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Background
Vegetation, as the main body of terrestrial ecosystem, serves as a bearer as well as a 
feedback of climate change. It acts as an indicator in the study of global climate change 
(Liu and Ren 2012; Cui et al. 2009), which has greatly influenced terrestrial ecosystem 
(IPCC 2007; Zhao et al. 2011). Thus the study of vegetation’s spatiotemporal change and 

Abstract 

Background:  Liao River basin in Jilin Province is the place of origin of the Dongliao 
River. This study gives a comprehensive analysis of the vegetation coverage in the 
region and provides a potential theoretical basis for ecological restoration.

Methods:  The seasonal variation of vegetation greenness and dynamics based on the 
Normalized Difference Vegetation Index (NDVI) in major land cover types in the region 
was studied. Analyzing the relationship NDVI, temperature and rainfall, we derived 
a set of predictor variables from 2001 to 2012 using the MODIS Terra level 1 Product 
(MOD02QKM).

Results:  The results showed a general increasing trend in NDVI value in the region, 
while 34.63 % of the region showed degradation. NDVI values begin to rise from 
April when plants are regreening and they drop in September when temperature are 
decreasing and the leaves are falling in the study area and temperature was found 
decreasing during the period of 2001–2012 while rainfall showed an increasing trend. 
This model could be used to observe the change in vegetation greenness and the 
dynamic effects of temperature and rainfall.

Conclusion:  This study provided important data for the environmental protection 
of the basin area. And we hope to provide scientific analysis for controlling water and 
soil erosion, maintaining the sustainable productivity of land resources, enhancing 
the treatment of water pollution and stimulating the virtuous cycle of the ecological 
system.
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its response to climate change has always been an important component in the study 
of global climate change (Zhang et  al. 2011; Xin et  al. 2007). Up till now, more than 
40 kinds of vegetation indices have been defined and widely applied to various studies 
ranging from the analysis of global and regional land coverage, vegetation classification 
and environmental changes (Guo et al. 2002), primary productivity analysis (Sun and 
Zhu 2000; Xiao et  al. 1996), potential yield of crop and pasture assessing (Xiao et  al. 
1986) to drought monitoring (Chen et al. 1994; Guo et al. 1997a, b). The Normalized 
Difference Vegetation Index (NDVI) is widely used index of vegetation growth and veg-
etation coverage (Du et al. 2008) and the remote sensed satellite imagery allowed one 
to calculate the NDVI (Tucker 1979). It’s a commonly used remote sensing vegetation 
index in climate-phenology studies (Myneni et al. 1997; Zhou et al. 2001; White et al. 
1997; Reed et al. 1994; Stockli and Vidale 2004) and calculated from the reflectance in 
the red and near infrared (NIR) bands of the electromagnetic spectrum and is a meas-
ure of the photosynthetic activity within the area covered by a pixel (Justice et al. 1985; 
Tucker and Sellers 1986). We use the Moderate Resolution Imaging Spectroradiometer 
(MODIS) sensor onboard the United States National Aeronautics and Space Admin-
istration’s (NASA) Terra spacecraft to monitoring vegetation changes in the whole 
region. The MODIS NDVI is considered to be an improvement over the NDVI product 
derived from the AVHRR sensors (Huete et al. 2002; Mildrexler et al. 2009; Peckham 
et  al. 2008; Wang et  al. 2006). NDVI have been used for ecological studies to deter-
mine overall productivity, biomass and seasonal variability in productivity and phenol-
ogy and many studies dedicated to vegetation greenness response to climate variables 
by using NDVI (Guerschman and Paruelo 2005; Wang et al. 2008; Mao et al. 2012). A 
vegetation greenness model was developed from correlations between NDVI and mete-
orological data using the linear regression in Northeast Thailand (Watinee and Net-
napid 2013). In Eastern China, the correlation coefficients of NDVI with temperature is 
larger than those with precipitation (Cui et al. 2010). This conclusion was further con-
firmed by research in Inner Mongolia of China (Shi et al. 2011). In addition, lag-time 
effects have been shown in related studies, precipitation and temperature changes often 
precede vegetation changes, with the time lag exhibiting some regional dependence 
(Potter and Brooks 1998; Richard and Poeeord 1998). The presence of lag-time effects 
was further confirmed on the prairies of Kansas and northern America (Wang et  al. 
2003). However, few works have been done on the analysis of the temporal and spatial 
patterns of vegetation dynamics in Liao River Basin, China. Previous findings and the 
current research mentioned above led to our research questions: How has the level of 
greenness observed in different land use type in this river basin changed over the past 
decade? What are the regional patterns of change in the vegetation dynamic (NDVI 
variation)? How do the effects of temperature and precipitation on vegetation dynam-
ics differ spatially? The objectives of this study were (1) to analyse NDVI, precipitation 
and temperature changes during the past 10 years in Liao River Basin; (2) to compare 
correlations between NDVI, Temperature and precipitation in the spatial scales; (3) to 
asses whether climatic variables can be used to identify changes in vegetation in the 
Liao River Basin.
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Datasets and methods
Study area

Liao river basin, located in the southwestern of Jilin province (E 123°18′–125°36′, N 
42′36°–44′10°) (Fig.  1), is adjacent to Tieling city of Liaoning province and Zhelimu 
Meng in Inner Mongolia. With a total area of 15,746  km2, Liao River basin covers a 
land of 8 % in the above-mentioned provinces. Dongliao River and Zhaosutai River are 
the main rivers. The basin is located in the middle of Songliao plain, with an elevation 
of 611–120 m. Forest, crop field (mainly cultivated corn and soybean) and paddy field 
(mainly cultivated rice) are the main land use type. The basin belongs to the temper-
ate continental monsoon climate zone. The annual rainfall and evaporation is 545 and 
1020 mm, respectively.

Datasets

Meteorological data

The meteorological data used for trend analysis included temperature and rainfall col-
lected from the China Meteorological Data Sharing Service System for the period from 
2001 to 2012. Annual temperature and rainfall variables for analysis included the maxi-
mum temperature (Maxtemp), the minimum temperature (Mintemp) and the mean 
temperature (Mtemp). The monthly data were digitally encoded into a GIS database 
and the attribute values were linked to meteorological stations located near the region. 
In order for more accuracy, a total of 24 meteorological stations were used. An ordi-
nary kriging method was applied under ArcGIS10.0, and then grid maps were produced 
(Maribeth 2012) for annual precipitation and temperature covering the whole region.

Annual NDVI

The NDVI data (from 2001 to 2012) were taken from MODIS Terra level 1 product. The 
data were obtained from the NASA web interface under the Level 1 and Atmosphere 
Archive and Distribution System (LAADS) (http://ladsweb.nascom.nasa.gov/). We 
derived a set of predictor variables from 2001 to 2012, and the data reflectance of the 

Fig. 1  The study area and the locations of the meteorological stations

http://ladsweb.nascom.nasa.gov/
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red and near-infrared channels with the resolution of satellite data is 250 m × 250 m. 
A 1:1,000,000 vegetation map of China (Hou 2011) was used to explore the vegetation 
changes in different biome types. Following the criteria for biome type classification, 
vegetation in the study area was categorized into five main types: paddy field, crop field, 
grass land, forest and wetland. The NDVI was proposed by Rouse et  al. (1974) based 
on the differences in pigment absorption features in the red and near-infrared region 
of the electromagnetic spectrum (1–1). The values of NDVI range from −0.1 to 0.1, the 
increase of positive NDVI values indicates a larger amount of green vegetation. NDVI 
values near zero and decreasing negative values indicate non-vegetated features such as 
barren surface (soil or rock), snow, water and clouds (Schnur et al. 2010).

where RED is the spectral reflectance obtained in the visible zone, and NIR is that 
obtained near infrared regions.

Trend analysis of NDVI

A simple linear regression model was used to calculate the spatial changing pattern of 
NDVI (Ma et al. 2006) in ArcGIS10.0 with time as the independent variable and NDVI 
as the dependent variable. The outputs of the trend analyses are maps of regression slope 
values. The calculation formula is:

where variable i stands for the serial number of year i, which indicates the average NDVI 
of year i. The formula reflects the changing trend of NDVI in the study area in 12 years.

Correlation analysis between NDVI and climatic variables

The correlation analysis was used to calculated the spatial and time series correlation 
between NDVI and climatic variables (Raynald 2005):

where rxy is the coefficient for the two samples, Xi and Yi is sample sizes, and X  and 
Y  are the average indexes of the samples. The value of the coefficient should be taken 
in the range of [−  1, 1]. The bigger the value is, the larger is the correlation between 
each variable. And when the value comes most closely to 0, the variable indicate the least 
correlation.

The linear regression between NDVI and climate variables was derived from different 
land cover types, and used to evaluate the impact of climatic conditions to the vegeta-
tion. For each land cover type, the evaluation of climate-controlled vegetation green-
ness was carried out using a multiple linear regression method between NDVI and 
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meteorological data from 2001 to 2012. In this study, the effectiveness of the model was 
measured from adjusted coefficient of determination (Adj.R2), standard error of the esti-
mate (Std.Error) and level of significant, the closer the value of Adj.R2 comes to 1, the 
more precise the model proves to be. The formula is (Raynald 2005):

where n − 1 is degree of freedom of the residual sum of squares, n − k−1 is degree of 
freedom of the total sum of squares, 

∑

(ŷ− ȳ2) is regression sum of squares, 
∑

(y− ȳ2) 
is total sum of squares.

NDVI is not immediately responsive to rainfall, but NDVI tends to be a delayed effect 
of rainfall by 1 or 2 months (Grist et al. 1997). Thus, rainfall in the concurrent month 
and accumulation with one or two prior months were included and examined to find the 
best correlation with NDVI.

Results
Annual changes in temperature and rainfall

Figure 2 illustrates the changes in temperature and rainfall during 2001–2012. The max 
temperature is 24.57 °C in 2007 and the mintemp is −20 °C in 2001. The mean tempera-
ture (Mtemp) shows a declining trend which the value is −0.107 °C year−1 (R2 = 0.2876), 
respectively. The temporal change of rainfall in the region shows a positive trend in the 
period. With the peak values are 57.25  mm in 2005, 53.45  mm in 2008, 68.57  mm in 
2010 and 61.64 mm in 2012; the lowest value is 29.49 mm in 2002.

Figure 3 shows that the spatial distribution of the annual average temperature (a) and 
rainfall (b) in 2001–2012.

From the figure, it is evident that the temperature is higher in Southwestern part of 
the region ranging from 6.4 to 7.23 °C, and the southeastern. The spatial distribution of 
annual rainfall shows that there is less rainfall in the Northwest of the region, ranging 
from 368.1 to 406.1 mm; and more rainfall is obtained in Southwest of the region with a 
range of 516.5–570.5 mm.

(4)R2
=

∑

(ŷ− ȳ2)
∑

(y− ȳ2)

(5)Adj.R2
= 1− (1− R2)

n− 1

n− k − 1

Fig. 2  The annual temperature (°C) and rainfall (mm) time series
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NDVI changing patterns

We used linear regression to analyze the change of NDVI during 2001–2012. The NDVI 
changing patterns are simulated based on the slope which is the gradient of the trend 
line. We classify the linear trend regression slope value as five levels: severely degraded 
(−0.05 to −0.01 year−1); remains stable (−0.01 to 0.01 year−1); mild degradation (0.01 to 
0.05 year−1); improved (>0.05 year−1). The results are shown in Fig. 4.

In 2001–2012, severely degraded vegetation in the region accounts for 3.13  % of 
the total area. 31.5  % of vegetation showed mild degradation. Most of the native 
land showed mild degradation, while 29.74  % were ameliorated in terms of vegeta-
tion coverage, stable vegetation coverage was observed in 32.52  % of the region. The 
proportion of pixel amounts for four areas with NDVI varied in the order of: mild 

Fig. 3  Spatial distribution of annual average temperature (°C) (a) and rainfall (mm) (b) in Liao river basin, 
China during the period of 2001–2012

Fig. 4  The linear trend regression slope values of NDVI (2000–2012 monthly data)
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degradation > improved > remain stable > severely degraded. Mild degradation account 
for nearly half of all pixels (Fig. 5).

The results show the monthly average NDVI for different land uses in the region dur-
ing 2001–2012 (Fig. 6). The period from April to September was the growing season of 
the regional plants. NDVI values began to rise from April when plants were regreening 
and they dropped in September when temperature are decreasing and the leaves were 
falling. NDVI values remained stable in winter and early spring from November till the 
next March. Maximum NDVI value of Paddy field is perceived in August (0.81), while 
that of crop lands, grasslands, wetlands and forest were obtained in July, with 0.845, 
0.824, 0.82, 0.847 respectively.

The annual NDVI did not change significantly (Fig. 7). During the study period, differ-
ent land use types of NDVI value fluctuated, with the year of 2004 exhibiting the lowest 
value. The peak value of the paddy fields and grassland were 0.852, 0.837 in 2006 and 
0.848, 0.843 in 2008; Crop field and forest were 0.852 and 0.852 in 2008; wetland were 
0.817 in 2002 and 0.822 in 2006.

Correlations between NDVI, rainfall and temperature

Spatial pattern of NDVI–climate relationships was undertaken using the binary multiply 
method, and the results are shown in Fig. 8.

Climate variation can lead to significant changes in NDVI. The NDVI of upstream is 
in positive correlation with temperature, and is largely affected by temperature. Rich in 
water resources, the region is covered mainly by forests; while the downstream area is 

23%

27%
46%

3% 1%

lake
severely degraded
mild degradation
remains stable
improved

Fig. 5  The proportion of pixel amounts for four areas with NDVI variation and lake area with no NDVI record

Fig. 6  Monthly average NDVI for different land uses during the period of 2001–2012
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in negative correlation with temperature with the main type land cover of paddy field. 
Therefore, vegetation is more sensitive to temperature changes. The percentage of pix-
els that NDVI were significantly positively correlated and significantly negatively cor-
related with temperature is 17 and 39 %, respectively. Correspondingly, that with rainfall 
is 36 and 23 %, respectively (Table 1). In Table 1, the percentage of pixels in the signifi-
cance level of 0.05 excluded the percentage of pixels in the significance level of 0.01. The 
increase of temperature results in the decrease of NDVI and the NDVI is in inverse pro-
portion with the precipitation level at mid-eastern part of the region. This is not difficult 
to understand, Erlong reservoir is located in this area, featuring with low temperature 
and relatively slower physiological activities like plant photosynthesis and so on. The 
increase of precipitation level plays a detrimental effect on vegetation growth.

The correlation coefficients are represented in Table 2 for each land use type with rain-
fall and temperature.

NDVI for paddy fields are correlated to rainfall accumulation and the correlation coef-
ficient is 0.499 (p < 0.001), it is also correlated to log rainfall accumulation with a correla-
tion coefficient of 0.499 (p < 0.001). A log-linear correlation between NDVI and rainfall 
were analyzed because that the saturation level of NDVI should remain constant even 
when rainfall increases (Petja et al. 2004). NDVI for crop fields, forest and grass land are 
also high correlated to rainfall accumulation and the correlation coefficients are 0.464, 

Fig. 7  The annual changes in NDVI time series for different land uses during the period of 2001–2012. The 
land use types are: a paddy land, b crop land, c forest, d grass land, e wetland
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0.306 and 0.449 respectively. The wetland is most correlated with Maxtemp and the cor-
relation coefficient is 0.391.

It is analyzed that the correlation between NDVI and rainfall of the same month, rain-
fall that have been accumulated for 1 and 2 months respectively. A comparison between 
the precipitation level and NDVI shows the fact that the precipitation level affected 
NDVI when rainfall was accumulated for 2 months, as shown in Table 3.

Fig. 8  Spatial distribution of correlation between NDVI and climate factors. a The correlation index of NDVI 
and temperature; b the correlation index of NDVI and rainfall

Table 1  The percentage of  pixels which NDVI were positively related and  negatively 
related with air temperature and Rainfall in the significance level of 0.01 and 0.05

Temperature (%) Rainfall (%)

Positively correlated (p < 0.01) 6 12

Positively correlated (p < 0.05) 11 24

Negatively correlated (p < 0.01) 14 10

Negatively correlated (p < 0.05) 25 13
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The analysis of the delayed effect of seasonal rainfalls to NDVI shows good correlation 
between NDVI in June, July and rainfall accumulated for two months, with the correla-
tion coefficients of 0.713 and 0.51 respectively (p < 0.01).The precipitation process influ-
ences vegetation growth by decomposing soil organic matters, improving soil nutrients 
and moisture. It takes time for rainfall to sift into vegetation roots, which explains veg-
etation’s delayed effect to rainfall (Hou et al. 2012).

We got the most suitable model for the region through linear regression analysis. Step-
wise regression approach was used to analyze the significance of independent variables 
and the variables that are not significant were removed from the equation. Table 4 shows 
the regression model of NDVI of different land types, rainfall and temperature.

NDVI for paddy field was explained by positive correlation with MeanRainfall and log-
MeanRainfall. Crop field, forest and Grass land were only explained by Mean Rainfall, 
NDVI for wetland was only explained by MaxTemp. The regression model of NDVI for 
Grass land was found more significant with higher Adj.R2 of 0.704 compared with other 
land cover types.

The correlations NDVI, temperature and rainfall respectively for this study altered 
from the variation of vegetation cover types. There were positive correlation between 

Table 4  Regression models between NDVI and rainfall and temperature variables monthly 
for different land cover types

Land cover Model Adj.R2 Std.Error p value

Paddy field NDVI = 0.798 + 0.001 MeanRainfall + 0.002 logMeanRainfall 0.597 0.043 0.038

Crop field NDVI = 0.807 + 0.01 MeanRainfall 0.495 0.025 0.000

Forest NDVI = 0.801 + 0.026 MeanRainfall 0.387 0.021 0.001

Grass land NDVI = 0.769 + 0.015 MeanRainfall 0.704 0.026 0.037

Wetland NDVI = 0.765 + 0.013 MaxTemp 0.370 0.031 0.001

Table 2  Correlation coefficients (r) for  NDVI and  climate variables, for  different land use 
types

** At the 0.01 level was significantly correlated

* At the 0.05 level was significantly correlated

Land cover type Maxtemp Mintemp MTemp MeanRainfall LogMeanRainfall

Paddy field 0.222 0.114 0.219 0.499** 0.499**

Crop field 0.158 0.045* 0.132 0.464* 0.461*

Forest 0.103 0.058 0.080 0.306* 0.299

Grass land 0.105 0.103* 0.075 0.449* 0.444*

Wetland 0.391* 0.138 0.324 0.176 0.195

Table 3  The correlation coefficient of precipitation in different calculation periods

** At the 0.01 level was significantly correlated

* At the 0.05 level was significantly correlated

Different period April May June July August September October

The same period −0.350 −0.007 −0.112 0.231 0.14* 0.14* 0.224*

Delayed for 1 month 0.356 0.203 0 −0.182* 0.014 −0.35** 0.07

Delayed for 2 months 0.028 0.035 0.713** 0.51** 0.357 0.063 0.462
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NDVI and rainfall for paddy field and crop field because of the dependence of the veg-
etation coverage to water for agricultural activities during the crops´ growing period. 
Positive correlations are also observed between forests and rainfall because this forest 
type conserves water in summer for its growth. Grassland was found to be in positive 
correlation with rainfall, for the grasslands spread mostly at the northwestern part of 
the region where the temperature is higher and the rainfall is lower. Abundant rainfall 
can lead to significant changes in NDVI values. Temperature was found positively cor-
related with wetland because that increasing temperature provides better condition for 
the growth of wetland plants.

Discussion
Annual changes in NDVI, temperature and rainfall

Temperature has been observed in the region during the 12-year period (2001–2012). 
The annual temperature observed in the region decreased and lower temperature was 
found in the southeastern part of the region. Rainfall in the region increased during the 
12-year period and less rainfall was found in the northwest part of the region.

In this study, the linear trend regression slope values of NDVI revealed that 3.13  % 
of the region is severely degraded, 31.5 % is mildly degraded, and 62.26 % remains sta-
ble or is improved in vegetation coverage, Single peak variations have been shown in 
the seasonal changes of NDVI in different regions. NDVI values demonstrate significant 
increase since April and showed the peak in July or August. The value for Paddy land 
reached its maximum in August, while other land types peaks in July. The maximum 
values are as following: Paddy field: 0.81, Crop field: 0.845, Grass land: 0.824, Forest: 
0.847, and Wetland: 0.82. By comparison of the average NDVI of different seasons, the 
value of forest is greater than that of the crop field; the crop field is greater than grass 
land; grass land is greater than the paddy field, with the wetland being the lowest. The 
increasingly warm and dry conditions in the study region may cause vegetation cover 
to decline, Although vegetation in some areas increased, further investigation revealed 
that increases were mainly in croplands, which have been significantly influenced by 
irrigation. Another reason is the increase in extreme climate events such as droughts, 
heat waves, and rainstorms (Barriopedro et  al. 2012), Liu et  al. predicted an increase 
in drought events in Northeast China (Ke et al. 2012). In addition, the altering surface 
albedo and evapotranspiration also affect NDVI changes (Xu et al. 2012).

Correlations between NDVI, temperature and rainfall

Climate changes is one of the most important factors driving vegetation growth. The 
close relationship between climate change and vegetation growth has been demonstrated 
in many previous studies (Piao et al. 2006). In this study, the spatial distribution of cor-
relation between NDVI and climate factors showed that temperature dynamics slowly 
changed into rainfall dynamics from the upstream to the downstream areas. The regres-
sion model revealed that NDVI for Paddy field could be explained by positive correlation 
with rainfall and log rainfall; NDVI for crop field, forest and grassland could be explained 
by positive correlation with rainfall; and NDVI for wetland could be explained by positive 
correlation with Maxtemp. Rainfall in the region increased during the 12  years period 
and this climatic variable strongly impacted paddy field, crop field, forest and grassland. 
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These land types are found mainly in the central and northwestern part of the region 
where temperatures are higher and the amount of rainfall are lower. Most areas displayed 
significant positive correlations between NDVI and rainfall (Duan et al. 2011; Chuai et al. 
2013), While abundant rainfall is considered as an important factor for vegetation growth, 
but for wetlands, temperature serves as the priority. In contrast to the positive relation-
ship between NDVI and precipitation, an inverse NDVI-temperature relationship was 
observed over most of the land use type. Although the warming trend should extend the 
growing season and potentially enhance vegetation growth (Fang et al. 2004; Peng et al. 
2013; Nemani et al. 2003). However, this study analyzed only the correlation NDVI, tem-
perature and rainfall, in addition it does not account for all vegetation variation. There are 
other factors that need to be considered on the influence of terrestrial vegetation growth, 
such as relative humidity, nutrients, light intensity and mechanical factors including wind 
and occurrence of fire, and so on (Breckle 2002). These need to be further studied.

Conclusions
Vegetation coverage has been identified with the function of water and soil conservation 
and soil pollutants interception. Moreover, the interaction between NDVI and climate 
factors is obvious. Climate changes have been observed in the study area as precipitation 
decreased and temperature increased during the period of 2001–2010 as opposed to the 
same analysis in the early 1990s (Piao et al. 2006; Gao et al. 2009), when the results are 
just the opposite. This change in the climate proved to be a positive effect on vegetation 
coverage. The moderate increase of NDVI for forest and wetland showed the improve-
ment of the upstream ecological system where water is conserved and water and soil 
erosion better are prevented. As China’s major grain production area, the region is rich 
in its land resources. The increase of NDVI for the paddy field and crop field also showed 
the expansion of crop coverage and increased grain yields. For grass land, although its 
NDVI is weakly increased, the problem of soil desertification is ameliorated due to its 
increased vegetation coverage and biomass. Quantitative measurement and spatial anal-
ysis are used to reveal the impact of temperature and rainfall on vegetation greenness 
and dynamics of various lands cover types in the region; and the results provide a better 
understanding of the fact that the vegetation greenness and the dynamics are responsive 
to climate change. These can be used to evaluate the impact of ecological restoration on 
vegetation types in the region in future.
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