value p∗i  increases with 
the corresponding weight wi and decreases when any other weight wk increases. In fact, 
one can see that, for m ≥ 3, the following inequalities hold:

So, what happens if there is any wi  < α*? Then, the corresponding critical value p∗i , 
although lying in the hyperplane defined by the equation 

∑m
i=1 p

∗
i = 1 is not located in 

the simplex, and the solution is not feasible. In the general case with m ≥ 4 there will be 
m′ ≥ 3 non-null optimal proportions as stated by Eq. (7) and m − m′ null coordinates. In 
some well balanced sets of weights it may happen that m′ = m but it is a particular case, 
not the general one.

Sequential forward procedure

Next, it is outlined a sequential forward procedure to reach the maximum point 
(maximizer) of the index. First, one sorts the weights in a decreasing order: 
w(1) ≥ w(2) ≥ · · · ≥ w(m). From Eq. (7), combined with the evaluation of limits and par-
tial derivatives, it is known that it is guaranteed that the three highest weighted com-
ponents will be in the optimal solution, with strictly positive proportions; the fourth 
highest weighted component is the first candidate to have a null value; then, one 

computes α∗
4 = 2/

(

∑4
i=1 1/w(i)

)

 and if w(4) ≤ α∗
4 stop; hence p∗(4) = · · · = p∗(m) = 0 

and the number of vertices is set m′ =  3; otherwise one has w(4) > α∗
4 and proceeds 

computing α∗
5 = 3/

(

∑5
i=1 1/w(i)

)

; whether w(5) ≤ α∗
5 stop, and reset the values 

p∗(5) = · · · = p∗(m) = 0 with m′ = 4; otherwise, w(5) > α∗
5 and one proceeds until obtain-

ing w(k) ≤ α∗
k, then stop, setting p∗

(k) = · · · = p∗(m) = 0; hence m′ = k − 1; in any case, the 

maximizer is located in a m′-face of the original m − 1 simplex.

∂p∗i
∂wi

=

�m

2
− 1

�





�

j �=i

1

wj







wi

m
�

j=1

1

wj





−2

> 0 and

∂p∗i
∂wk

=

�

1−
m

2

�



wi

m
�

j=1

1

wj





−2�

wi

w2

k

�

< 0.
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Now, formulas (4) and (5) may be used replacing m by m′ and calculating the opti-
mal proportions and the maximum value of the index Dw with the corresponding set of 
weights—all the remaining optimal proportions being null and the respective weights 
discarded from the evaluation.

Exemplifying with a relatively small dimension m = 5, which enables the lower bound 
of a pseudo-optimal coordinate to be −1, as was shown in the calculus of the limits in 
the previous section. If the values of the weights are w(1) = 5, w(2) = 4, w(3) = 3, w(4) = 2 
and w(5) = 1, then the value of the Lagrange multiplier computed with (3) and all weights 
(m = 5) gives the result α* = 1.3139 implying that w(5) < α*; using the sequential pro-
cedure, one calculates α∗

4 = 1.5585 and as w(4) > α∗
4 hence p∗(5) = 0 and formulas (4) 

and (5) may be applied with m′ =  4, discarding w(5) =  1 from the calculations, giving 
the results of the optimal proportions: p∗(1) = 0.3441, p∗(2) = 0.3052, p∗(3) = 0.2403 , 
p∗(4) = 0.1104 and p∗(5) = 0. The maximum of the index in this case evaluates to 
D∗
w = 2.7208.
Changing the weights to be: w(1) = 50, w(2) = 40, w(3) = 30, w(4) = 2 and w(5) = 1, 

and using the sequential forward procedure one computes α∗
4 = 3.4582 and verify that 

w(4) < α∗
4 hence sets p∗(4) = p∗(5) = 0 and m′ =  3, thus discarding w(4) and w(5), pro-

ceeding to evaluate the non-null coordinates with Eq.  (7), so obtaining the results: 
p∗(1) = 0.3724, p∗(2) = 0.3404 and p∗(3) = 0.2872. In this case, the maximum value is 
D∗
w = 26.808 and, in this example, whether formula (5) was used blindly with all the 

original weights (m  =  5) one would obtain the wrong pseudo-maximum value of 
29.324 is misvalued about 10 % relative to the true value. When the dimension of the 
simplex increases, and the weights are disparate, this type of error could get worse in a 
kind of curse of dimensionality.

Sequential backward procedure

Whether the forward procedure previously discussed helps checking the consistency 
of the problem stated by the feasibility condition expressed in inequalities (6), one can 
see that a sequential backward procedure is more effective, applying directly Eq.  (4) 
and nothing else. Adopting the same ordering w(1) ≥ w(2) ≥ · · · ≥ w(m−1) ≥ w(m) begin 
computing p∗(m) and if p∗(m) > 0 then Eq. (4) are proper, all the coordinates can be calcu-
lated directly and also Eq.  (5) applies straightforwardly with no problem; otherwise, if 
p∗(m) < 0 then set p∗(m) = 0 withdraw w(m) from further calculations and compute p∗(m−1) 
with Eq. (4) modified with m′ = m − 1 and the corresponding set of weights; proceed 
with the same reasoning, recurring, until one finds an order (k) such that p∗

(k) > 0, then 
stop; set all null coordinates p∗

(k+1) = · · · = p∗(m) = 0, and Eq. (4) apply with dimension 
reset as m = k evaluated with the corresponding weights {w(i)}i=1,…,k.

Retrieving the numerical examples from the previous section one has again w(1) = 5, 
w(2) = 4, w(3) = 3, w(4) = 2 and w(5) = 1 then computing p∗(5) with formula (4) and m = 5 
one gets p∗(5) = −0.15693 < 0; so, one sets p∗(5) = 0, discards w(5) = 1 and evaluates p∗(4) 
with m′ = 4 and {w(i)}i=1,…,4; next result is p∗(4) = 0.11039 ∼= 0.1104 > 0, so stop; all the 
other coordinates can be calculated now with Eq. (4) and m′ = 4.

With the other example relative to the set of weights w(1) = 50, w(2) = 40, w(3) = 30, 
w(4)  =  2 and w(5)  =  1 one has the following sequence: in the first step computes 
p∗(5) = −0.45037 < 0 so one discards w(5) = 1, sets m′ = 4 and proceeds evaluating p∗(4) 
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with the corresponding weights 
{

w(i)

}

i=1,··· ,4
 obtaining p∗(4) = −0.36455 < 0; then, 

one sets p∗(4) = 0 with m′ =  3 and proceeds evaluating p∗(3), p
∗
(2) and p∗(1) with the set 

{w(i)}i=1,…,3 and Eq.  (7), obtaining, for example, the value p∗(3) = 0.28723 ∼= 0.2872; and 
the maximum value of Dw now can be evaluated using Eq. (5) with m′ = 3.

Discussion
The index Dw is a continuous real function defined in a compact domain and its range is 
0 ≤ Dw ≤ D∗

w, the minimum value Dw = 0 occurring in every vertex of the simplex Δm−1. 
The maximum value of the index denoted D∗

w has to be evaluated verifying the feasibility 
condition expressed by inequalities (6) before applying straightforwardly Eq. (5). In gen-
eral, except for very specific and balanced sets of weights, the maximum point of Dw will 
not occur in the interior of the simplex but in a k-face with 3 ≤ k < m, as was shown by 
the theoretical results followed by sequential procedures and illustrated with numeric 
examples, leading to some null optimal coordinates.5 Obviously, the maximum value of 
WGS index could also be computed as D∗

w =
∑k

i=1 wip
∗
i

(

1− p∗i
)

 thus avoiding Eq. (5), 
but that still implies checking the feasibility condition as the summing procedure just 
applies for positive proportions.

The optimal proportions p∗i  are insensitive to a change in unities: the positive linear 
transformation ui = cwi, c > 0 implies that the critical solution remains the same and the 
new value of the Lagrange multiplier is also linearly transformed to be α** = cα* entailing 
that the feasibility condition (6) remains unchanged. The optimal value of the Lagrange 
multiplier α* defined in (3) is closed related to the harmonic mean of the weights. How 
can we justify that α* has numerator m − 2 instead of m? It seems that the most appeal-
ing interpretation is that when discussing result (3) we deduced that for m = 2 the value 
α* vanishes and the maximum point is fixed: 

(

p∗1, p
∗
2

)

= (0.5, 0.5), independent of the 
weights. So, m − 2 is the number of relevant weights that affect the subsequent calcula-
tion of the maximum point coordinates and maximum value of the index.

The problem addressed in this paper is particularly important when the evaluation of 
D∗
w aims to be used in further normalization assessments with range 0 ≤ Dw/D

∗
w ≤ 1 and 

an erroneous computation of the maximum value can induce wrong conclusions when 
comparing different compositional systems. There are several empirical studies that use 
the maximum value of WGS index as a reference for further normalization assessments: 
besides Guiasu and Guiasu (2010) numeric examples such as the one relative to 10 species 
in two habitats with data retrieved from Jost et al. (2010), also Subburayalu and Sydnor 
(2012) used formula (5) when assessing street tree diversity in four Ohio communities and, 
probably, the feasibility condition here discussed was not checked. Weighted Gini–Simp-
son goes on being mentioned (e.g., Niane et al. 2014) and the problem handled in the pre-
sent article seems to become relevant for the next future.

Conclusions
In this paper it was summarized an issue that seems to be relevant in the field of diver-
sity measures: the proper evaluation of the maximum point and maximum value of 
weighted Gini–Simpson index. The main literature on the subject does not refer to the 

5  As it can happen with other biodiversity indices (e.g., Pavoine and Izsák 2014).
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feasibility condition here discussed, what can involve consequent wrong results in appli-
cations. New theoretical results concerning the analytical study of the critical solution 
are provided, such as the calculus of limits and partial derivatives, as well as are sketched 
forward and backward procedures conceived to solve the issue at stake, also illustrated 
with numeric examples.
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