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Background
The mathematical modeling of nonconvex quadratic program with quadratic constraints 
can be formulated as follows:

where Qi, i = 0, 1, . . . ,m, are all symmetric n× n matrices, d0, di ∈ R
n, bi ∈ R, i =

1, . . . ,m; l
0
= (l0

1
, . . . , l0n)

T ,u0 = (u0
1
, . . . ,u0n)

T .

Nonconvex quadratic program with quadratic constraints is worthy of study. On the 
one hand, this is because the kind of problems have many applications in practical prob-
lems, such as, heat exchanger engineering design, financial optimization, image process-
ing, management science, etc (see Floudas and Visweswaran 1995; Shen 2007; Horst and 
Tuy 1996; Jiao and Liu in press; Bajirov and Rubinov 2001; Konno and Wijayanayake 
2001; Sherali and Smith 1997). On the other hand, it is since a large number of nonlinear 

(NQPQC) :















min F0(x) = xTQ0x + d
T
0 x

s.t. Fi(x) = xTQix + d
T
i
x ≤ bi, i = 1, . . . ,m,

x ∈ X0
= {x ∈ Rn

: l0 ≤ x ≤ u0},
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programming problems can be converted into this mathematical modeling, and the 
solutions of many nonlinear optimization problems can be approximated or obtained by 
solving a sequence of nonconvex quadratic programs with quadratic constraints. Moreo-
ver, from research point of view, since the nonconvex quadratic programs with quadratic 
constraints possess multiple local minimum points which are not globally minimum 
point, they exist significant computational and theoretical challenges. Therefore, it is 
necessary to put forward a new global optimization approach for solving the nonconvex 
quadratic program with quadratic constraints.

In past several decades, various algorithms have been developed for solving the non-
convex quadratic program with quadratic constraints and its special form, which are 
given as follows. Based on Newton method, branching rule and cutting plane, Vanden-
bussche and Nemhauser presented a branch-and-cut method for nonconvex quadratic 
programs with box constraints (Vandenbussche and Nemhauser 2005). Used different 
d.c. decomposition method to construct the relaxation of quadratic objective function, 
and used the “optimal level solution” parametrical approach to solve relaxation prob-
lem, Cambini and Sodini (2005) proposed a decomposition method for solving noncon-
vex quadratic programs over a compact polyhedral feasible region. By decomposing a 
large-scale quadratic programming into a serial of small-scale ones and approximating 
the solution of the large-scale quadratic programming via the solutions of these small-
scale ones, Li and Zhang (2006) presented a decomposition algorithm for solving large-
scale quadratic programming problems. Through decomposing quadratic objective 
function into a separable equivalent function, then by constructing linear under-esti-
mator of the corresponding objective function, Shen et  al. (2008) presented a decom-
position and linearization method for globally solving quadratic programs with linear 
constraints. Vavasis (1992) presented an approximation algorithm for indefinite quad-
ratic programming, and concluded that such an approximation solution can be found 
in polynomial time. Based on D.C. decomposition, Cholesky factorization and convex 
relaxation, Yajima and Fujie (1998) proposed a decomposition-and-relaxation algorithm 
for the general quadratic problems with box constraints. Ye (1992) proposed an affine-
scaling algorithm to solve nonconvex indefinite or negative definite quadratic programs 
problems. By utilizing cutting plane technique, Gao and Deng (2008) presented a branch 
and bound method mixed with cutting plane technique for solving concave quadratic 
programming problems. Using lagrangian underestimates and interval Newton method, 
Voorhis (2002) proposed a global optimization algorithm for quadratic programs. Based 
on simplicial branch-and-bound scheme, Raber (1998) presented a simplicial branch-
and-bound method for solving nonconvex quadratic programs. Based on parametric 
linear relaxation and new linearizing technique, Jiao et al. (2015), Jiao and Chen (2013) 
proposed two branch and bound algorithms for globally solving nonconvex quadratic 
programs. Using duality bounds and branch-and-bound scheme, Thoai (2000) presented 
a duality bound method for the general quadratic programming problem with quadratic 
constraints. Based on linear relaxation method and branch-and-bound framework with 
rectangle reducing technique, Shen and Liu (2008), Gao et al. (2005a, b), Jiao et al. (2014) 
proposed four branch-and-reduce algorithms for solving nonconvex quadratic pro-
grams, respectively. Based on branch-and-bound scheme, An and Tao (1997), An and 
Tao (1998) presented two D.C. algorithms for solving nonconvex quadratic programs. 
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Apart from the above reviewed quadratic programs algorithms, many algorithms (see 
Shen and Jiao 2006; Wang and Liang 2005; Wang et al. 2004; Shen 2005; Shen and Li 
2013; Shen and Bai 2013; Shen et al. 2009) for solving geometric programming can be 
also used to solve the nonconvex quadratic program with quadratic constraints pro-
posed in this paper. In addition, some recent artificial intelligent optimization algo-
rithms (Zhang et al. 2013, 2014a, b, 2016) are developed, which are also used to obtain 
local optimal solution of the nonconvex quadratic program with quadratic constraints.

The above most deterministic algorithms for solving nonconvex quadratic programs 
are based on relaxation technique and branch-and-bound scheme, since the exhaustive-
ness of branching rule leads to a significant increase in the computational burden for 
solving nonconvex quadratic programs, until today, there is short of more effective algo-
rithm for solving such problems, so it is necessary to establish a good algorithm for the 
NQPQC. Therefore, the main motivation for the paper is to construct a novel linearized 
technique and a range contraction approach, and based on these techniques develop an 
effective algorithm for solving the NQPQC.

In this paper, a novel range division and contraction approach will be proposed for 
globally solving the nonconvex quadratic program with quadratic constraints. The main 
features of the proposed algorithm in this paper are as follows. Firstly, a novel linearized 
technique is constructed for systematically converting the NQPQC into a sequence of 
linear program problems, and the solutions of the converted linear program problems 
are used to approximate the solution of the NQPQC, which can be computed by using 
simplex approach. Secondly, in order to accelerate the running speed of our approach, 
a range contraction method is constructed and employed in our algorithm. Next, use 
branch-and-bound framework with a range contraction approach, a new global optimi-
zation algorithm is established. Finally, the global convergence of the proposed approach 
is proved and numerical experimental results demonstrate the computational efficiency 
of our algorithm.

The remaining contents of the paper are stated as follows. Second section describes a 
new linearized method and the linear program relaxation problem of the initial NQPQC 
is derived. In third section, a new range division and contraction approach is established 
and its global convergence is proved. Fourth section describes numerical results for 
some examples, which be computed by using the proposed algorithm. Finally some con-
clusions are drawn.

New linearized approach
In this section, a new linearized approach is constructed for establishing the lin-
ear program relaxation problem of the NQPQC. Without loss of generality, let 
Xk

= {x ∈ Rn
| lk = (lk1 , . . . , l

k
n)

T
≤ x ≤ uk = (uk1, . . . ,u

k
n)

T
} ⊆ X0, and let �i be the min-

imum eigenvalue of Qi. Set

In the following, for any i ∈ {0, 1, . . . ,m}, for any x ∈ Xk, define

θi =

{

0, if �i ≥ 0,
|�i| + ρ, if �i < 0, where ρ is an arbitrary positive real number.



Page 4 of 15Xue et al. SpringerPlus  (2016) 5:1064 

Theorem 1 For any x ∈ Xk , consider the functions Fi(x) and FL
i (x), we have:

(i) FL
i (x) ≤ Fi(x), i = 0, 1, . . . ,m;

(ii) For each i = 0, 1, . . . ,m, �Fi(x)− FL
i (x)� → 0 as �uk − lk� → 0.

Proof (1) Consider the function x2j  over [lkj ,u
k
j ], according to the mean value theorem, 

we can get

where ξ kj = αlkj + (1− α)ukj ,α ∈ [0, 1], j = 1, . . . , n.

By the expressions of the functions Fi(x) and FL
i (x), we can get that

FL
i (x) =

[

di + QT
i

(

lk + uk
)

+ θi

(

uk − lk
)]T

x + 2θi

(

uk
)T

lk − θi

(

uk
)T(

uk
)

−

(

lk + uk

2

)T

(Qi + θiI)

(

lk + uk

2

)

.

x2j = 2ξ kj

(

xj − ukj

)

+

(

ukj

)2
≤ 2lkj

(

xj − ukj

)

+

(

ukj

)2
= 2lkj xj − 2ukj l

k
j +

(

ukj

)2
,

Fi(x) = xTQix + dTi x

=

(

x −
lk + uk

2

)T

(Qi + θiI)

(

x −
lk + uk

2

)

+ dTi x − θi

n
∑

j=1

x2j +
(

lk + uk
)T

(Qi + θiI)x −

(

lk + uk

2

)T

(Qi + θiI)

(

lk + uk

2

)

≥ dTi x − θi

n
∑

j=1

x2j +
(

lk + uk
)T

(Qi + θiI)x −

(

lk + uk

2

)T

(Qi + θiI)

(

lk + uk

2

)

≥ dTi x + θi

n
∑

j=1

[

−2lkj xj + 2ukj l
k
j −

(

ukj

)2
]

+

(

lk + uk
)T

(Qi + θiI)x

−

(

lk + uk

2

)T

(Qi + θiI)

(

lk + uk

2

)

=

[

di + (Qi + θiI)
T
(

lk + uk
)

− 2θil
k
]T

x + 2θi

(

uk
)T

lk − θi

(

uk
)T(

uk
)

−

(

lk + uk

2

)T

(Qi + θiI)

(

lk + uk

2

)

=

[

di + QT
i

(

lk + uk
)

+ θi

(

uk − lk
)]T

x + 2θi

(

uk
)T

lk − θi

(

uk
)T(

uk
)

−

(

lk + uk

2

)T

(Qi + θiI)

(

lk + uk

2

)

= FL
i (x).
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Therefore, we have

(2)   Consider Fi(x) and FL
i (x), let �i = �Fi(x)− FL

i (x)�, we can follow that

FL
i (x) ≤ Fi(x), i = 0, 1, . . . ,m.

�i =

�

�

�

�

�

�

xTQix + dTi x −







�

di +QT
i

�

lk + uk
�

+ θi

�

uk − lk
�

�T

x + 2θi

�

uk
�T

lk

−θi

�

uk
�T�

uk
�

−

�

lk + uk

2

�T

(Qi + θiI)

�

lk + uk

2

�







�

�

�

�

�

�

=

�

�

�

�

�

�





�

x −
lk + uk

2

�T

(Qi + θiI)

�

x −
lk + uk

2

�

+ dTi x − θi

n
�

j=1

x2j

+

�

lk + uk
�T

(Qi + θiI)x −

�

lk + uk

2

�T

(Qi + θiI)

�

lk + uk

2

�





−













di + (Qi + θiI)
T
�

lk + uk
�

− 2θil
k





T

x + 2θi

�

uk
�T

lk

− θi(u
k )T (uk )−

�

lk + uk

2

�T

(Qi + θiI)

�

lk + uk

2

�







�

�

�

�

�

�

=

�

�

�

�

�

�

�

x −
lk + uk

2

�T

(Qi + θiI)

�

x −
lk + uk

2

�

+θi

n
�

j=1

�

2lkj xj − 2ukj l
k
j +

�

ukj

�2

− x2j

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

x −
lk + uk

2

�T

(Qi + θiI)

�

x −
lk + uk

2

�

+θi

n
�

j=1

�

ukj − xj

��

xj − lkj + ukj − lkj

�

�

�

�

�

�

�

≤

�

�

�

�

�

�

�

x −
lk + uk

2

�T

(Qi + θiI)

�

x −
lk + uk

2

�

�

�

�

�

�

�

+ θi

�

�

�

�

�

�

n
�

j=1

�

ukj − xj

��

xj − lkj + ukj − lkj

�

�

�

�

�

�

�

≤

�

�

�

�

�

�

�

x −
lk + uk

2

�T

(Qi + θiI)

�

x −
lk + uk

2

�

�

�

�

�

�

�

+ θi

�

�

�

�

�

�

n
�

j=1

�

ukj − xj

��

xj − lkj

�

�

�

�

�

�

�

+ θi

�

�

�

�

�

�

n
�

j=1

�

ukj − xj

��

ukj − lkj

�

�

�

�

�

�

�

≤

�

�

�

�

�

�

�

x −
lk + uk

2

�T

(Qi + θiI)

�

x −
lk + uk

2

�

�

�

�

�

�

�

+ 2θi

�

�

�

�

�

uk − lk
�T�

uk − lk
�

�

�

�

�

=

1

4
�Qi + θiI�

�

�

�

uk − lk
�

�

�

2

+ 2θi

�

�

�

uk − lk
�

�

�

2
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Since

therefore, we get

The conclusion is drawn.  �
From the above Theorem 1, we can establish the linear program relaxation problem 

(LPRP) of the NQPQC in Xk as follows.

where

Obviously, by the construction method of linear program relaxation problem (LPRP), 
we get that the feasible region of the LPRP contain all feasible points of the NQPQC in 
Xk, and the optimal value of the LPRP is not more than that of the NQPQC in Xk.

Range contraction approach
To accelerate running speed of our algorithm, a range contraction approach is formu-
lated as the following Theorem 2. The proposed range contraction approach aims at con-
tracting the investigated rectangle X without pruning any global optimum point of the 
initial NQPQC.

Without loss of generality, for any x ∈ X = (Xj)n×1 ⊆ X0 with 
Xj = [lj ,uj] (j = 1, . . . , n) , we can rewrite the function FL

i (x) as follows:

1

4
�Qi + θiI�

∥

∥

∥

uk − lk
∥

∥

∥

2
+ 2θi

∥

∥

∥

uk − lk
∥

∥

∥

2
→ 0 as

∥

∥

∥

uk − lk
∥

∥

∥

→ 0,

�i =
∥

∥Fi(x)− FL
i (x)

∥

∥ → 0 as
∥

∥

∥

uk − lk
∥

∥

∥

→ 0.

LPRP(Xk) :















min F
L
0 (x)

s.t. F
L
i
(x) ≤ bi, i = 1, . . . ,m,

x ∈ X
k
= {x : l

k
≤ x ≤ u

k
}.

FL
i (x) =

[

di + QT
i

(

lk + uk
)

+ θi

(

uk − lk
)]T

x + 2θi

(

uk
)T

lk − θi

(

uk
)T(

uk
)

−

(

lk + uk

2

)T

(Qi + θiI)

(

lk + uk

2

)

.

F
L
i (x) =

n
∑

j=1

cijxj + δi, i = 0, 1, . . . ,m.
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Let UB be a known currently upper bound of the global optimum value of the 
NQPQC(X0), and set

Theorem 2 For any sub-rectangle X ⊆ X0, the following conclusions hold:

(i)  If ̂LB0 > UB or ̂LBi > bi for some i ∈ {1, . . . ,m}, then there contains no global opti-
mal solution of the NQPQC(X0) over X.

(ii)  If ̂LB0 ≤ UB, then, for any p ∈ {1, 2, . . . , n}, if c0p > 0, then there does not contain 
global optimal solution of the NQPQC(X0) over X = (Xj)n×1; if c0p < 0, there does 
not contain global optimal solution of the NQPQC(X0) over X = (Xj)n×1.

(iii)  If ̂LBi ≤ bi for each i ∈ {1, . . . ,m}, then, for any p ∈ {1, 2, . . . , n}, if cip > 0, then 
there does not contain global optimal solution of the NQPQC(X0) over ˜X = (˜Xj)n×1 ; 
if cip < 0, there does not contain global optimal solution of the NQPQC(X0) over 
̂X = (̂Xj)n×1.

Proof The proof of the Theorem can be similarly given by the Theorem 3 in Jiao et al. 
(2014), therefore, here is omitted. �

From the above Theorem 2, a new range contraction approach is presented as follows:

Range contraction approach
Without loss of generality, assume that X = (Xj)n×1 with Xj = [lj ,uj] (j = 1, . . . , n) be 
any sub-rectangle of X0, and for each i = 0, 1, . . . ,M, compute ̂LBi.

If there exist some i ∈ {1, . . . ,M}, such that ̂LBi > bi, then delete the whole rectangle 
X;

Otherwise, for each i ∈ {1, . . . ,M}, p ∈ {1, . . . , n}, compute bi−
̂LBi+min{ciplp ,cipup}

cip
. If 

cip > 0 and bi−
̂LBi+min{ciplp ,cipup}

cip
< up, then let up =

bi−̂LBi+min{ciplp ,cipup}

cip
; else if c0p < 0 

and bi−
̂LBi+min{ciplp ,cipup}

cip
> lp, then let lp =

bi−̂LBi+min{ciplp ,cipup}

cip
.

If ̂LB0 > UB, then delete the whole rectangle X;

�LBi =

n
�

j=1

min{cijlj , cijuj} + δi, i = 0, 1, . . . ,m,

Xj =







Xj , j ∈ {1, . . . , p− 1, p+ 1, . . . , n},
�

UB−�LB0+min{c0plp ,c0pup}

c0p
,up

�

�

Xp, j = p;

Xj =







Xj , j ∈ {1, . . . , p− 1, p+ 1, . . . , n},
�

lp,
UB−�LB0+min{c0plp ,c0pup}

c0p

�

�

Xp, j = p;

�Xj =







Xj , j ∈ {1, . . . , p− 1, p+ 1, . . . , n},
�

bi−�LBi+min{ciplp ,cipup}

cip
,up

�

�

Xp, j = p ;

�Xj =







Xj , j ∈ {1, . . . , p− 1, p+ 1, . . . , n},
�

lp,
bi−�LBi+min{ciplp ,cipup}

cip

�

�

Xp, j = p .
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Otherwise, for each p ∈ {1, . . . , n}, compute UB−̂LB0+min{c0plp ,c0pup}

c0p
. If c0p > 0 and 

UB−̂LB0+min{c0plp ,c0pup}

c0p
< up, then let up =

UB−̂LB0+min{c0plp ,c0pup}

c0p
; else if c0p < 0 and 

UB−̂LB0+min{c0plp ,c0pup}

c0p
> lp, then let lp =

UB−̂LB0+min{c0plp ,c0pup}

c0p
.

From Theorem 2, by utilizing the above range contraction approach to compress the 
investigated rectangle region, or delete a part of the investigated rectangle region, in 
which there does not contain the global optimum solution of the NQPQC. Therefore, we 
can improve the computational speed or computational efficiency of the algorithm.

Range division and contraction algorithm
In this section, a new range division and contraction algorithm is presented for globally 
solving the initial NQPQC. In the algorithm, one of the most important operation is the 
choice of a suitable range division method. Here, we choose an w − division approach, 
which is sufficient to ensure the global convergence of the proposed algorithm, this is 
because that the selected range division method drives all interval to zero for all vari-
ables. This range division method is described as follows.

For any investigated rectangle X
′

= [x
′

, x
′

] ⊆ X0. Denote q ∈ arg max

{x
′

i
− x

′

i
: i = 1, 2, . . . , n}, and by dividing the interval [x′

q , x
′

q] into two new subintervals 
[x

′

q , x
′

q + ω(x
′

q − x
′

q)] and [x′

q + ω(x
′

q − x
′

q), x
′

q], where ω ∈ (0, 1). At the same time, all 
other interval remain unchanged. Consequently, the investigated rectangle X ′ is parti-
tioned into two new sub-rectangles X ′

1 and X ′

2

Without loss of generality, we denote LB(Xk) and xk = x(Xk) as the optimum value 
and optimal solution of the linear program relaxation problem over the sub-rectangle 
Xk , respectively. Combining the former linear program relaxation problem, range divi-
sion method and range contraction approach together, a new global optimization 
method is constructed for effectively solving the NQPQC, the main steps of the pro-
posed algorithm are described as follows.

Range division and contraction algorithm

Step 0. (Initializing) Set the initial iteration number k = 0, the initial active node set 
�0 = {X0

}, the given termination error ǫ > 0, the initial upper bound UB0 = +∞ and 
the initial feasible point set � = ∅, respectively.

Step 1. (Judgement) Compute the LPRP(X0), denote its optimum solution x0 = x(X0) 
and optimum value LB(X0), respectively. If x0 is a feasible point of the NQPQC(X0), let 
UB0 = F0(x

0) and � = � ∪ {x0}. Let LB0 = LB(X0), if UB0 − LB0 ≤ ǫ, then x0 is a global 
optimum solution of the NQPQC(X0). Otherwise, proceed to Step 2.

Step 2. (Division)  Use the proposed range division method to divide Xk into two new 
sub-rectangles, and denote the set of new partitioned sub-rectangle as Xk.

Step 3. (Contraction)  For each investigated sub-rectangle X ∈ X
k, use the presented 

range contraction approach to compress its range, and still denote the remaining rectan-
gle part and the remaining partitioning set by X and Xk, respectively.
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Step 4. (Bounding)  If Xk is not empty, for each X ∈ X
k, compute the LPRP(X), and 

denote its optimum value and optimum solution by LB(X) and x(X), respectively. If 
LB(X) > UBk, let Xk

:= X
k
\ X; else if the midpoint xmid of X is a feasible solution 

of the NQPQC(X0), then let � := � ∪ {xmid
}, and if x(X) is a feasible solution of the 

NQPQC(X0), then let � := � ∪ {x(X)}.

If � is not empty, denote the new upper bound UBk := minx∈� F0(x), and denote the 
best feasible point x∗ := argmin x∈�F0(x).

Denote the new remaining partition set and the new lower bound by 
�k := (�k\X

k) ∪ X
k and LBk := infX∈�k

LB(X), respectively.

Step 5. (Judgement)  Denote �k+1 = �k\{X : UBk − LB(X) ≤ ǫ, X ∈ �k}. If �k+1 = ∅,  
then we have: UBk and x∗ be the global optimum value and the global optimum solution 
of the initial NQPQC, resepectively. Otherwise, select a new sub-rectangle Xk+1 which 
satisfies Xk+1

= argmin X∈�k+1
LB(X), let k := k + 1 and return to Step 2.

The above algorithm either terminates after finite iteration or generates an infinite 
iteration sequence, from the exhaustiveness of the used range division approach, we can 
follow that all intervals of all variables must shrink to a singleton, i.e., �uk − lk� → 0. 
At the same time, the Theorem 1 guarantee that the linear program relaxation problem 
(LPRP) (Xk) will infinitely approaches the problem NQPQC(Xk) as �uk − lk� → 0.

Theorem 3 The above algorithm either finishes finitely at the global optimum point x∗ 
of the initial NQPQC, or produces an infinite iteration sequence {xk}, of which any accu-
mulation point will be the global optimum point of the initial NQPQC.

Proof If the above algorithm finishes finitely at some iteration k, obviously, when the 
algorithm ends, we can get UBk = v∗ = LBk. Therefore, from step of the algorithm, we 
get that xk is a global optimum point of the initial NQCQP.

If the above algorithm does not finish at finite step, then it must produce an infinite 
sub-rectangle iteration sequence {Xk

}, from the exhaustiveness of division approach, we 
get that the sub-rectangle sequence {Xk

} must converge to a point. From the charac-
teristics of our algorithm, we can get that {UBk} and {LBk} are nonincreasing and non-
decreasing sequences, respectively. So that {UBk − LBk} is a monotonic non-increasing 
sequence. By the conclusion of Theorem  1, we get that the sequence {UBk − LBk} 
must be convergent to zero. From the structure of our algorithm, for each k, we have 
LBk ≤ v∗ ≤ UBk. Therefore, we can get that limk→∞UBk = limk→∞ LBk = v∗. From 
steps of our algorithm, we know that xk is always a feasible point of the initial NQCQP, 
we can get UBk = G0(x

k). By the continuity of constrained functions, we get that the 
limitation point x∗ of {xk} is also a feasible point of the initial NQCQP, and we can get 
the global optimum value v∗ = G0(x

∗). Hence, the conclusion is proved. �

Numerical experiments
In this section, in order to verify the performance of the algorithm proposed in this 
paper (our algorithm), several numerical examples in recent references are implemented 
on a Intel(R) Core(TM)2 Duo CPU microcomputer. Although these numerical examples 
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have a relatively small number of variables, they are also quite challenging. The proposed 
algorithm program is coded in C++ language, all linear program relaxation problems 
are solved by using simplex approach, and the convergence errors are all set as ǫ = 10−6 
in our experiments. For all examples, the numerical results of optimal solutions, optimal 
values and number of iterations obtained by our algorithm and other approaches (Jiao 
and Chen 2013; Thoai 2000; Shen and Liu 2008; Gao et al. 2005b; Jiao et al. 2014; Shen 
and Jiao 2006; Wang and Liang 2005; Wang et al. 2004; Shen 2005; Shen and Li 2013) are 
illustrated in Table 1. The numerical experimental results show that our algorithm can 
globally solve the NQCQP problem. In Table 1, the notation “Iter.” represents “number 
of iterations”.

Table 1 Numerical comparisons with the known approaches for Examples 1–8

Example References Optimum value Optimum solution Iter.

1 This paper −16.000000000 (5.000000000, 1.000000000) 5

Thoai (2000) −16.0 (5.0, 1.0) 10

Jiao and Chen (2013) −16.000000000 (5.000000000, 1.000000000) 5

2 This paper 6.777777779 (2.000000000, 1.666666667) 14

Shen and Liu (2008) 6.777782016 (2.000000000, 1.666666667) 40

Jiao et al. (2014) 6.777778233 (2.0, 1.666666667) 32

Jiao et al. (2014) 6.777778517 (2.0, 1.666666667) 33

Wang and Liang (2005) 6.7780 (2.00003, 1.66665) 44

3 This paper 0.500000394 (0.500000000, 0.500000000) 28

Shen and Liu (2008) 0.500004627 (0.5  0.5) 34

Wang and Liang (2005) 0.5 (0.5, 0.5) 91

Wang et al. (2004) 0.5 (0.5, 0.5) 96

Jiao and Chen (2013) 0.500000442 (0.500000000, 0.500000000) 37

4 This paper 118.383672094 (2.555940349, 3.129963478) 45

Gao et al. (2005b) 118.383756475 (2.5557793695, 3.13016463929) 210

Jiao et al. (2014) 118.383672231 (2.555800904, 3.130134268) 61

Jiao and Chen (2013) 118.383671904 (2.555745855, 3.130201688) 59

5 This paper −1.162881826 (1.500000000, 1.500000000) 31

Shen (2005) −1.16288 (1.5, 1.5) 84

Jiao and Chen (2013) −1.162882693 (1.500000000, 1.500000000) 24

6 This paper 1.177125219 (1.177124344, 2.177124344) 12

Shen and Jiao (2006) 1.177124327 (1.177124327, 2.177124353) 434

Jiao and Chen (2013) 1.177125051 (1.177124344, 2.177124344) 22

7 This paper −0.999999102 (2.000000000, 1.000000000) 20

Shen and Jiao (2006) −1.0 (2.000000, 1.000000) 24

Jiao and Chen (2013) −0.999999410 (2.000000000, 1.000000000) 21

8 This paper −11.36363579 (1.0, 0.181818133, 0.983332175) 352

Shen and Li (2013) −10.35 (0.998712,0.196213,0.979216) 1648

Jiao and Chen (2013) −11.363636364 (1.0, 0.181818470, 0.983332113) 420
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Example 1 (Jiao and Chen 2013; Thoai 2000).

For Example  1, from numerical results in Table 1, compared with the algorithms in 
Jiao and Chen (2013), Thoai (2000), use the same logic of the algorithm, our algorithm 
can obtain the same optimal solution (5.0, 1.0), but our algorithm spends less number of 
iterations.

Example 2 (Shen and Liu 2008; Jiao et al. 2014; Wang and Liang 2005).

For Example 2, by Table 1, compared with the algorithms in Shen and Liu (2008), Jiao 
et al. (2014), use the same logic of the algorithm, our algorithm can obtain the same opti-
mal solution with less number of iterations; and compared with the algorithms in Wang 
and Liang (2005), our algorithm can obtain the better optimal solution with less number 
of iterations.

Example 3 (Jiao and Chen 2013; Shen and Liu 2008; Wang and Liang 2005; Wang et al. 
2004).

From the numerical results of Example 3 in Table 1, compared with the algorithms in 
Jiao and Chen (2013), Shen and Liu (2008), Wang and Liang (2005), Wang et al. (2004), 
our algorithm can obtain the same optimal solution (0.5, 0.5) as Jiao and Chen (2013), 
Shen and Liu (2008), Wang and Liang (2005), Wang et  al. (2004), but our algorithm 
spends less number of iterations.

Example 4 (Jiao and Chen 2013; Gao et al. 2005b; Jiao et al. 2014).
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For Example  4, by the numerical results in Table  1, compared with the algorithms 
in Jiao and Chen (2013), Gao et al. (2005b), Jiao et al. (2014), our algorithm can obtain 
better or at least as good as optimal solution and optimal value with less number of 
iterations.

Example 5 (Jiao and Chen 2013; Shen 2005).

For Example 5, by the numerical results of Table 1, compared with the algorithms in 
Jiao and Chen (2013), Shen (2005), our algorithm can obtain the same optimal solution 
(1.5, 1.5), but our algorithm spend less number of iterations.

Example 6 (Jiao and Chen 2013; Shen and Jiao 2006).

For Example 6, from the numerical results in Table 1, our algorithm obtains the opti-
mal solution (1.177124344, 2.177124344) after 24 iterations, but the algorithm in Shen 
and Jiao (2006) obtains the optimal solution (1.177124327, 2.177124353) after 24 itera-
tion, obviously our algorithm has higher computational efficiency than the algorithms 
in Shen and Jiao (2006); compared with the algorithm in Jiao and Chen (2013), our algo-
rithm can obtain the same optimal solution (1.177124344, 2.177124344), but our algo-
rithm spend less number of iterations.

Example 7 (Jiao and Chen 2013; Shen and Jiao 2006).

For Example 7, from the numerical results in Table 1, compared with the algorithms 
in Jiao and Chen (2013), Shen and Jiao (2006), our algorithm can obtain the same opti-
mal solution (2.0, 1.0), but our algorithm spend less number of iterations, obviously our 
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algorithm has higher computational efficiency than the algorithms in Jiao and Chen 
(2013), Shen and Jiao (2006).

Example 8 (Jiao and Chen 2013; Shen and Li 2013).

For Example 8, from the numerical results in Table 1, our algorithm obtains the opti-
mal solution (1.0,  0.181818133,  0.983332175) and the optimal value −11.363635790 
after 352 iterations, but the algorithm in Jiao and Chen (2013) obtains the optimal 
solution (1.0,  0.181818470,  0.983332113) and optimal value −11.363636364 after 
420 iteration, and the algorithm in Shen and Li (2013) obtains the optimal solution 
(0.998712, 0.196213, 0.979216) and optimal value −10.35 after 1648 iteration, obviously 
our algorithm not only has higher efficiency but also get the better optimal solution and 
optimal value.

In all, from numerical results for Examples 1–8, compared with Jiao and Chen (2013), 
Thoai (2000), Shen and Liu (2008), Gao et al. (2005b), Jiao et al. (2014), Shen and Jiao 
(2006), Wang and Liang (2005), Wang et al. (2004), Shen (2005), Shen and Li (2013), the 
presented algorithm in this paper can globally solve nonconvex quadratic program with 
quadratic constraints.

Conclusion
In this article, a new range division and contraction algorithm is proposed for globally 
solving nonconvex quadratic program with quadratic constraints (NQPQC). The linear 
program relaxation problem of the initial NQPQC is constructed by utilizing new lin-
earizing method, which is derived by underestimating all quadratic objective function 
and constraint functions with linear relaxation functions. By applying the current upper 
bound and linear program relaxation problem of the NQPQC, a range contraction tech-
nique is introduced for improving the computational speed of our algorithm. By suc-
cessive partition of the initial rectangle region, and by subsequently solving a sequence 
of linear program relaxation problems, the proposed algorithm converges to the global 
optimum point of the original NQPQC. Finally, Numerical computational results dem-
onstrate the effectiveness and robustness of our algorithm.
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