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Background
We consider the absolute value equations (AVEs):

where A ∈ Rn×n, b ∈ Rn , and |x| denotes a vector in Rn, whose i-th component is |xi|. 
A more general form of the AVEs, Ax + B|x| = b, was introduced by Rohn (2004) and 
researched in a more general context in Mangasarian (2007a). Hu et al. (2011) proposed 
a generalized Newton method for solving absolute value equation Ax + B|x| = b asso-
ciated with second order cones, and showed that the method is globally linearly and 
locally quadratically convergent under suitable assumptions. As was shown in Man-
gasarian and Meyer (2006) by Mangasarian, the general NP-hard linear complementarity 
problems (LCPs) (Cottle and Dantzing 1968; Chung 1989; Cottle et al. 1992) subsume 
many mathematical programming problems such as absolute value equations (AVEs) (1), 
which own much simpler structure than any LCP. Hence it has inspired many scholars 
to study AVEs. And in Mangasarian and Meyer (2006) the AVEs (1) was investigated 
in detail theoretically, the bilinear program and the generalized LCP were prescribed 
there for the special case when the singular values of A are not less than 1. Based on 
the LCP reformulation, sufficient conditions for the existence and nonexistence of solu-
tions are given in this paper. Mangasarian also has used concave minimization model 
(Mangasarian 2007b), dual complementarity (Mangasarian 2013), linear complementa-
rity (Mangasarian 2014a), linear programming (Mangasarian 2014b) and a hybrid algo-
rithm (Mangasarian 2015) to solve AVEs (1). Hu and Huang reformulated a system of 
absolute value equations as a standard linear complementarity problem without any 

(1)Ax − |x| = b,
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assumption and gave some existence and convexity results for the solution set of the 
AVEs (1) in Hu and Huang (2010). Paper Zhang et al. (2015) presented a new algorithm 
which relaxes the absolute value equations into a convex optimization problem, Zhang 
et al. found the sparsest solution of AVEs by the minimum l0-norm. Caccetta et al. pro-
posed a globally and quadratically convergent method for AVEs in Caccetta et al. (2011). 
Rohn et  al. gave an iterative method for AVEs (1) and analyzed the sufficient condi-
tions of unique solvability by Rohn et al. (2014), Uniqueness is always a hot spot (Wu 
and Guo 2015), and Moosaei et al. gave the minimum norm solution of absolute value 
equations Ax − |x| = b which has multiple solutions (at most 2n) via simulated anneal-
ing algorithm in Moosaei et al. (2014). Salkuyeh (2014) put forward a hybrid algorithm 
which combined with skew-Hermitian and Picard-Hermitian splitting iteration method 
for solving AVEs (1), and gave the convergence analysis of the hybrid algorithm. Fur-
thermore, Mangasarian (2009) clearly showed that generalized Newton method is a 
very effective method by solving some high dimensional examples in very few iterations. 
Haghani (2015) proposed an improved Newton method with two-step form, called 
Traub’s method, whose effectiveness is better than that of Mangasarian’s. Iqbal et  al. 
(2015) proposed a Levenberg–Marquardt method for AVEs (1), which is the combina-
tion of steepest descent and the Gauss–Newton method. Paper Cruz et al. (2016) raised 
an inexact semi-smooth Newton algorithm for AVEs (1), and proved that the method 
is globally convergent. So, how to solve absolute value equations based on the classic 
Newton algorithm have been received many of the concerns. That have motivated us for 
trying to improve Newton method as the main aim of the present paper.

Now we describe our notation. The scalar product of two vectors x and y in the 
n-dimensional real space will be denoted by 〈x, y〉. For x ∈ Rn, the norm ‖x‖ will denote 
the two-norm (xTx)1/2 , and sign(x) will denote a vector with components equal to +1, 0 
or −1, depending on whether the corresponding component of x is positive, zero or neg-
ative, respectively. In addition, diag(sign(x)) will denote a diagonal matrix corresponding 
to sign (x).

In “Preliminary” section of the present work we give the notations and prelimi-
nary notes about AVEs.  “The improved generalized Newton method” section gives an 
improved generalized Newton iterative algorithm which is globally and locally quadratic 
convergent under certain assumptions. In “Computational results” section some numer-
ical reports show the efficiency of the proposed scheme. “Conclusions” section gives 
some concluding remarks to end the paper.

Preliminary
We begin by defining the piece-wise linear vector function f(x) specified by the AVEs (1) 
as follows:

A generalized Jacobian of f at x is

where D(x) = ∂|x| = diag(sign(x)).

(2)f (x) = Ax − |x| − b.

(3)∂f (x) = Ax − D(x),
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To solve (1), the iterative computational method of Mangasarian (2009) is as follows:

Another method proposed by Haghani (2015) is as follows:

It has been shown that both the sequences {xk} generated by Eqs. (4) and (5) converge 
linearly to the true solution x̄ of AVEs (1) when the singular values of A are exceed 1. 
However, the computational time of (5) is a little less than that of (4), with a higher resid-
ual error precision than (4).

The improved generalized Newton method
Ostrowski (1960) and Traub (1964) presented a modified Newton’s iteration for solving 
nonlinear equation in real space R, which give us some inspiration. We will promote this 
idea to the n-dimensional space. The iterative method is as follows:

We can simplify (6) as much as possible to obtain the follwing form of improved general-
ized Newton method for AVEs

where dk := −(A− D(xk))−1(Axk − |xk | − b). It is clear that our method is a Newton 
method with a specific liner search.

Algorithm 1 An improved generalized Newton method
Step 0. Choose an initial vector x ∈ Rn to AVE (1), set k = 0.
Step 1. If ‖Axk − |xk| − b‖ = 0, stop.
Step 2. Compute xk+1 by

xk+1 = xk + (1− ak)dk,

where dk := −(A−D(xk))−1(Axk − |xk| − b), ak = ‖f(yk)‖
‖2f(yk)−f(xk)‖ .

Step 3. Set k = k + 1, go to Step 1.

We shall need a few theoretical results to establish convergence of Algorithm  1, we 
first quote the following two results from Mangasarian and Meyer (2006).

Lemma 1  The singular values of the matrix A ∈ Rn×n exceed 1 if and only if the mini-
mum eigenvalue of A′A exceeds 1.

(4)xk+1 = (A− D(xk))−1b, k = 0, 1, 2, . . . .

(5)
yk = (A− D(xk))−1b,

xk+1 = yk − (A− D(xk))−1((A− D(yk))yk − b), k = 0, 1, 2, . . . .

(6)

yk = xk − (A− D(xk))−1f (xk),

ak =
�f (yk)�

�2f (yk)− f (xk)�
,

xk+1 = yk − ak(yk − xk), k = 0, 1, 2, . . . .

(7)xk+1 = xk + (1− ak)dk , k = 0, 1, 2, . . . ,
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Lemma 2  If the singular values of A ∈ Rn×n exceed 1 for the method (6), then (A− D)−1 
exists for any diagonal matrix D whose diagonal elements are ±1 or 0.

Therefore, the sequence of vector iterates form (6) is well defined no matter how to 
choose the initial vector x0 in Rn.

We now prove the proposed Newton direction dk of (7) is a descent direction for the 
objective function ‖f (x)‖2.

Lemma 3  If the singular values of A ∈ Rn×n exceed 1, then the proposed Newton direc-
tion dk of (7) is a descent direction for the objective function F(x) = 1

2
�f (x)�2.

Proof  Since f (x) = Ax − |x| − b, ∂f (x) = A− D(x), and (A− D(x))−1 exists for any 
diagonal matrix D whose diagonal elements are ±1 or 0.

In addition, we know

and

Moreover, F(x) = 1
2
�f (x)�2, then ∂F(x) = ∂f (x)f (x).

So

Consequently, dk is a descent direction of F(x). � �

Lemma 4  Let the singular values of A exceed 1, then the sequence {xk} generated by the 
improved generalized Newton method (6) is bounded, and there exists an accumulation 
point x̄ such that (A− D̄)x̄ = b+ āf (x̄) for some diagonal matrixes D̄ with diagonal ele-
ments of ±1 or 0.

Proof  Suppose that the sequence {xk}∞k=0
 is unbounded. Then there exists a subse-

quence {xkj+1} → ∞ with nonzero xkj+1, such that D(xkj ) = D̃, where D̃ is a assured 
diagonal matrix with diagonal elements equal to ±1 or 0 extracted from the finite num-
ber of possible configurations for D(xk) in the sequence {D(xk)}, and such that the 

bounded subsequence 
{

x
kj+1

�x
kj+1

�

}
 converges to x̃. By Eq. (6), we have

dk = −(∂f (x))−1f (x) = −(A− D(xk))−1(Axk − |xk | − b).

xk+1 = yk − ak(yk − xk)

= (1− ak)yk + akxk

= (1− ak)(xk + dk)+ akxk

= xk + (1− ak)dk .

�∂F(x), dk� = �∂f (x)f (x),−(∂f (x))−1f (x)�

= − (f (x))T (∂f (x))T (∂f (x))−1f (x)

= − �f (x)�2 < 0.
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So, (A− D(xk))xk+1 = b+ ak f (xk), thus, (A− D(xkj )) x
kj+1

�x
kj+1�

=
b+a

kj f (x
kj )

�x
kj+1�

.
Due to the following equation:

and Lemma  3, the Newton direction dk in (7) is a descent direction for the objective 
function ‖f (x)‖2. We get �akj · f (xkj )� → 0, as j → ∞.

Now, j → ∞ gives us:

since xkj+1 → ∞. This is a contradiction with the nonsingularity of (A− D) which fol-
lows from Lemma  2. Hence, the vector sequence {xk} is bounded and there exists an 
accumulation point (D̄, x̄) of {(D(xk), xk+1)} such that

The proof is complete. � �

Theorem 1  (Global linear convergence) If �(A− D)−1� < 1
3
 for any diagonal matrix D 

with diagonal elements of ±1 or 0, then the improved generalized Newton method (6) con-
verges linearly from any starting point x0 to a solution x̄ for any solvable AVEs (1).

Proof  Suppose that x̄ is a solution of the AVE (1). Noting that D(x̄)x̄ = |x̄| and 
D(xk)xk = |xk |, for convenience, let D̄ = D(x̄), Dk = D(xk). Subtracting (A− D(x̄))x̄ = b 
from (A− D(xk))xk+1 = b+ ak f (xk), we get

yk = xk − (A− D(xk))−1f (xk)

= xk − (A− D(xk))−1(Axk − |xk | − b)

= xk − (A− D(xk))−1((A− D(xk))xk − b)

= xk − (A− D(xk))−1(A− D(xk))xk + (A− D(xk))−1b

= xk − xk + (A− D(xk))−1b

= (A− D(xk))−1b.

xk+1 = yk − ak(yk − xk)

= (A− D(xk))−1b+ ak(A− D(xk))−1f (xk)

= (A− D(xk))−1(b+ ak f (xk)).

(8)�akj · f (xkj )� =
�f (ykj )� · �f (xkj )�

�2f (ykj )− f (xkj )�
,

(A− D̃)x̃ = 0, �x̃� = 1,

x̄ = (A− D̄)−1(b+ āf (x̄)).

A(xk+1 − x̄) = Dkxk+1 − D̄x̄ + ak f (xk)

= Dk(xk+1 − xk + xk)− D̄x̄ + ak f (xk)

= |xk | − |x̄| + Dk(xk+1 − xk)+ ak f (xk)

= |xk | − |x̄| + Dk(xk+1 − x̄ + x̄ − xk)+ ak f (xk)

= |xk | − |x̄| + Dk(xk+1 − x̄)+ Dk(x̄ − xk)+ ak f (xk).
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So,

i.e.,

From Mangasarian (2009, Lemma 5), we know that for ∀x, y ∈ Rn, �|x| − |y|� ≤ 2�x − y�.
Thus,

Since, �ak · f (xk)� → 0, as k → ∞, so the sequence{�xk − x̄�} → 0, as k → ∞. Conse-
quently, {xk} converges to x̄.

The proof is complete. � �

Theorem 2  If �A−1� < 1
4
 and D(xk) �= 0 for any diagonal matrix D(xk) with diagonal 

elements of ±1 or 0, then the Algorithm 1 converges linearly from any starting point x0 to 
a solution x̄ for any solvable AVEs (1).

Proof  The proof directly from Mangasarian (2009, Proposition 7). It is hence omitted.

In the following, we use Eq. (7) to prove the locally quadratic convergence of the Algo-
rithm 1. � �

Lemma 5  If A− D is nonsingular for any diagonal matrix D with diagonal elements of 
±1 or 0, then the Algorithm 1 is approximately Newton’s method.

Proof  Taking into account the step length

When xk is in a neighborhood of the solution x̄ of AVEs (1), f (yk) is close to f (xk), we 
perform a Newton step from xk to yk, for larger k, f (yk) = O(�yk − x̄�2), thus

So, 2f (yk)− f (xk) = f (yk)− f (xk)+ O(�dk�2), when k is sufficiently large 
and (A− D(xk) is uniformly bounded (|A− D(xk)| < |A| + |D(xk)| < |A| + 1) , 
dk = O(f (xk)). Then, f (yk)− f (xk) = −f (xk)+ O(�f (xk)�2), we also have 

(A− Dk)(xk+1 − x̄) = |xk | − |x̄| + Dk(x̄ − xk)+ ak f (xk).

(xk+1 − x̄) = (A− Dk)−1(|xk | − |x̄| + Dk(x̄ − xk)+ ak f (xk)).

�xk+1 − x̄� = �(A− Dk)−1(|xk | − |x̄| + Dk(x̄ − xk)+ ak f (xk))�

≤ �(A− Dk)−1�(�|xk | − |x̄|� + �Dk(x̄ − xk)� + �ak f (xk))�)

≤ �(A− Dk)−1�(2�xk − x̄� + �x̄ − xk� + �ak f (xk))�)

≤ �(A− Dk)−1�(3�xk − x̄� + �ak f (xk))�)

< �xk − x̄� +
1

3
�ak f (xk))�.

1− ak =
�f (yk)− f (xk)+ f (yk)� − �f (yk)�

�2f (yk − f (xk))�
≤

�f (yk)− f (xk)�

�2f (yk)− f (xk)�
.

f (yk)− f (xk) = Adk + |xk | − |xk + dk |

= Adk − D(xk)dk + O(�dk�2)

= − f (xk)+ O(�dk�2).
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�f (xk)� = �(A− D(x))(xk − x)� = O(�xk − x�) =: O(�ck�), where ck := xk − x. Thus, 
f (yk) = O(�ck�2), and

Hence, our method is approximately the generalized Newton’s method. � �

Theorem 3  (Locally quadratic convergence) If A− D is nonsingular for any diagonal 
matrix D with diagonal elements of ±1 or 0, then the sequence {xk} from improved gener-
alized Newton’s method (7) converges to x̄ and �xk+1 − x̄� = O(�xk − x̄�2).

Proof  This theorem can be proved in a similar way as Theorem 2 by Qi and Sun (1993). 
We omit it here. � �

Computational results
To illustrate the implementation and efficiency of the proposed method, we test the fol-
lowing two examples. All the experiments are performed by MATLAB R2010a. In com-
parisons, NM, TM and INM denote the generalized Newton’s method (4), the generalized 
Traub’s method (5) and the improved generalized Newton’s method (6), respectively.

Example 1  We choose randomly matrix A according to the following formula:

Then, we choose a random x ∈ Rn, compute b = Ax − |x|, and denote the problem size 
by n. To ensure that the minimum singular value of each A exceeds 1, we compute the 
minimum singular value of A and reseal A by the minimum singular value multiply by a 
random number in the interval [1, 2], The results are shown in Table 1.

1− ak = 1−
O(�ck�2)

O(�ck�)
= 1− O(�ck�).

A = rand(n ∗ (eye(n, n)− 0.02 ∗ (2 ∗ rand(n, n)− 1))).

Table 1  The comparison of NM, TM and INM in Example 1

Dim NM TM INM

K ACC T K ACC T K ACC T

100 3 1.6125× 10
−10 0.0036 3 1.8416× 10

−11 0.0031 3 1.6168× 10
−11 0.0027

200 3 6.0215× 10
−10 0.0097 3 7.0496× 10

−11 0.0095 3 6.2749× 10
−11 0.0084

300 3 1.2931× 10
−9 0.0216 3 1.6284× 10

−10 0.0071 3 4.5510× 10
−10 0.0217

400 3 2.5705× 10
−9 0.0567 3 2.6186× 10

−10 0.0517 3 7.6406× 10
−10 0.0321

500 3 4.3078× 10
−8 0.0831 3 4.7102× 10

−10 0.0944 3 3.5408× 10
−10 0.0512

600 4 6.3700× 10
−8 0.1365 3 5.5877× 10

−10 0.1576 3 4.1326× 10
−10 0.0906

700 4 7.0085× 10
−8 0.2227 3 1.0945× 10

−9 0.2304 3 8.8369× 10
−10 0.1278

800 4 2.1838× 10
−7 0.3766 4 2.0634× 10

−9 0.3103 4 2.5631× 10
−9 0.1788

900 4 3.6958× 10
−7 0.4706 4 6.9784× 10

−9 0.4173 4 2.9899× 10
−9 0.2325

1000 5 6.3484× 10
−7 0.6973 4 1.7392× 10

−8 0.5221 4 6.3255× 10
−9 0.3063
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Example 2  The matrix A of which all the singular values are greater than 1 is generated 
by the following MATLAB procedure:

And, the results are shown in Table 2.

In Tables 1 and 2, Dim, K, ACC and T denote the dimensions of the problem, the num-
ber of iterations, �Axk − |xk | − b�2 and times(s), respectively. It is evident from Tables 1 
and 2 that the improved generalized Newton’s method is very effective for solving large 
problems.

rand(‘state’, 0);R = rand(n, n);A = R′ ∗ R+ n ∗ eye(n); b = (A− eye(n, n)) ∗ ones(n, 1).

Table 2  The comparison of NM, TM and INM in Example 2

Dim NM TM INM

K ACC T K ACC T K ACC T

100 3 1.7851× 10
−11 0.0042 3 1.1360× 10

−11 0.0333 3 1.2528× 10
−11 0.0029

200 3 3.3603× 10
−10 0.0146 3 8.0510× 10

−11 0.0132 3 6.7278× 10
−11 0.0069

300 3 3.9958× 10
−9 0.0392 3 2.8067× 10

−10 0.0301 3 2.6026× 10
−10 0.0203

400 3 7.3587× 10
−9 0.0857 3 6.8738× 10

−10 0.0681 3 5.7847× 10
−10 0.0444

500 3 2.1626× 10
−9 0.1411 3 1.1259× 10

−9 0.1085 3 1.1792× 10
−9 0.0679

600 4 1.1403× 10
−8 0.2356 3 2.1310× 10

−9 0.1595 3 2.4023× 10
−9 0.1055

700 4 4.6354× 10
−8 0.3993 3 2.9880× 10

−9 0.2681 3 3.6051× 10
−9 0.1704

800 4 5.7742× 10
−8 0.4829 4 5.1658× 10

−9 0.3543 3 3.8475× 10
−9 0.2239

900 5 6.4563× 10
−8 0.5749 4 6.9541× 10

−9 0.4665 3 7.0228× 10
−9 0.3076

1000 5 8.6322× 10
−8 0.7589 4 8.8558× 10

−9 0.6615 3 7.3382× 10
−9 0.4127

Fig. 1  Comparison of NM, TM and INM for Example 1 with n = 1000
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We give below the convergence curves of three algorithms for solving Examples 1, 2 by 
Figs. 1 and 2. We can see that the convergence of the INM is better than NM’s and TM’s.

Conclusions
In this paper, we have proposed the generalized Newton’s method with special search 
direction for solving the NP-hard absolute value equations under certain assumptions 
on A. The method have some nice convergence properties and calculation results. Fur-
ther work is to find more effective methods for AVEs.
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