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Background
Peak detection algorithms are prominently used for event classification in various physi-
ological signals such as in electroencephalograms (EEG) for diagnosing epilepsy (Acir 
2005), photoplethysmograms (PPG) for monitoring heart rate (Elgendi et al. 2013), and 
in EEG (Adam et  al. 2014b) or electrooculograms (EOG) in the particular application 
of tracking eye gaze events (Barea et  al. 2012). In all of these common applications, 
peak detection is commonly the first step in signal processing. For example, semi-auto-
matic diagnosis of epilepsy can be based on the frequency of peaks detected in the EEG 
recording during a given time interval. A similar approach is used for identifying eye 
blink events, a frequent source of interference in EEG recordings.

Detecting a peak indicative of a particular event in the EEG signal is challenging due to 
the non-stationary nature of the signal relative to the baseline amplitude, time, and dif-
ferent user. A signal peak identified as a point of highest signal amplitude lying between 
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two associated valley points, which hold a local minimum value. Any single peak is 
described by a number of signal parameters, including amplitude, width, and slope. 
Based on those parameters, a number of peak features can be calculated in the temporal 
domain, such as peak-to-peak amplitudes at the first half wave, peak width, ascending 
peak slopes at the first half wave, and descending peak slope at the second half wave. 
The ensemble of these peak features serves to detect the peak in various applications. 
However, the high variation of calculated peak features in real EEG data, which typically 
contain several types of noise, can interfere with correct peak detection and degrade 
performance.

Typically, a peak detection algorithm consists of combination of selected features from 
their peak model and subsequent computational processes, such as classification. Based 
on the literature, Dumpala et al. (1982) used a defined peak model, and then introduced 
a classification process to detect a peak signal in the analysis of gastric electrical activ-
ity. Dingle et al. (1993); Liu et al. (2002); Acir et al. (2005); Acir 2005); Liu et al. (2013) 
also used the defined peak models and different classification processes to detect peaks 
in EEG signal with epileptiform activity. The classifiers that have hitherto been used for 
signal peak detection include rule-based (Dumpala et al. 1982; Adam et al. 2015; Dingle 
et al. 1993), AdaBoost (Liu et al. 2002), radial basis function network (Acir et al. 2005), 
support vector machine (SVM) (Liu et  al. 2013), radial basis support vector machine 
(Acir et al. 2005), artificial neural network (ANN) (Liu et al. 2002), and expert system 
(Liu et al. 2002; Dingle et al. 1993). In general, utilization of a peak detection algorithm 
provides the best performance in various applications. However, the various algorithms 
have used different peak models and different classification approaches combined in a 
particular peak detection algorithm. Moreover, to the best of our knowledge, there are 
very reports comparing the performance of different peak models using the same clas-
sification platform, such as a rule-based classifier (Adam et al. 2014a, 2014b, 2015). The 
existing methods tend to have poor performance with peak models defining many peak 
features, for example, the detection performance declined to nil when the classifier 
employed all 11 features from Liu model (Adam et al. 2014b).

For fair evaluation of the detection performance of different EEG signal peak models, 
they must be assessed using a common classification method. Therefore, in this study 
we used the extreme learning machine (ELM) method as a common classifier for the 
peak detection algorithm to evaluate the performance in association with four differ-
ent peak models in time domain analysis, namely the models of Dumpala, Acir, Liu, and 
Dingle. The four representative peak models were on the basis of their proven utility in 
various physiological signal applications. We used an ELM since it provides very fast 
learning speed, generalized performance, learning without iterative tuning, and minimal 
requirement for user intervention. ELM also employs as alternative method to resolve 
the shortcoming of existing studies which have poor performance to peak model with 
many peak features. Hence, the present study aims to determine the best peak model in 
time domain analysis for EEG-based horizontal eye movement signal application using 
an advantageous common classification platform.
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Methods
EEG signal peak detection algorithm

The training and testing phases of the EEG signal peak detection algorithm are shown 
in Fig. 1. The training and testing data that used in this study were collected using two 
channel EEG recordings from 20 voluntary subjects. In the first stage of peak detection, 
the training and testing EEG signals must be filtered as input to the algorithm, upon 
selection of the desired peak model. The training phase of the algorithm involves several 
processes, namely including peak candidate detection, feature extraction, with definition 
of model-specific features, and then classification process. The estimation process is per-
formed during this phase to train the network for adjusting the ELM parameters using 
the learning algorithm of the ELM classifier. In the testing phase, the algorithm follows 
the same series of processes, and the ELM parameters first determined in the training 
phase are used in the classification process of the testing phase. The final output of the 
training and testing phase are the predicted peak points and non-peak points from the 
identified peak candidates.

Peak candidate detection

The first process of the detection algorithm is to determine candidate peaks. This pro-
cess is used to assign the peaks into two groups, true non-peaks and true peaks. The 
group of true peaks is reconsidered to consist of candidate peaks, which can further 
classified into true non-peaks and true peaks using the ELM classifier. One advantage 
of determining candidate peaks process is that it reduces the number of input samples 
required for the ELM classifier, such that the computational time in the training and 
testing phases is minimized.

Determining the local maxima (peak points) and minima (valley points), the first pro-
cess in determining a candidate peak, can be performed using an algorithm developed 
by Billauer (2012). The subsequent process of detecting a peak candidate is as follows: By 
considering a discrete-time signal, x(I) of L points, the ith candidate peak point, PPi, is 
identified using the three-point sliding window method (Dumpala et al. 1982). The three 

Fig. 1  Training and testing phases of EEG signal peak detection
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selected points are denoted as x(I−1), x(I) and x(I + 1) for I = 1, 2, 3, …,L. A candidate 
peak point is identified when x(PPi−1) < x(PPi) > x(PPi + 1) and two associated valley 
points, VP1i and VP2i lie on either side of the peak, as shown in Fig. 2. The valley points 
are defined when x(VP1i−1) > x(VP1i) < x(VP1i + 1) and x(VP2i−1) > x(VP2i) < x(VP2i 
+ 1).

Feature extraction

The features of a peak candidate are calculated based on the eight points shown in Fig. 2. 
The set of points consists of the ith candidate peak point, PPi, the two associated valley 
points, VP1i and VP2i, the half point at first half wave (HP1i), the half point at second 
half wave (HP2i), the turning point at first half wave (TP1i), the turning point at second 
half wave (TP2i), and the moving average curve point (MAC(PPi)). The half point at first 
half wave can be defined as the point in slope located in the middle between thePPi and 
VP1i points while the half point at the second half wave as the point in slope based in the 
midst between the PPi and VP2i points. The MAC(PPi) point is located at the intersec-
tion between the PPi and MAC(PPi) points. The window length of the moving averaging 
is 100 sampling points.

Based on signal parameters, the features of a peak candidate can be categorized into 
three groups, namely amplitude, width, and slope. There are five different amplitudes, 
seven different widths, and four different slopes that can be calculated based on the eight 
defined points, resulting in a total of 16 features, which can be defined as follows:

	 1.	 The peak-to-peak amplitude at the first half wave, f1, is the peak amplitude between 
the magnitude of the peak and the magnitude of the valley of the first half wave, as 
denoted by.

	 2.	 The peak-to-peak amplitude at the second half wave, f2, is the peak amplitude 
between the magnitude of the peak and the magnitude of the valley of the second 
half wave, and is defined as

	 3.	 The turning point amplitude at the first half wave, f3, is the peak amplitude between 
the magnitude of the peak and the magnitude of the turning point at the first half-

(1)f1 =
∣

∣y(PPi)− y(VP1i)
∣

∣

(2)f2 =
∣

∣y(PPi)− y(VP2i)
∣

∣

iPP

iVP1
iVP2

iTP1

iHP1

iTP2

iHP2

MAC(PP )i

Fig. 2  The eight points of peak model
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wave. The turning point is defined as the point where the slope decreases more than 
50 % compared to the slope of the preceding point. The equation for f3 is as follows:

	 4.	 The turning point amplitude at the second half wave, f4, is the peak amplitude 
between the magnitude of the peak and the magnitude of the turning point at the 
second half wave, and is defined as

	 5.	 The moving average amplitude, f5, is the peak amplitude between the magnitude of 
the peak and the magnitude of the moving average, and is defined as

	 6.	 The peak width, f6, is the peak width between the valley point of the first half point 
and the valley point of the second half wave, and is defined as

	 7.	 The first half wave width, f7, is the peak width between the peak point and the valley 
point of the first half wave, and is defined as

	 8.	 The second half wave width, f8, is the peak width between the peak point and the val-
ley point of the second half wave, and is defined as

	 9.	 The turning point width, f9, is the peak width between the turning point at the first 
half wave and the turning point at the second half wave, and is defined as

	10.	 The first half-wave turning point width, f10, is the peak width between the turning 
point at the first half-wave and the peak point, and is defined as

	11.	 The second half wave turning point width, f11, is the peak width between the turning 
point at the second half-wave and the peak point, and is defined as

	12.	 The half point width, f12, is the peak width between the half point of the first half-
wave and the half point of the second half-wave, and is defined as

	13.	 The peak slope at the first half wave, f13, is the maximal slope between the peak point 
and the valley point of the first half wave, and is defined as

(3)f3 =
∣

∣y(PPi)− y(TP1i)
∣

∣

(4)f4 =
∣

∣y(PPi)− y(TP2i)
∣

∣

(5)f5 =
∣

∣y(PPi)− y(MAC(PPi))
∣

∣

(6)f6 = |x(VP1i)− x(VP2i)|

(7)f7 = |x(PPi)− x(VP1i)|

(8)f8 = |x(PPi)− x(VP2i)|
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(10)f10 = |x(PPi)− x(TP1i)|
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∣

∣

∣
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∣
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	14.	 The peak slope at the second half-wave, f14, is the peak slope between the peak point 
and the valley point of the second half wave, and is defined as

	15.	 The turning point slope at the first half-wave, f15, is the peak slope between the peak 
point and the turning point of the first half-wave, and is defined as

	16.	 The turning point slope at the second half wave, f16, is the peak slope between the 
peak point and the turning point of the second half-wave, and is defined as

From these 16 features, Dumpala et al. (1982) introduced a peak model that uses the 
four most salient features, f1, f6, f13, and f14. Additional features defining peak amplitude, 
f2, and two features of peak width, f7 and f8, were introduced by Acir et al. (2005); Acir 
and Guzeli (2004). As pointed out in Acir et  al. (2005), the defined features are inter-
related to the characteristic of peak in epilepsy events. There are highlighted three char-
acteristics as follows; (1) the ascending peak slopes at the first half wave, and descending 
peak slope at the second half wave are relatively large and smooth (2) the top of the peak 
is sharp, and (3) the peak width is always between 20 and 70 ms. The peak width can be 
calculated by the sum of the first half wave and second half wave peak width. Dumpala 
et al. (1982) and Acir et al. (2005) used the same similar definition of the peak slopes, i.e. 
f13 and f14. The peak model of Liu et al. (2002) entailed a total of 11 features, consisting of 
four amplitudes (f1, f2, f3, and f4), three widths (f6, f9, f12), and four slopes (f13, f14, f15, f16). 
Finally, the peak model introduced by Dingle et al. (1993) consists of four features (f5, f6, 
f13, f14). The different peak models and their sets of features are listed in Table 1.

Extreme learning machine classifier

Extreme learning machine is a new approach to machine learning involving a single layer 
feedforward neural network (SLFN). The introduction of ELM by Huang et al. (2004) has 
been followed by several variants (Balasundaram et al. 2014; Huang et al. 2012). ELM has 
already been used with success for various event classifications of EEG signals (Song and 
Zhang 2013; Shi and Lu 2013; Yuan et al. 2012; Song et al. 2012; Yuan et al. 2011; Liang 
et al. 2006). The main advantage present by ELM is the fast computation of the learning 
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Table 1  List of different peak models and sets of features

Peak model Set of features Number of features

Dumpala et al. (1982) f1, f6, f13, f14 4

Dingle et al. (1993) f5, f6, f13, f14 4

Acir et al. (2005); Acir (2005); Acir and Guzeli (2004) f1, f2, f7, f8, f13, f14 6

Liu et al. (2002) f1, f2, f3, f4, f6, f9, f12, f13, f14, f15, f16 11
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method compared to conventional ANN learning, since ELM training dispenses with 
time-consuming iterative tuning.

The architecture of an ELM is shown in Fig. 3. The network consists of three layers, i.e. 
the input, hidden, and output layers. Between the input and hidden layers are the input 
weights, and between the hidden and output layers are the output weights. The train-
ing process of an ELM proceeds in three stages. In the first stage, the input weights are 
assigned randomly between −1 and 1, and the biases in the hidden layer are assigned 
randomly between 0 and 1. Both of these parameters remain fixed during the training 
process. Afterward, the output matrix of the hidden layer, H, is calculated as follows:

where g is an activation function of the hidden neuron, x is the N × L matrix of inputs, 
a is the d × L matrix of random input weights, b is the 1 × L matrix of random biases in 
the hidden layer, N is an arbitrary number of distinct samples, L is the number of hidden 
neurons, and d is the number of inputs or features The ith column of H is the output of 
the ith hidden neuron with respect to inputs x1, x2, until xd.

The ELM can be represented as a linear system, which is mathematically modeled as

where β is the L × m matrix of output weights, T is the N × m matrix of target outputs, 
and m is the number of output neurons. The β and T matrixes are denoted as
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Fig. 3  ELM architecture
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and

respectively. To determine the least square solution, β, of the linear system Hβ = T, the 
minimum norm least-squares solution is computed as follows:

It is well known that the smallest norm least-squares solution of Eq. 21 is

where H+ is the Moore–Penrose pseudo-inverse of H. The three training stages of the 
ELM classifier are summarized as follows:

Stage 1:	� Randomly assign the input weights, ai and biases in the hidden neurons, bi
Stage 2:	� Calculate the output matrix of the hidden layer, H
Stage 3:	� Calculate the output weights, β = H+T.

The output function of the ELM classifier of a given unknown sample x is

In the output layer, two neurons are used in the network to classify the output into two 
classes (output): class 1 and class 0. For the two classes (m > 1), the predicted class label 
is the ith number of the output neurons, which is the maximum value of the output neu-
ron (Huang et al. 2012). The predicted class label of a given unknown sample x is defined 
as follows.

We evaluate the performance of our ELM classifier based on the Gmean (Guo et  al. 
2008), which is calculated as follows:

where a true peak (TP) is the correctly-detected peak point of the peak candidate, a true 
non-peak (TN) is the correctly-detected non-peak point of the peak candidate, a false 
peak (FP) is the wrongly-detected non-peak point of a peak candidate, a false non-peak 

(20)T =







tT1
...

tTN







N×m

(21)
∥

∥H(a1, · · · , aL, b1, · · · , bL)β − T
∥

∥ = min
β

∥

∥H(a1, · · · , aL, b1, · · · , bL)β − T
∥

∥

(22)β = (HTH)−1HTT = H+T

(23)f (x) = h(x)β

(24)
label(x) = arg maxfi(x)

i∈{1,...,m}

(25)TPR =
TP

TP + FN

(26)TNR =
TN

TN + FP

(27)Gmean =
√
TPR× TNR
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(FN) is a wrongly-detected peak point of a peak candidate, TPR is the true peak rate, and 
TNR is the true non-peak rate.

Experimental setup and protocols

Each experiment is conducted in 30 independent runs. The first 50 % of the filtered EEG 
signal was used as training data, and the remaining 50 % as testing data.

The parameter settings of the ELM classifier are shown in Table  2. The number of 
hidden neuron was selected using a trial and error method, which was set to 500. The 
sigmoid [−1, 1] was used as an activation function in the hidden layer for the purpose 
of normalization, whereas a linear function was located on each neuron in the output 
layer. Other settings for the ELM classifier, such as the number of neurons in the input 
layer are dependent on the number of selected features of a particular peak model. The 
number of output neurons was set to 2 which it used maximum argument as indicated 
in Eq. 24 for choosing the ELM output. We note that the input weights and the biases 
remained fixed during the training, but the values of these two ELM parameters are ran-
domly assigned for each of 30 runs.

This experimental protocol was approved by the medical ethics committee of the 
University of Malaya Medical Centre. All subjects signed informed consent forms in 
advance.

The filtered EEG signals in this study were obtained in the Applied Control and 
Robotic (ACR) Laboratory, Department of Electrical Engineering, Faculty of Engineer-
ing, University of Malaya, Malaysia. Twenty healthy subjects (10 males and 10 females, 
aged 20–40 years), who are undergraduate and postgraduate students in the Faculty of 
Engineering, volunteered to participate in these data collection sessions. Filtered EEG 
signal recordings were obtained using the g.MOBIlab portable biological signal acquisi-
tion system. The scalp electrodes were arranged using the 10–20 international electrode 
placement system. The EEG signal was recorded from the C3 and C4 channels, with the 
signal of channel CZ used as a reference. The ground electrode was located on the FPz 
channel, such that a total of only four electrodes were used. The sampling frequency was 
set to 256 Hz. The electrodes from the C3 and C4 channels are positioned for detecting 
EEG peaks associated with the brain response of commanded horizontal eye gaze direc-
tion. We used the C3, C4, and CZ channels are used because of they have relatively little 
less contamination from EEG artifacts due to eye blinking (Klados et al. 2011).

All subjects had been instructed to get a good rest the night before the data collection 
session, so as to ensure full focus during the EEG recordings. The subjects were told to 

Table 2  Parameter settings of ELM

Parameters Value

Number of neurons in the hidden layer 500

Biases in the hidden layer Random [0, 1]

Activation function in the hidden layer Sigmoid [−1, 1]

Activation function in the output layer Linear function

Number of neurons in the input layer Depends on a number of features

Number of neurons in the output layer 2
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prepare for the external voice cue within up to 4 s. Appearance of the cue is voice com-
mand or verbal reminder for the subject to move his eyes initially forward fixation to 
the left or to the right. At exactly 5 s from the beginning session, the external voice cue 
appears randomly instructing the subject to shift gaze to the left or right direction, and 
hold the new eye position from 5 until 10 s, which is the end of the EEG recording. The 
eye gaze directions that produce a number of peaks in the signal on channels C3 and C4 
are archived as raw data for analysis.

Figure  4 shows a representative case of filtered EEG signals that are labeled as eye 
movement signals. The dotted red vertical lines show the actual peak point locations, as 
assigned by a researcher. The eye movement signal consists of 20 signals for channel C3, 
20 signals for channel C4, for duration of 10-s per signal, recorded at 256 Hz for a total 
of 2560 sampling points per signal. Furthermore, each signal contains one known peak 
point location, where the known peak pattern represents the eye gaze direction, either to 
the left or to the right.

Experimental results and discussion
Four different outcome measures were used in the experiments: the average Gmean, the 
maximum Gmean, the minimum Gmean, and the standard deviation (STDEV). Addition-
ally, the statistical comparisons of the average test accuracy among the four models are 
evaluated using Friedman’s test.

The results of training and testing performance based on the four different measure-
ments (end-points) for the peak model with all 16 features are shown in Table  3. For 
training performance, the average, maximum, minimum, and STDEV values were 88.3, 
94.9, 80.6, and 3.6 %, respectively, whereas for testing performance, the average, max-
imum, minimum, and STDEV values were 36.9, 58.1, 0, and 11.8  %, respectively. The 
minimum testing performance of 0 % indicates that the classifier was unable to correctly 
detect even one peak.

Next, the training and testing performance based on the four different measurements 
for each peak model are shown in Table 4, the training performance average, maximum, 
minimum, and STDEV values are 84.7, 86.6, 83.7 and 1.4 % for Dumpala peak model, 

Fig. 4  Filtered EEG-based eye movement signal (one peak point per signal)

Table 3  Peak detection training and testing performance using all features

Measurement Training (%) Testing (%)

Average 88.3 36.9

Maximum 94.9 58.1

Minimum 80.6 0

STDEV 3.6 11.8
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whereas the corresponding results were 88.3, 89.4, 86.6 and 1.4 % for Acir peak model, 
78.9, 83.7, 74.1 and 2.6 % for Liu peak model, and 99.5, 100, 97.4 and 0.9 %, for Dingle 
peak model. The performance of Dingle peak model was clearly superior to that of the 
other peak models.

The testing performance on average, maximum, minimum, and STDEV values are 
70.1, 82.6, 51.6 and 6.7 %, respectively, for Dumpala peak model; 36.9, 62.6, 0 and 11.9 %, 
respectively, for Acir peak model; 51.1, 71.8, 37.2 and 7.9 %, respectively, for Liu peak 
model and 71.7, 89.2, 57.1 and 6.9 %, respectively, for Dingle peak model. As with the 
training data, performance of Dingle peak model with the test data was superior to that 
of the other peak models. As with the training set, results with Acir method for the test 
data showed that the classifier is unable to correctly predict all the true peaks occurring 
at the particular time when TP is equal to zero. Thus, Gmean becomes zero even though 
the TN value is non-zero.

Sensitivity is the percentage of true peak rate recovered while specificity is the per-
centage of true non-peak rate. The overall sensitivity and specificity values for the test-
ing performance are shown in Table  5. The results in Table  5 show that sensitivity is 
significantly lower than 30  % for the Acir and Liu models. Dumpala and Dingle peak 
models performed best, with sensitivity of 55 % and specificity exceeding 99 %. Overall, 
the sensitivity of the four peak models is lower than their specificity, thus resulting in a 
large amount of false non-peak. The four peak models return many false non-peaks due 
to several contributing factors such the collected data is affected by various noises and 
the peak features have a large different value from one subject to another subject. These 
factors are the cause to the high variation of peak features of the four peak models. In 
this case, the NNRW classifier has performed best for classifying the non-peak features 
than peak features.

The comparison of the average test accuracy between the four peak models is extended 
using Friedman’s test for statistical analysis. The analysis searches for a significant differ-
ence in the average testing accuracies between the peak models with p value lower than 

Table 4  Peak detection training and testing performance for each peak model

Peak model Training (%) Testing (%)

Average Max Min SD Average Max Min SD

Dumpala 84.7 86.6 83.7 1.4 70.1 82.6 51.6 6.7

Acir 88.3 89.4 86.6 1.4 36.9 62.6 0 11.9

Liu 78.9 83.7 74.1 2.6 52.1 71.8 37.2 7.9

Dingle 99.5 100 97.4 0.9 71.7 89.2 57.1 6.9

Table 5  Sensitivity and specificity testing performance for each peak model

Peak model Sensitivity (%) =  TP

TP+FN
× 100 Specificity (%) =  TN

TN+FP
× 100

Dumpala 57.2 99.6

Acir 18 99.9

Liu 28.3 99.7

Dingle 55 99.7
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threshold of 0.01. The average rankings of Friedman’s test (Table 6) show best results for 
Dingle peak model, followed by the Dumpala, Liu, and Acir peak models. Post-hoc anal-
ysis of Friedman’s test results are based on the Holm-Bonferroni method using two dif-
ference confidence intervals, α = 0.05 and α = 0.10 as shown in Table 7. Both Friedman’s 
test and the Holm-Bonferroni post hoc analysis are conducted using the KEEL software 
tool (Alcala-Fdez et al. 2009). The post hoc results in Table 7 show similar rank orders 
for α = 0.05 and α = 0.10, where Dingle peak model offers test accuracies significantly 
better than do Acir and Liu peak models, but was not superior to without any significant 
compared to Dumpala peak model.

Conclusions and future work
In this study, we applied ELM-based peak detection to two-lead EEG signals recorded 
from 20 healthy subjects instructed to direct their horizontal gaze in response to a voice 
cue. The data was used to evaluate the performance of four different peak detection 
models. The various event-related EEG peaks were analyzed through a series of pro-
cesses, i.e. peak candidate detection, feature extraction, and classification. The four peak 
models considered in this study are representative of typical EEG studies in the literature 
(Dumpala et al. 1982; Acir et al. 2005; Acir 2005; Dingle et al. 1993; Liu et al. 2002), all 
of which entail initial extraction of 16 peak features. Each of the four peak models was 
selected in turn before the execution of experiments using the ELM as a common clas-
sification algorithm. ELM has been tested on more than forty benchmark data sets. Also, 
ELM has been proven by experimental results that achieved similar or better generalized 
performance compared to SVM and least square support vector machine (LS-SVM) for 
two-class classification (Huang et al. 2012). We find Dingle peak model to be the best for 
reliably detecting voluntary horizontal eye movement signal peaks, delivering a mean 
performance of 99.5 % for the training set and 71.7 % for the testing set. The testing per-
formance needs to be improved by reconsidering the selection of peak features among 

Table 6  Average ranking of Friedman’s test with p < 0.01

Peak model Average ranking Rank

Dumpala 1.5667 2

Acir 3.7 4

Liu 3.2333 3

Dingle 1.5 1

Table 7  Post-hoc analysis for Friedman’s test

i Condition α = 0.05 α = 0.10

p Holm p Holm

6 Acir vs. Dingle 0.000001 0.00833 0.000001 0.01667

5 Dumpala vs. Acir 0.000001 0.01 0.000001 0.02

4 Liu vs. Dingle 0.000001 0.0125 0.000001 0.025

3 Dumpala vs. Liu 0.000001 0.01667 0.000001 0.03333

2 Acir vs. Liu 0.161513 0.025 0.161513 0.05

1 Dumpala vs. Dingle 0.841481 0.05 0.841481 0.1
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16 features and exploring other variant of ELM classifiers. Furthermore, the results in 
Table 4 also indicate that Dingle peak model to be a good generalized model, as revealed 
by the highest classification rate of the minimum testing result at 57.1 %. Additionally, 
Friedman’s test confirms that Dingle peak model offers significant better average test 
accuracy than those of Acir and Liu models.

This study also observes that defining more peak features on model is not guarantee 
in producing better accuracy on EEG-based horizontal eye movement signal applica-
tion. As shown in the results in Table 3, the mean of testing accuracy only can achieve at 
36.9 %. However, determining the optimal model from the selected features associated 
with the advantageous of common classification platform is the best approach to gain 
the accuracy of detection performance.

Results of this study may be applicable in many contexts characterized by the general 
problem of signal detection, including, such as medical diagnostics, human–machine 
interface (HMI), brain-computer interface (BCI), and harmonic detection in digital and 
audio signal processing. For example, an EEG peak in the frontal eye field associated 
with a change of horizontal eye gaze direction could be translated to the direction of 
cursor movement in BCI applications, which might be useful for patients with locked-
in syndrome or other disabilities (Belkacem et  al. 2014). This approach might also be 
translatable for EEG-based command of the movement of a robotic arm or wheelchair 
in HMI applications (Postelnicu et al. 2011; Ramli et al. 2015). We intend in the future 
to extend this work to the problem of feature selection for the peak detection algorithm, 
so as to optimize the selection of the most salient peak features, with an aim to improve 
further the performance of peak detection.
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