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Background
Singular boundary value problems (SBVPs) is an important class of boundary value 
problems, and arises frequently in the modeling of many actual problems related to 
physics and engineering areas such as in the study of electro hydrodynamics, theory of 
thermal explosions, boundary layer theory, the study of astrophysics, three layer beam, 
electromagnetic waves or gravity driven flows, inelastic flows, the theory of elastic sta-
bility and so on. In general, SBVPs is difficult to solve analytically. Therefore, various 
numerical techniques have been proposed to treat it by many researchers. However, 
the solution of SBVPs is numerically challenging due to the singularity behavior at the 
origin.

In this work, we are interested again in the following SBVPs arising frequently in 
applied science and engineering:

(1)u′′(x)+
α

x
u′(x) = f (x,u), 0 < x ≤ 1, α ≥ 1,

Abstract 

In this work, an effective numerical method is developed to solve a class of singular 
boundary value problems arising in various physical models by using the improved 
differential transform method (IDTM). The IDTM applies the Adomian polynomials to 
handle the differential transforms of the nonlinearities arising in the given differential 
equation. The relation between the Adomian polynomials of those nonlinear functions 
and the coefficients of unknown truncated series solution is given by a simple formula, 
through which one can easily deduce the approximate solution which takes the form 
of a convergent series. An upper bound for the estimation of approximate error is pre‑
sented. Several physical problems are discussed as illustrative examples to testify the 
validity and applicability of the proposed method. Comparisons are made between the 
present method and the other existing methods.
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subject to the boundary value conditions

and

where a, b and c are any finite real constants. If α = 1, (1) becomes a cylindrical problem, 
and it becomes a spherical problem when α = 2. It is assumed that f(x, u) is continuous, 
∂f
∂u exists and is continuous and ∂f

∂u ≥ 0 for any 0 < x ≤ 1 such that Eq. (1) has a unique 
solution (Russell and Shampine 1975).

The SBVPs (1–3) with different α arise in the study of various scientific problems for 
certain linear or nonlinear functions f(x,  u). The common cases related to the actual 
problems are summarized as follows. The first case for α = 2 and

emerges from the modeling of steady state oxygen diffusion in a spherical cell with 
Michaelis–Menten uptake kinetics (Lin 1976; McElwain 1978). In this case, u(x) repre-
sents the oxygen tension; δ and µ are positive constants involving the reaction rate and 
the Michaelis constant. Hiltmann and Lory (1983) proposed the existence and unique-
ness of the solution for b = 1 and a = c. Analytical bounding functions were given in 
Anderson and Arthurs (1985). The numerical methods to solve the SBVPs for this case 
have attracted a reasonable amount of research works, such as the finite difference 
method (FDM) (Pandey 1997), the cubic spline method (CSM) (Rashidinia et al. 2007; 
Ravi and Bhattacharya 2006), the Sinc-Galerkin method (SGM) (Babolian et al. 2015), 
the Adomian decomposition method (ADM) and its modified methods (Khuri and Sayfy 
2010; Wazwaz et  al. 2013; Singh and Kumar 2014), the variational iteration method 
(VIM) (Ravi and Aruna 2010; Wazwaz 2011), the series expansion technique (SEM) 
(Turkyilmazoglu 2013) and the B-spline method (BSM) (Çağlar et al. 2009).

The second case arises in the study of the distribution of heat sources in the human 
head (Flesch 1975; Gray 1980; Duggan and Goodman 1986), in which α = 2 and

In Duggan and Goodman (1986), point-wise bounds and uniqueness results were pre-
sented for the SBVPs with the nonlinear function f(x, u) of the forms given by (4) and 
(5). Quite a little amount of works by using different approaches, including the FDM 
(Pandey 1997), the CSM (Rashidinia et  al. 2007; Ravi and Bhattacharya 2006) and the 
SGM (Babolian et al. 2015), have been proposed to obtain the approximate solutions of 
this case.

The third important case of physical significance is when α = 1, 2 and

which arises in studying the theory of thermal explosions (Khuri and Sayfy 2010; Kumar 
and Singh 2010; Chang 2014) and the electric double layer in a salt-free solution (Chang 
2012). A variety of numerical methods have been applied to handle such SBVPs, for 

(2)u′(0) = 0

(3)au(1)+ bu′(1) = c,

(4)f (x,u) = f (u) =
δu(x)

u(x)+ µ

(5)f (x,u) = f (u) = −le−lku(x)
, l > 0, k > 0.

(6)f (x,u) = f (u) = νeu(x),
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example, the fourth order finite difference method (FFDM) (Chawla et  al. 1988), the 
modified Adomian decomposition method (Khuri and Sayfy 2010; Singh and Kumar 
2014; Kumar and Singh 2010), the Taylor series method (TSM) (Chang 2014) and the 
BSM (Çağlar et al. 2009).

Besides, Chandrasekhar (1939) derived another case for α = 2, b = 0 and

which γ is a physical constant. This case is in connection with the equilibrium of ther-
mal gas thermal (Ames 1968). The numerical solution of this kind of equation for γ = 5 
was considered by using various methods, such as the FFDM (Chawla et al. 1988), the 
VIM (Ravi and Aruna 2010), the SEM (Turkyilmazoglu 2013) and the modified Adomian 
decomposition method (Singh and Kumar 2014).

All the aforementioned methods can yield a satisfied result. However, each of these 
methods has its own weaknesses. For example, the VIM (Ravi and Aruna 2010; Wazwaz 
2011) has an inherent inaccuracy in identifying the Lagrange multiplier, and fails to solve 
the equation when the nonlinear function f(x, u) is of the forms (5) and (6). Those meth-
ods such as the FDM (Pandey 1997; Chawla et al. 1988), the SEM (Turkyilmazoglu 2013), 
the SGM (Babolian et al. 2015) and the spline method (Rashidinia et al. 2007; Ravi and 
Bhattacharya 2006; Çağlar et  al. 2009) require a tedious process and huge volume of 
computations in dealing with the linearization or discretization of variables. The ADM 
(Wazwaz et  al. 2013) needs to obtain the corresponding Volterra integral form of the 
given equation, via which one can overcome the difficulty of singular behavior at x = 0. 
The modified ADM (Khuri and Sayfy 2010; Kumar and Singh 2010) needs to introduce a 
twofold indefinite integral operator to give better and accurate results; moreover, the suc-
cess of method in (Singh and Kumar 2014) relies on constructing Green’s function before 
establishing the recursive relation for applying the ADM to derive the solution compo-
nents. All those manners are at the expense of computation budgets. Besides, none of 
above methods is applied to handle the equations with all forms of nonlinearities (4–7).

In recent years, a lot of attentions have been devoted to the applications of differential 
transform method (DTM) and its modifications. The DTM proposed by Pukhov (1980, 
1982, 1986) at the beginning of 1980s. However, his work passed unnoticed. In 1986, 
Zhou (1986) reintroduced the DTM to solve the linear and nonlinear equations in elec-
trical circuit problems. The DTM is a semi-numerical-analytic method that generates a 
Taylor series solution in the different manner. In the past forty years, the DTM has been 
successfully applied to solve a wide variety of functional equations; see Xie et al. (2016) 
and the references therein.

Although being powerful, there still exist some difficulties in solving various of equa-
tions by the classical DTM. Some researchers have devoted to deal with these obstacles 
so as to extend the applications of the DTM. For example, in view of the DTM numerical 
solution cannot exhibit the real behaviors of the problem, Odibat et al. (2010) proposed 
a multi-step DTM to accelerate the convergence of the series solution over a large region 
and applied successfully to handle the Lotka-Volterra, Chen and Lorenz systems. In 
Gökdoğan et al. (2012), Momani and Ertürk (2008) suggested an alternative scheme to 
overcome the difficulty of capturing the periodic behavior of the solution by combining 
the DTM, Laplace transform and Padé approximants. Another difficulty is to compute 

(7)f (x,u) = f (u) = −uγ (x),
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the differential transforms of the nonlinear components in a simple and effective way. By 
using the traditional approach of the DTM, the computational difficulties will inevita-
bly arise in determining the transformed function of an infinity series. Compared to the 
traditional method, Chang and Chang (2008) proposed a relatively effective algorithm 
for calculating the differential transform through a derived recursive relation. Yet, by 
using their method, it is inevitable to increase the computational budget, especially in 
dealing with those differential equations which have two or more nonlinear terms being 
investigated. Recently, the authors Elsaid (2012), Fatoorehchi and Abolghasemi (2013) 
disclosed the relation between the Adomian polynomials and the differential transform 
of nonlinearities, and developed an inspiring approach to handle the nonlinear functions 
in the given functional equation. Meanwhile, the problem of tedious calculations in deal-
ing with nonlinear problems by using the ADM has also been improved considerably by 
Duan (2010a, b, 2011). All of these effective works make it possible to broaden the appli-
cability and popularity of the DTM considerably.

The aim of this work is to develop an efficient approach to solve the SBVPs (1–3) with 
those nonlinear terms (4–7). This scheme is mainly based on the improved differential 
transform method (IDTM), which is the improved version of the classical DTM by using 
the Adomian polynomials to handle the differential transforms of those nonlinear func-
tions (4–7). No specific technique is required in dealing with the singular behavior at the 
origin. Meanwhile, unlike some existing approaches, the proposed method tackles the 
problem in a straightforward manner without any discretization, linearization or per-
turbation. The numerical solution obtained by the proposed method takes the form of a 
convergent series with those easily computable coefficients through the Adomian poly-
nomials of those nonlinear functions as the forms of (4–7).

The rest of the paper is organized as follows. In the next section, the concepts of DTM 
and Adomian polynomials are introduced. Algorithm for solving the problem (1–3) and 
an upper bound for the estimation of approximate error are presented in Sect. 3. Sect.4 
shows some numerical examples to testify the validity and applicability of the proposed 
method. In Sect. 5, we end this paper with a brief conclusion.

Adomian polynomial and differential transform
Adomian polynomial

In the Adomian decomposition method (ADM), a key notion is the Adomian polynomi-
als, which are tailored to the particular nonlinearity to easily and systematically solve 
nonlinear differential equations. The interested readers are referred to Adomian (1990, 
1994) for the details of the ADM.

For the applications of decomposition method, the solution of the given equation in a 
series form is usually expressed by

and the infinite series of polynomials

(8)u =
∞∑

m=0

um,

(9)
f (u) = f

( ∞∑

m=0

um

)
=

∞∑

m=0

Am
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for the nonlinear term f(u), where Am is called the Adomian polynomials, and depends 
on the solution components u0,u1, . . . ,um. The traditional algorithm for evaluating 
the Adomoan polynomials An was first provided in Adomian and Rach (1983) by the 
formula

A large amount of works (Duan 2010b, b, 2011; Adomian and Rach 1983; Rach 2008, 
1984; Wazwaz 2000; Abbaoui et  al. 1995; Abdelwahid 2003; Azreg-AÏnou 2009) have 
been applied to give the more effective computational method for the Adomian polyno-
mials. For fast computer generation, we favor Duan’s Corollary 3 algorithm (Duan 2011) 
among all of these methods, as it merely involves the analytic operations of addition and 
multiplication without the differentiation operator, which is eminently convenient for 
symbolic implementation by computer algebraic systems such as Maple and Mathemat-
ics. The method to generate the Adomian polynomials in Duan (2011) is described as 
follows:

such that

It is worth mentioning that Duan’s algorithm involving (11) and (12) has been testified 
to be one of the fastest subroutines on record (Duan 2011), including the fast generation 
method given by Adomian and Rach (1983).

Differential transform

The differential transform of the kth differentiable function u(x) at x = 0 is defined by

and the differential inverse transform of U(k) is described as

where u(x) is the original function and U(k) is the transformed function.
For the practical applications, the function u(x) is expressed by a truncated series and 

Eq. (14) can be written as

(10)An =
1

n!
d
n

d�n
f

( ∞∑

m=0

um�
m

)∣∣∣∣∣
�=0

.

(11)
C1
n = un, n ≥ 1,

Ck
n = 1

n

∑n−k
j=0 (j + 1)uj+1C

k−1
n−1−j , 2 ≤ k ≤ n,

(12)

yA0 = f (u0),

An =
n∑

k=1

Ck
n f

(k)(u0), n ≥ 1.

(13)U(k) =
1

k!

[
d
ku(x)

dxk

]

x=0

,

(14)u(x) =
∞∑

k=0

U(k)xk ,

(15)u(x) ≈ uN (x) =
N∑

k=0

U(k)xk .
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It is not difficult to deduce the transformed functions of the fundamental operations 
listed in Table 1.

Method of solution of SBVPs (1–3)
We want to find the approximate solution of the problem (1–3) with the type:

where the coefficients U(0),U(1), . . . ,U(N ) are determined using the following steps:

• • According to the definition (13) of the differential transform and the boundary value 
condition (2), we have 

Suppose that 

where β is a real parameter to be determined.
• • Multiplying both sides of Eq. (1) by variable x, we have 

Applying the differential transform (13) to Eq. (19), we get the following recurrence 
relation: 

 where F(k) is the differential transform of the nonlinear function f (x,u) = f (u).
• • Using Lemma 3.1 in Fatoorehchi and Abolghasemi (2013), we compute F(k) through 

the Adomian polynomials Ak: 

Remark 1  Lemma 3.1 in Fatoorehchi and Abolghasemi (2013) indicates that the dif-
ferential transforms and the Adomian polynomials of nonlinear functions have the 
same mathematical structure such that we can derive the differential transforms of any 

(16)uN (x) =
N∑

k=0

U(k)xk ,

(17)U(1) = 0.

(18)U(0) = β ,

(19)xu′(x)+ αu′(x) = xf (x,u).

(20)U(k + 1) =
F(k − 1)

(k + 1)(k + α)
, k = 1, 2, . . . ,N − 1,

(21)F(k) = Ak , k = 0, 1, 2, . . . ,N .

Table 1  The fundamental operations of the DTM

Note that α,β are constants and m is a nonnegative integer

Original function Transformed function

w(x) = αu(x)± βv(x) W(k) = αU(k)± βV(k)

w(x) = u(x)v(x) W(k) =
∑

k

m=0 U(m)V(k −m)

w(x) = dmu(x)/dxm W(k) = (k+m)!
k! U(k +m)

w(x) = x
m

W(k) = δ(k −m) =
{
1, if k = m,
0, if k �= m.

w(x) = exp(x) W(k) = 1/k!
w(x) = sin(αx + β) W(k) = αk/k! sin(kπ/2+ β)

w(x) = cos(αx + β) W(k) = αk/k! cos(kπ/2+ β)
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nonlinear functions by merely calculating the relevant Adomian polynomials but with 
constants instead of variable components.

Remark 2  As mentioned before, we use Duan’s Corollary 3 algorithm (Duan 2011) (11–
12) to generate the Adomian polynomials.

• • Substituting (21) into (20), and then combining the relations (16–18), we obtain the 
truncated series solution of the problem (1–3) as follows: 

• • Imposing the truncated series solution (22) on the boundary condition (3), we obtain 
a nonlinear algebraic equation with unknown parameter β: 

Solving Eq. (23), and substituting the value of β into (22), we obtain the final result.
An upper bound for the estimation of approximate error is presented in the following 
lemma.

Lemma 1  Suppose that u(x) ∈ CN+1[0, 1] is the exact solution of the problem (1–3), 
uN (x) =

∑N
k=0 U(k)xk is the truncated series solution with degree N, it holds that

where M = max
0≤x≤1

|u(N+1)(x)|, ck = u(k)(0)
k! −U(k).

Proof  Obviously, we have

where ũN (x) =
∑N

k=0
u(k)(0)

k! xk is the Taylor polynomial of the unknown function u(x) at 
x = 0.

Since u(x) ∈ CN+1[0, 1], it follows that

where RN (x) is the remainder of Taylor polynomial ũN (x). Therefore

Let

where

(22)uN (x) = β +
N−1∑

k=1

Ak−1

(k + 1)(k + α)
xk+1

.

(23)g(β) = 0.

(24)||u(x)− uN (x)||∞ ≤
M

(N + 1)!
+ max

0≤k≤N
|ck |,

(25)||u(x)− uN (x)||∞ ≤ ||u(x)− ũN (x)||∞ + ||ũN (x)− uN (x)||∞,

u(x) = ũN (x)+ RN (x) = ũN (x)+
u(N+1)(ξ)

(N + 1)!
xN+1

, ξ ∈ (0, 1),

(26)
∣∣u(x)− ũN (x)

∣∣ = |RN (x)| =

∣∣∣∣∣
u(N+1)(ξ)

(N + 1)!
xN+1

∣∣∣∣∣ ≤
1

(N + 1)!
max
0≤x≤1

∣∣∣u(N+1)(x)
∣∣∣.

C = (c0, c1, . . . , cN ), � = (x0, x1, . . . , xN )T ,

ck =
u(k)(0)

k!
−U(k), k = 0, 1, . . . ,N .
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We then have

Combining the relations (25–27), it follows that

Thus, the proof is completed. � �

Numerical examples
In this section, based on the discussion in Sect. 3, we report numerical tests of five classi-
cal examples discussed frequently to testify the validity and applicability of the proposed 
method. All the numerical computations were performed using Maple and Matlab on 
personal computer. For comparison, we computed the absolute error defined by

and the maximal absolute error by

where u(x) is the exact solution and uN (x) is the truncated series solution with degree N.

Example 1  Consider the following nonlinear SBVP in the study of isothermal gas 
sphere (Singh and Kumar 2014; Ravi and Aruna 2010; Chawla et al. 1988):

subject to the boundary conditions

The exact solution of this problem is given by u(x) =
√

3

3+x2
. It is also known as the 

Emden-Fowler equation of the first kind. In what follows, we shall solve it with the pro-
posed algorithm.

Firstly, we set

The Adomian polynomials of nonlinear term f (x,u) = −u5(x) in this problem are com-
puted as

(27)
∣∣ũN (x)− uN (x)

∣∣ =
∣∣∣∣∣

N∑

k=0

(
u(k)(0)

k!
− U(k)

)
xk

∣∣∣∣∣ = |C ·�| ≤ ||C||∞ · ||�||∞

(28)
||u(x)− uN (x)||∞ ≤

1

(N + 1)!
max
0≤x≤1

∣∣∣u(N+1)(x)
∣∣∣+ ||C||∞ · ||�||∞

≤ M
(N+1)! + max

0≤k≤N
|ck |.

(29)EN (x) = |u(x)− uN (x)|

(30)MEN = max
0≤x≤1

|u(x)− uN (x)|,

(31)u′′(x)+
2

x
u′(x) = −u5(x),

(32)u′(0) = 0, u(1) =
√
3

2
.

U(0) = β , U(1) = 0.
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Furthermore, according to the relations (20) and (21), we obtain the differential trans-
forms U(k) of the unknown function u(x)

By using Eq. (22), we obtain the truncated series solution for N = 10 as follows:

Secondly, imposing the truncated series solution (33) on the boundary conditions 
u(1) =

√
3/2, we get a nonlinear algebraic equation. By solving it, the unknown param-

eter β is computed as

Finally, substituting (34) into (33), we get the approximate solution with degree 10

In Table  2, we compare the absolute errors (29) of numerical results obtained by the 
present method, the VIM (Ravi and Aruna 2010) and the modified ADM using Green 
functions (GIDM) (Singh and Kumar 2014) for N = 12. Table 3 lists the theoretical esti-
mate errors (24) and the maximal absolute errors (30) of the approximate solutions for 
changing approximation levels, and shows a comparison of the maximal absolute errors 
with the GIDM (Singh and Kumar 2014) and the FFDM (Chawla et al. 1988). We can 
see from Table 3 that the accuracy of our computational results is getting better as the 
approximation level is increasing. Moreover, our numerical solution u10(x) has an accu-
racy of O(10−4), whereas the GIDM (Singh and Kumar 2014) needs to employ 14 terms 
to archive this goal as shown in Table 1 of Singh and Kumar (2014); numerical solution 
with even 64 terms obtained by the FFDM (Chawla et al. 1988) still hovers at this level. 

A0 = −U5(0),

A1 = −5U4(0)U(1),

A2 = −10U3(0)U2(1)− 5U4(0)U(2),

A3 = −10U2(0)U3(1)− 20U3(0)U(1)U(2)− 5U4(0)U(3),

.

.

.

U(2) =
1

2 · 3
A0 = −

1

6
β5

,

U(4) =
1

4 · 5
A3 =

1

24
β9

,

U(6) =
1

6 · 7
A5 = −

5

432
β13

,

.

.

.

U(k) = 0, if k is odd and k ≥ 3.

(33)u10(x) = β −
1

6
β5x2 +

1

24
β9x4 −

5

432
β13x6 +

35

10368
β17x8 −

7

6912
β21x10.

(34)β = 1.000553890.

u10(x) = 1.000553890− 0.1671287533x
2 + (0.4187483621e − 1)x4

− (0.1165769154e − 1)x6 + (0.3407699551e − 2)x8

− (0.1024576736e − 2)x10.
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In summary, Tables 2 and 3 indicate that the results of our proposed method have higher 
accuracy than of the GIDM (Singh and Kumar 2014), the FFDM (Chawla et al. 1988) and 
the VIM (Ravi and Aruna 2010).

Example 2  Consider the following nonlinear SBVP (Khuri and Sayfy 2010; Singh and 
Kumar 2014; Çağlar et al. 2009; Chawla et al. 1988):

subject to the boundary conditions

The exact solution is given by u(x) = 2 ln C+1

Cx2+1
, where C = 3− 2

√
2.

The Adomian polynomials of nonlinear term f (x,u) = −eu(x) in this problem are 
computed as

(35)u′′(x)+
1

x
u′(x) = −eu(x),

(36)u′(0) = 0, u(1) = 0.

A0 = −eU(0)
,

A1 = −U(1)eU(0)
,

A2 = −U(2)eU(0) −
1

2
U2(1)eU(0)

,

A3 = −U(3)eU(0) −U(1)U(2)eU(0) −
1

6
U3(1)eU(0)

,

.

.

.

Table 2  Comparison of the absolute error E12(x) for Example 1

x GIDM (Singh and Kumar 2014) VIM (Ravi and Aruna 2010) Present method

0.0 3.1880e−03 6.3220e−03 1.6776e−04

0.1 3.1209e−03 6.2702e−03 1.6637e−04

0.2 2.9269e−03 6.1173e−03 1.6227e−04

0.3 2.6263e−03 5.8687e−03 1.5568e−04

0.4 2.2489e−03 5.5281e−03 1.4691e−04

0.5 1.8284e−03 5.0903e−03 1.3639e−04

0.6 1.3978e−03 4.5347e−03 1.2450e−04

0.7 9.8413e−04 3.8201e−03 1.1132e−04

0.8 6.0707e−04 2.8837e−03 9.5269e−05

0.9 2.7774e−04 1.6426e−03 6.8180e−05

1.0 3.52e−08 1.00e−10 0

Table 3  The theoretical estimate errors TEN and  comparison of  the maximal absolute 
errors MEN of present method and of other methods for Example 1

N TEN MEN N TEN MEN N in Singh and  
Kumar (2014)

N in Chawla 
et al. (1988)

6 1.83e−02 6.80e−03 12 4.7721e−04 1.6776e-04 12 1.3978e−03 16 3.64e−04

8 5.10e−03 1.70e−03 16 4.6453e−05 1.6521e-05 16 2.4654e−04 32 2.49e−04

10 1.5666e−03 5.5389e−04 20 4.6453e−06 1.6614e-06 20 4.8643e−05 64 1.60e−04
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A comparison of the absolute errors (29) of the numerical solutions for N = 10, 20, 40 
obtained by the present method and the modified decomposition method (BSDM) 
(Khuri and Sayfy 2010) is described in Table 4. Table 5 lists the maximal absolute errors 
(30) of those numerical results derived from the proposed method, the BSM (Çağlar 
et al. 2009) and the FFDM (Chawla et al. 1988). And also, we list the theoretical estimate 
errors (24) in Table 5 for comparison. It can be seen from Tables 4 and 5 that one can 
obtain the better approximate solution by using the present method compared to the 
other mentioned methods, even if we take the relative smaller N. Moreover, the theoreti-
cal estimate errors, the absolute errors and the maximal absolute errors all decrease as 
the increase of N. Therefore, evaluation of more components of the numerical solution 
will reasonably improve the accuracy.

Example 3  Consider the following nonlinear SBVP in the study of steady-state oxygen 
diffusion in a spherical cell (Babolian et al. 2015; Khuri and Sayfy 2010; Wazwaz 2011; 
Çağlar et al. 2009):

subject to the boundary conditions

(37)u′′(x)+
α

x
u′(x) =

δu(x)

u(x)+ µ
, δ > 0, µ > 0,

(38)u′(0) = 0, 5u(1)+ u′(1) = 5,

Table 4  Comparison of the absolute errors EN(x) for Example 2

x BSDM Khuri and Sayfy (2010) Present method

E10(x) E20(x) E40(x) E10(x) E20(x) E40(x)

0.0 1.05e−05 1.05e−05 1.05e−05 1.05e−05 2.2e−09 1.4e−09

0.1 1.05e−05 1.05e−05 1.05e−05 1.05e−05 1.2e−09 4.0e−10

0.2 1.03e−05 1.03e−05 1.03e−05 1.03e−05 1.4e−09 6.0e−10

0.3 1.02e−05 1.02e−05 1.02e−05 1.02e−05 1.4e−09 6.0e−10

0.4 9.93e−06 9.93e−06 9.93e−06 9.93e−06 1.5e−09 8.0e−10

0.5 9.62e−06 9.62e−06 9.62e−06 9.62e−06 2.6e−09 1.8e−09

0.6 2.73e−06 6.07e−06 6.93e−06 9.25e−06 1.9e−09 1.2e−09

0.7 6.67e−07 3.65e−06 4.75e−06 8.75e−06 1.4e−09 7.0e−10

0.8 1.58e−06 2.02e−06 2.93e−06 7.88e−06 9.0e−10 3.0e−10

0.9 1.08e−06 8.76e−07 1.37e−06 5.78e−06 5.5e−10 1.1e−09

1.0 0 0 0 1.10e−10 2.74e−11 3.6e−11

Table 5  The theoretical estimate errors TEN and  comparison of  the maximal absolute 
errors MEN of present method and of other methods for Example 2

N TEN MEN N TEN MEN N in Çağlar et al. 
(2009)

N in Chawla 
et al. (1988)

10 6.9957e−05 1.0488e−05 16 2.2413e−07 3.5041e−08 20 3.1607e−05 16 2.52e−03

12 1.0042e−05 1.5380e−06 18 3.2730e−08 5.4593e−09 40 7.8742e−06 32 1.83e−04

14 1.4795e−06 2.3036e−07 20 6.6210e−09 8.4075e−10 60 3.5011e−06 64 1.28e−05
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where δ and µ are often taken as 0.76129 and 0.03119, respectively. We take the value of 
α as 1, 2 and 3.

The Adomian polynomials of nonlinear term f (x,u) = δu(x)
u(x)+µ

 in this problem are 
computes as

Proceeding as before, we compute the approximate solution u12,2(x) for N = 12 and 
α = 2, and show a comparison of the numerical results compared to the other existing 
methods in Table 6, from which one can see that the results of our computations are in 
good agreement with those ones obtained by the SGM (Babolian et al. 2015), the BSDM 
(Khuri and Sayfy 2010), the VIM (Wazwaz 2011) and the BSM (Çağlar et al. 2009).

Moreover, since there is no exact solution of this problem, we instead investigate the 
absolute residual error functions and the maximal error remainder parameters, which 
are the measures of how well the numerical solution satisfies the original problem (37–
38). The absolute residual error functions are

and the maximal error remainder parameters are

In Fig. 1, we plot the absolute residual error functions |ERN ,2(x)| for N = 2 through 12 
by step 2. Besides, the maximal error remainder parameters MERN ,α for the same N and 
α = 1, 2, 3 are listed in Table 7, from which it is interesting to point out that for a given 
N the accuracy of our approximate solutions increases with the increase of α. Moreo-
ver, Fig. 1 and Table 7 show clearly that the accuracy of our method is getting better as 
the approximation level is increasing for a fixed α. The logarithm plots of the value of 
MER2,α through MER12,α for α = 1, 2, 3 are displayed in Fig. 2, which demonstrates an 
approximately exponential rate of convergence for the obtained truncated series solu-
tions and thus the presented method converges rapidly to the exact solution.

Example 4  Consider the following nonlinear SBVP which arises in the study of the dis-
tribution of heat sources in the human head (Pandey 1997; Rashidinia et al. 2007; Ravi 
and Bhattacharya 2006; Babolian et  al. 2015; Khuri and Sayfy 2010; Singh and Kumar 
2014; Çağlar et al. 2009; Duggan and Goodman 1986):

A0 =
δ

U(0)+ µ
U(0),

A1 =
δµ

(U(0)+ µ)2
U(1),

A2 =
δµ

(U(0)+ µ)2
U(2)−

δµ

(U(0)+ µ)3
U2(1),

A3 =
δµ

(U(0)+ µ)2
U(3)−

2δµ

(U(0)+ µ)3
U(1)U(2)+

δµ

(U(0)+ µ)4
U3(1),

.

.

.

∣∣ERN ,α(x)
∣∣ =

∣∣∣∣u
′′
N ,α(x)+

α

x
u′N ,α(x)−

δuN ,α(x)

µ+ uN ,α(x)

∣∣∣∣, 0 < x ≤ 1,

MERN ,α = max
0<x≤1

∣∣ERN ,α(x)
∣∣.
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subject to the boundary conditions

We consider the following two cases:
Case one:  a = b = 1.

Case two:  a = 0.1, b = 1.

(39)u′′(x)+
2

x
u′(x) = −e−u(x)

,

(40)u′(0) = 0, au(1)+ bu′(1) = 0.

Fig. 1  The absolute residual error functions 
∣∣ERN,2(x)

∣∣ for N = 2, 4, 6 (left) and 8, 10, 12 (right) of Example 3

Table 6  Comparison of the approximate solutions for Example 3

x BSDM (Khuri 
and Sayfy 2010)

BSM (Çağlar  
et al. 2009)

VIM (Wazwaz 
2011)

SGM (Babolian 
et al. 2015)

Present method

0.0 0.8284832948 0.8284832729 0.8284832761 0.8284832912 0.8284832870

0.1 0.8297060968 0.8297060752 0.8297060781 0.8297060933 0.8297060890

0.2 0.8333747380 0.8333747169 0.8333747193 0.8333747345 0.8333747303

0.3 0.8394899183 0.8394898981 0.8394898996 0.8394899148 0.8394899106

0.4 0.8480527887 0.8480527703 0.8480527701 0.8480527859 0.8480527816

0.5 0.8590649275 0.8590649139 0.8590649108 0.8590649281 0.8590649239

0.6 0.8725283156 0.8725283084 0.8725282997 0.8725283208 0.8725283166

0.7 0.8884452994 0.8884452958 0.8884452781 0.8884453065 0.8884453023

0.8 0.9068185417 0.9068185402 0.9068185095 0.9068185490 0.9068185448

0.9 0.9276509830 0.9276509825 0.9276509392 0.9276509893 0.9276509853

1.0 0.9509457948 0.9509457946 0.9509457539 0.9509457994 0.9509457960

Table 7  The maximal error remainder parameters MERN,α for Example 3

α MER2,α MER4,α MER6,α MER8,α MER10,α MER12,α

1 5.8000e−03 1.4000e−03 3.1751e−04 7.3547e−05 1.7000e−05 3.9243e−06

2 3.4000e−03 4.8431e−04 6.7761e−05 9.4474e−06 1.3142e−06 1.8267e−07

3 2.4000e−03 2.4481e−04 2.4485e−05 2.4388e−06 2.4240e−07 2.4065e−08
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The Adomian polynomials of nonlinear term f (x,u) = −e−u(x) in this problem are 
computed as

Again no exact solution exists for this equation, hence it was handled numerically. 
Table  8 describes the numerical results of the first case obtained by the proposed 
method at the order of approximation N = 12 and the other existing methods, including 
the FDM (Pandey 1997), the non-polynomial cubic spline method (NPCSM) (Rashidinia 
et al. 2007), the CSM (Ravi and Bhattacharya 2006) and the SGM (Babolian et al. 2015). 
Meanwhile, a comparison for the approximate solutions of the second case obtained by 
the present method with the same approximation level as the first case and the previous 
existing methods which include the CSM (Ravi and Bhattacharya 2006), the SGM (Babo-
lian et al. 2015), the BSDM (Khuri and Sayfy 2010) and the BSM (Çağlar et al. 2009) is 
presented in Table 9. One can seen from two Tables that our computations are in good 
line with the results obtained by the other approaches compared. In fact, at the approxi-
mation level for N = 12, the maximal absolute error is found to be order of magnitude 
O(10−7) for the first case, and O(10−9) for the second case.

Example 5  Consider the following SBVP with nonlinear term different from the forms 
(4–7) which arises in the radial stress on a rotationally symmetric shallow membrane 
cap (Singh and Kumar 2014; Ravi and Aruna 2010):

A0 = −e−U(0)
,

A1 = U(1)e−U(0)
,

A2 = U(2)e−U(0) −
1

2
U2(1)e−U(0)

,

A3 = U(3)e−U(0) − U(1)U(2)e−U(0) +
1

6
U3(1)e−U(0)

,

.

.

.

(41)u′′(x)+
3

x
u′(x) =

1

2
−

1

8u2(x)
,

Table 8  Comparison of the numerical results for the first case of Example 4

x FDM (Pandey  
1997)

NPCSM (Rashidinia 
et al. 2007)

CSM (Ravi and  
Bhattacharya 2006)

SGM (Babolian 
et al. 2015)

Present 
method

0.0 0.3675169710 0.3675181074 0.3675179806 0.3675168124 0.3675167997

0.1 0.3663623697 0.3663637561 0.3663634922 0.3663623265 0.3663623137

0.2 0.3628941066 0.3628959378 0.3628952219 0.3628940634 0.3628940507

0.3 0.3570975862 0.3570991429 0.3570986892 0.3570975430 0.3570975301

0.4 0.3489484612 0.3489499903 0.3489495462 0.3489484178 0.3489484049

0.5 0.3384121893 0.3384136581 0.3384132502 0.3384121459 0.3384121330

0.6 0.3254435631 0.3254450019 0.3254445925 0.3254435196 0.3254435063

0.7 0.3099860810 0.3099878567 0.3099870705 0.3099860373 0.3099860240

0.8 0.2919711440 0.2919789654 0.2919720836 0.2919711001 0.2919710864

0.9 0.2713170512 0.2713185637 0.2713179289 0.2713170072 0.2713169936

1.0 0.2479277646 0.2479292837 0.2479285659 0.2479277203 0.2479277073
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subject to the boundary conditions

The Adomian polynomials of nonlinear term f (x,u) = 1
2
− 1

8u2(x)
 in this problem are 

computed as

(42)u′(0) = 0, u(1) = 1.

Table 9  Comparison of the numerical results for the second case of Example 4

x CSM (Ravi and  
Bhattacharya 2006)

BSM (Çağlar et al. 
2009)

BIDM (Khuri 
and Sayfy 2010)

SGM (Babolian  
et al. 2015)

Present 
method

0.0 1.147041084 1.147039937 1.147040795 1.147039016 1.147039019

0.1 1.146511706 1.146510559 1.146511419 1.146509639 1.146509642

0.2 1.144922563 1.144921418 1.144922282 1.144920499 1.144920502

0.3 1.142270622 1.142269478 1.142270348 1.142268560 1.142268563

0.4 1.138550801 1.138549661 1.138550539 1.138548745 1.138548748

0.5 1.133755950 1.133754813 1.133755703 1.133753900 1.133753904

0.6 1.127876795 1.127875663 1.127876562 1.127874754 1.127874756

0.7 1.120901889 1.120900762 1.120901665 1.120899858 1.120899860

0.8 1.112817535 1.112816416 1.112817317 1.112815517 1.112815520

0.9 1.103607704 1.103606593 1.103607490 1.103605701 1.103605704

1.0 1.093253927 1.093252826 1.093253716 1.093251942 1.093251944

Fig. 2  The logarithmic plots for the maximal error remainder parameters MERN,α for N = 2 through 12 by 
step 2 and α = 1 (up, left), α = 2 (up, right), α = 3 (down) of Example 3
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Like the previous problems 3 and 4, a closed-form solution to this equation can not be 
written down. So we instead investigate the absolute residual error functions and the 
maximal error remainder parameters to examine the accuracy and the reliability of our 
numerical results. Here, the absolute residual error functions are

and the maximal error remainder parameters are

In Fig. 3, we plot the absolute residual error functions |ERN (x)| for N = 4 through 14 
by step 2. The logarithm plot for the maximal error remainder parameters MERN for 
the same N is shown in Fig. 4, which demonstrates an approximately exponential rate of 
convergence of the obtained truncated series solutions and thus the presented method 
converges rapidly to the exact solution. Even though there is no exact solution for this 
problem, the following 10th order approximation has an accuracy of O(10−8) and can be 
used for practical applications

Conclusion
In this work, a reliable approach based on the IDTM is presented to handle the numeri-
cal solutions of a class of nonlinear SBVPs arising in various physical models. This 
scheme takes the form of a truncated series with easily computable coefficients via the 
Adomian polynomials of those nonlinearities in the given problem. With the proposed 
algorithm, there is no need of discretization of the variables, linearization or small per-
turbation. Numerical results show that the proposed method works well for the SBVPs 
(1–3) with a satisfying low error. Besides, it is obvious that evaluation of more compo-
nents of the approximate solution will reasonably improve the accuracy of truncated 
series solution by using the proposed method. Comparisons of the results reveal that 
the present method is very effective and accurate. Moreover, we are convinced that the 

A0 =
1

2
−

1

8U2(0)
,

A1 =
1

4

U(1)

U3(0)
,

A2 = −
3

8

U2(1)

U4(0)
+

1

4

U(2)

U3(0)
,

A3 =
1

2

U3(1)

U5(0)
−

3

4

U(1)U(2)

U4(0)
+

1

4

U(3)

U3(0)
,

.

.

.

|ERN (x)| =

∣∣∣∣∣u
′′
N (x)+

3

x
u′N (x)−

1

2
+

1

8u2N (x)

∣∣∣∣∣, 0 < x ≤ 1,

MERN = max
0<x≤1

|ERN (x)|.

u10(x) = 0.9541353070+ (0.4533672772e − 1)x2 + (0.5436871104e − 3)x4

− (0.1611538997e − 4)x6 + (0.3997114810e − 6)x8

− (0.6144814593e − 8)x10.
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IDTM can be extended to solve the other type of functional equations involving nonlin-
ear terms more easily as the Adomian polynomials are applicable for any analytic non-
linearity and can be generated quickly with the aid of the algorithm proposed by Duan.

It is necessary to point out that algebraic Eq. (23) is a nonlinear one, and we shall inevi-
tably encounter the bad roots while solving it. The criterion to separate the good root 
from a swarm of bad ones is convergence because it represents the value of unknown 
function at the origin and will not change for the different N.
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