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Background
In recent years, gas turbines (GT) have easily reached a primary position in ther-
mal power generation field because of their fast deliveries of power and availability of 
natural gas (NG) (Rayaprolu 2009). GT as simple cycle or integrated with heat recov-
ery steam generator (HRSG) to form a combined cycle (CC) power plant has become 
very popular generation technology in many countries. However, the manufacturers 
of such devices are doing great effort to achieve improved efficiencies and lower pol-
lutant emissions that compete coal and clean coal technologies. Nowadays, apart from 
reliability and fuel cost optimization, novel power generation techniques demand much 
improved load demand tracking that lead to lessen frequency variations of power sys-
tem with better corresponding plant efficiency. It has been noticed that improving the 
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operation performance of gas turbine can significantly lead to higher cycle efficiency 
and better dynamic performance. Achieving better compressing ratios and maintaining 
the exhausted gas temperature within certain limits despite load stochastic variations is 
likely to do just that improvement. In the developed countries, it is, however, reported 
that the efficiency of CC power plants from 1960 to 2000 has been improved from 35 % 
up to nearly 60  % respectively (Rayaprolu 2009). In general, the literature of thermal 
power plants has often suggested optimal and predictive control theories that meet wide 
acceptance in industry and power plants (Lee and Ramirez 2001). In particular, some 
articles has been written and published on CC power plants’ control that sought to opti-
mize combined cycle power plants with regard to efficiency and load following capability 
(Saez et al. 2007; Matsumoto et al. 1996; Lalor et al. 2005). A fuzzy predictive control 
based on genetic algorithms for power plant gas turbines is developed which provides 
the optimal dynamic set point for the regulatory level with contribution to capturing the 
nonlinearity of the plant (Saez et al. 2007). Start-up process optimization by an expert 
system has been proposed under NOx emission regulation and management of machine 
life (Matsumoto et al. 1996). The influence of gas turbine short-term dynamics on the 
performance of frequency control can also be investigated through suitable modelling 
for knowledge of frequency excursions in the grid in advance (Lalor et al. 2005). How-
ever, there are other important factors that have a direct influence on the system output 
performance and the grid frequency, which are studied in this paper and not considered 
in many papers. For instance, in the previous literature the emphasis of fuel flow changes 
was given only to the valve position of natural gas (NG); however, the position of pilot 
gas valve can also be manipulated to stabilize the flames in the premix and ensure steady 
combustion at all time. In addition, the compressor pressure ratio signal (the ratio of the 
discharged pressure of the compressor to the inlet atmospheric pressure) passes through 
the compressor pressure limit controller to influence the inlet guide vane (IGV) pitch 
controller which in turn affects the combustion process and flow of air to the GT. If the 
system automation is upgraded with potential to correct such signals by the MPC, these 
signals will optimize in advance which means reduced process variations while keeping 
faster load following capability due to higher stored/kinetic energy in the plant. This also 
can make the CCGT works close to its optimum efficiency by expanding the pressure 
ratio and the firing temperature by MPC. These potent motivations have to be investi-
gated on gas turbines through advanced technique of system identification and control 
system design. However, without digital simulation, the gap between theory and practice 
cannot be easily bridged in this task. A model has been developed and verified via iden-
tification technique which is assessed and published in our research (Mohamed et  al. 
2015). The scientific contribution added to this paper is to integrate MPC to the devel-
oped identified model representing the real GT with emphasis on the strategic influ-
ences discussed above for the target of performance enhancement. The present paper 
is organized as follows. “Combined (deterministic/stochastic) subspace identification” 
section clarifies the technique of subspace identification. “The application of subspace 
identification to gas turbine process” section discusses the developed model of real 
gas turbine by subspace identification method for different operating regions. Simula-
tion results of identification and verification procedure have shown model accuracy and 
capability of reflecting the key variables of the turbine. “Predictive controller design and 
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implementation” section presents the designed model predictive control to be applied 
to the system. “Simulation results” section then mentions simulation scenarios that have 
offered the advantage of the proposed upgraded strategy. Finally, the present paper has 
concluded the work with suggested further opportunities for future research.

Combined (deterministic/stochastic) subspace identification
Theoretical foundation for subspace identification

Some applied linear algebra may be necessary to simplify the description of subspace 
identification method. Subspace identification is based on the tools of singular value 
decomposition and oblique projection. The reader is highly recommended to refer to the 
text (Meyer 2000) for more details.

Singular value decomposition

Singular value decomposition (SVD) is a matrix analysis that facilitates the subspace 
identification method. It simply states that an m × n matrix M could be dissected into 
three matrices, two of them are orthogonal matrices and one is a diagonal matrix con-
tains the singular values of the main matrix as nonzero diagonal elements. Though it is 
applied on either real or complex matrix, it is assumed in our application that the matri-
ces are real. Then we have for every M ∈ Rm×n of rank r, there are orthogonal matrices 
Um×m, Vn×n and a diagonal matrix Sr×r = dig (σ1, σ2, or) such that

The factorization in Eq. (1) is known as singular value decomposition of M. The columns 
in U and V are called the left hand and right hand singular vectors of M, respectively. For 
matrix computations and analysis refer to Meyer (2000) and Mohamed et al. (2014).

Orthogonal projection and oblique projection

Suppose that we have the subspaces V and W , then, the orthogonal projection of the row 
space of V into the row space of W is formulated as follows (Meyer 2000; Ruscio 2009; 
Overschee and Moore 1996):

where † stands for the Moore–Penrose pseudo-inverse that facilitates the concept of 
orthogonal projection of the matrix which is defined as

Oblique projection of row space of matrix V onto the row space of matrix M along the 
row space of matrix W can be defined as

where W⊥ is the orthogonal projection into the null space of W such that W⊥ ·W = 0. 
In identification of combined systems, the identification of the deterministic part is done 
by means of projection and singular value decomposition (Meyer 2000). In general, 
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an instrument matrix is multiplied by both sides of the extended state space model to 
remove the stochastic part and the input vector so that we can get the extended observ-
ability matrix and state sequence. Once the extended observability matrix is known, the 
system matrices can be found. This is discussed in details in the next section.

The subspace identification technique

This section presents the algorithm of subspace identification method. The method has 
emerged in late 1980s and resolved many problems regarding identification of complex 
industrial processes (Ruscio 2009; Overschee and Moore 1996). It has been proved that 
it is capable of identifying the key features of gas turbine power plants (Mohamed et al. 
2014). The method of subspace identification is based on the advanced matrix linear 
algebra techniques which are singular value decomposition and oblique projection. The 
problem is described as follows (Ruscio 2009; Overschee and Moore 1996).

A set of data measured for combined unknown system of order n:

With w and v are zero mean white noise innovations with covariance matrix

With knowledge of system inputs/outputs uk and yk, the problem is to determine/
identify:

1. The system order n.
2. The system matrices A ∈ Rn×n, B ∈ Rn×m,C ∈ Rl×n, D ∈ Rl×m and the matrices, 

Q ∈ Rn×n, S ∈ Rn×l , ∈ Rl×l so that the model output agree with the main variation 
trends of the output data. The system extended state space model can be organized as 
follows:

where Yf, Uf, Xf, Ef, Nf denotes the future output, future input, future states, and future 
noises. The matrices are defined as follows:

(5)xk+1 = Axk + Buk + wk

(6)yk = Cxk + Duk + vk

E
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Hi
d is known as deterministic Toeplitz matrix while Hi

s is the stochastic Toeplitz matrix. 
The data is sampled and organized as Hankel matrix, the input data matrix for past and 
future samples

and the output data matrix is

where the subscript p and f denote the past and future respectively. The same can be 
done for matrix Ei. The state vector Xi is defined as

Proof of extended state space model

Looking at the general state space model in (5) and (6). The extended state space model 
that contains the matrices data can be easily derived;

Substitute (5) in (8) we get

Since

and

Then from (9) and (10) we get,

Substituting (5) in (11), we get:
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Organizing the above equations as matrix equation; with extended data vectors y, u, and v

For i instants (block rows) and j number of experiments (block columns), we get Eq. (12) 
with the, inputs, outputs and states defined;

Subspace identification algorithms N4SID which stands for Numerical algorithm for 
Subspace State Space System Identification (Ruscio 2009). We shall now define the block 
Hankel matrix that contains the past inputs and outputs Wp

The general steps for subspace identification are (Ruscio 2009; Overschee and Moore 
1996):

1. Calculate the oblique projection:

This algorithm is based on oblique projection and singular value decomposition. The 
tool of oblique projection is mainly used to extract the term of extended observability 
matrix and the sequence of states [i.e. the term Oi Xf in (7)]. Projection of row space of 
future output Yf onto Wp along the future input Uf

From (8)

where U⊥
f  is the orthogonal complement of the raw space of Uf . According to the ele-

mentary linear algebra given in (Overschee and Moore 1996),

There are weighting matrices W1 and W2 to be multiplied by the oblique projection to 
remove the stochastic part (i.e. W1 · (H

s
i Mi + Ni) ·W2 = 0). The choice of these matrices 

is relatively arbitrary and different from one algorithm to another (Ruscio 2009; Over-
schee and Moore 1996). However, they are chosen to satisfy the equation mentioned.
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2. Calculate the singular value decomposition SVD of weighted oblique projection:

 

3. Estimate the system order by counting the nonzero singular values of S and set apart 
the SVD to obtain U1 and S1.

4. Calculate the extended observability matrix Oi and Oi−1 from:
 

5. Determine the sequences of states Xi and Xi+1

 

The superscript † means the Moore–Penrose pseudoinverse.

6. Up to this step, the system states are known with the system inputs/outputs pro-
cessed data. Then, solve the following linear equation for the system matrices A, B, C 
and D.

 

7. For stochastic part, estimate Q, R, and S from the residuals:

For more details about subspace identification method, refer to Overschee and Moore 
(1996).

The application of subspace identification to gas turbine process
This section discusses the process of gas turbine technology, the preparation of data sig-
nals, and the simulation results for the method of subspace technique for both phases 
of research (IEEE Power System Dynamic Performance Committee 2013; Modau and 
Pourbeik 2008). However, the need for developing gas turbine model by alternative 
advanced techniques is one of the main strong motivations behind this paper. The main 
components of gas turbine are shown in Fig. 1, a compressor, a combustion chamber, 
and a turbine. The air required for combustion is supplied by the compressor (process 
1–2); there in the combustion chamber the air is mixed with the fuel and combusted 
(process 2–3). In ideal situations, the process 1–2 is an isentropic process while process 
2–3 is isobaric or constant pressure process. The expansion of the hot combusted gases 
in the turbine is an isentropic (process 3–4) which produces useful work in the turbine 
sufficient to derive the rotor of the synchronous generator. Finally, heat rejection process 
takes place at constant pressure (process 4–1). The exhausted gas from the gas turbine 
is used to energize the HRSG to supply a steam turbine with the necessary superheated 
steam. The remaining electricity is produced by the generator which is mechanically 
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coupled to steam turbine supplied by the HRSG (IEEE Power System Dynamic Perfor-
mance Committee 2013; Sonntag and Borgnakke 1998).

The data points were collected as discrete time signals from the industrial team at 
the General Electric Company of Libya at the plant centre of control at North Benghazi 
Power Plant in the eastern part of Libya. Three sets of data were organized. One set of 
data is used for identification phase and the other two sets of data are used for verifica-
tion. The inputs to the system to be identified, from control point of view, have been 
selected to be the natural gas (NG) control valve (%), the pilot gas valve (%), and the 
compressor outlet pressure (bar). These are regarded later to be the manipulated inputs 
of the MPC to be fed as set points to the subsystems of the process. The output signals 
are the power output (MW) of the turbine, the exhausted temperature of the turbine 
(CƟ), and the frequency of the grid (Hz). System Identification toolbox has been utilized 
(Ljung 2010). Identification and sample of verification results are presented through 
Figs. 2, 3, 4, 5, 6 and 7. The model responses nicely agree with the main trends of the real 
plant responses. The model parameters appear in the “Appendix”.     

Predictive controller design and implementation
Description of a portion in the current automation system

The concept proposed in this work is applied to a specific portion of the existing con-
trol unit, which is responsible for the variables of interests. The current situation of the 
GT from control point of view is investigated through site visits and plant operation 
documentation (Daewoo E&C, Siemens 2009 Approval). A functional blocks diagram 
that shows the critical components for the control system to be upgraded is shown in 
Fig. 8. It should be mentioned that there are lots of other control circuits that performs 
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other tasks of control, but this research considers only the part of controlling the load, 
frequency and the turbine exhausted temperature. The frequency of the generator is 
presented to the turbine controller through three channels; the average value of these 
three is selected via 1-out-of-3 logic and considered to be the actual frequency for fre-
quency or the speed for the controller. The load set point is amendable within certain 
limits by the operation and monitoring (OM) system for the purposes of coordinating 
unit load. By the OM system, the mode of control can be selected whether power is to be 
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controlled in load operation by speed controller or in load operation by load controller. 
This regulates the gas given to the turbine for the required production of power. Natural 
gas consumption is measured by flow-meters installed upstream of the terminal point 
of supply. The NG premix control valve is positioned by the valve lift controller of the 
natural gas premix.

The valve lift is read directly into the gas turbine controller. The pilot gas valve position 
is changed by the valve lift controller of the pilot gas. Both valves have electro-hydraulic 
actuators which are operated via two hardware outputs to the two coils of the electro-
hydraulic actuators. Undesirable compressor operation is prevented via the compressor 
pressure ratio limit controller (also known as π controller). The function of the cool air 
limit controller is to rule out mode of operations, which leads to inadequate flow of cool-
ing air to the turbine blades. The system exhausted temperature is being controlled by 
the IGVs by varying the air mass flow into the combustion chamber. Exhausted tem-
perature is measured immediately downstream of the gas turbine via 24 triple-element 
thermocouples (MBA26CT101A/B/C to MBA26CT124A/B/C) placed around the sur-
roundings of the exhaust diffuser. All B and C signals from the 24 triple-element ther-
mocouples are used to calculate the mean turbine outlet temperature. These IGVs signal 
is influenced, in such a way, by two signals: one from the exhausted temperature control 
and the other from the compressor pressure ratio limit controller (Daewoo E&C, Sie-
mens 2009 Approval). The portion of interest of the automation unit is described and 
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the next section presents the proposed upgrade of the control system for the purpose 
performance enhancement.

Generalized predictive controller (GPC) design and implementation

Model predictive control is a well recognized control system technology for controlling 
power plants and many industrial processes (Bittani and Poncia 2003; Mohamed et al. 
2012, Oluwande 2001; Badgwell and Qina 2003). Although there are many other modern 
control techniques in the previously published literature (Lee and Ramirez 2001), state 
space formulation of multivariable model based predictive control has been selected 
for this specific application for so many reasons. First of all, the practical constraints 
of the control signals and the output signals of the model can be easily considered in 
the computation algorithm of the controller. In addition, the influences of noises that 
satisfy the nature of power plant can be included in the control system responsibility. 
Finally, the world leading electric utilities use this technology in power plant control. 
The use of MPC has been justified. In addition, the simplicity of using linear MPC with 
considerations of noises and disturbances is valued over complexity of using nonlinear 
model predictive control based on deterministic nonlinear model. This is because of 
the higher computation demands of nonlinear MPC which has lead to its rare industrial 
applications in comparison to linear state space MPC (Mohamed et al. 2012). A model 
based predictive control is developed with provisions of unmeasured disturbances and 
measurement noises to be used for compensation around the investigated operating 
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conditions. Here, the linear time invariant model developed by subspace method in the 
second section has been used inside the model prediction algorithm. However, many 
models are developed beforehand and tested by comparison with each other for the one 
which gives the most feasible controller performance. Thereafter, the model has been 
augmented as follows:

where v is the measured disturbance and w is the unmeasured disturbance vector, z is 
the measurement noise. The adopted predictive control algorithm is quite analogous to 
Linear Quadratic Gaussian procedure (LQG), but with implication of the operational 
constraints. The prediction is made over a specific prediction horizon. Then, the opti-
mization program is executed on-line to calculate the optimal values of the manipulated 
variables to minimize the objective function below:

The weighting coefficients (Q and R), control interval (Hw), prediction horizon (Hp) and 
control horizon (HC) of the performance objective function will affect the performance 
of the controller and computation time demands. The terms r represents the demand 
outputs used as a reference for MPC model and Δu is the change in control values for 
HC number of steps. Zero-order hold method is then used to convert the control signal 
from discrete to continuous fed to the plant.

The constraints of inputs are expressed as minimum and maximum permissible inputs,

The control system optimized signal is generated by the control law,

Traditionally, quadratic programming (QP) solver is used, with interior point method 
or active set method, to solve the optimization problem of the MPC. The package of the 
proposed system is shown in Fig. 9. A quantified description of the upgraded strategy 
of control should be given in words. In the proposed strategy, one important signal is 
the NG valve position reference necessary to supply the fuel energy to the combustion 
chamber and satisfy the concept of energy balance in plant thermodynamics. The second 
signal is the pilot gas valve position reference which is very important to stabilize the 
premix flames. The third is the best compressor pressure ratio that is corrected by the 
MPC and fed into the compressor pressure ratio limit controller and eventually will have 
a positive impact on the IGV pitch controller, compressor actual outlet pressure, and the 

(19)x(k + 1) = Ax(k)+ Buu(k)+ Bvv(k)+ Bww(k)
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y(k) = y(k)+ z(k)
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necessary air flow. Thereby, it is supplying higher amount of air flow to the combustion 
chamber and reduces the fuel consumption and finally improves the efficiency. Great 
pressure ratios may cause compressor surging; however, there will not be any such prob-
lems because the practical safe limits or constraints of the pressure ratio are naturally 
included in the MPC optimization algorithm and can be limited by the pressure ratio 
limit controller. The integrated system is tested in the next section by simulations on a 
personal computer environment.

Simulation results
MPC tuning is finalized by selecting appropriate values for the prediction horizon Hp, 
control horizon HC, and weighting matrices Q and R. The control interval, prediction, 
and control horizons are found to be 1, 40, 5 s respectively. Q = [1 1 1] and R = [0.2 0.2 
0.2]. Simulating different scenarios have caused this selection. In this scenario, a load 
demand signal extracted from the data during classical closed loop control is used as 
one of the set-point signals injected to the MPC, with higher exhausted temperature set-
point of 565CƟ and the frequency should be maintained at 50 Hz. From simulations, it 
can be readily seen that when the plant control strategy is integrated with model predic-
tive control (MPC ON state); the frequency response is smoother than that case of MPC 
OFF (Fig. 10). Less frequency variations are found in case of MPC, however, that should 
be also expected from the power response as faster load following means less excursions 
(Fig.  11). Since gas turbines in general are very sensitive to frequency deviations and 
cascaded trip may occur in case of large frequency disturbances, it is now assured that 
the possibility of relay malfunctioning for trip singling is reduced for the gas turbine in 
case of MPC ON state. The plant has faster load following capability with less settling 
time as shown in Fig.  11. It is believed that that has been as a result from predicting 
the control signals of the NG valve, the pressure ratio, and pilot gas valve in advance, 
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which help in achieving stable and rapid combustion. The response of the temperature 
is depicted in Fig. 12; higher temperature is maintained during system operation, which 
means higher thermal energy is supplied to the HRSG. However, this set point can also 
be amended by the operator in case of changes of ambient conditions to set the suitable 
reference temperature for the exhausted gas. The proposed signals of manipulated vari-
ables have relatively different trends in comparison with classical control system. These 
corrected signals are amended by the optimization routine in the MPC and can be seen 
that they are feasible and within the operating restrictions reported by the plant manu-
facturer. Figures 13 and 14 show the fuel preparation signals for the demanded dynamic 
set points, it is seen that the MPC has given constrained signals within shorter time of 
periods. From the signal of the outlet compressor pressure in Fig. 15, the pressure ratio 
is high in case of high load demands with (MPC ON) state; Therefore, higher GT effi-
ciency during large load operating regions which the plant is very likely to operate. As 
an estimate of how much improvement has been achieved, the reader is recommended 
to inspect the thermodynamic curves of pressure ratio depicted in Simões-Moreira 
(2012) and Ibrahim and Rahman (2012). It can be deduced that upgrading control sys-
tem with the MPC has promising performance with regard to better system operation 
and improved responses. This can be accurately expressed in the following points: firstly, 
the general curve relating the pressure ratio and overall thermal efficiency is redrawn 
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using MATLAB. Second, the pressure ratio is found from the signals arrays of compres-
sor pressure outlet to the atmospheric pressure while the total efficiency (the ratio of 
the total work done by the CCGT unit to the heat input) is given by thermodynamic 
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relations with the pressure ratio, the equation is used to plot the curve of thermal effi-
ciency for three distinct periods in which the efficiency including MPC may be higher or 
lower than that without the MPC. The approach used to calculate the average efficiency 
for the working hours is very simple. The compressor outlet pressure response is used to 
find the pressure ratio which is used to plot the efficiency. Then, the average efficiency 
is found for three different periods of operating the plant. Curve 1 is shown in Fig. 16. It 
can be readily seen that the red part of the curve represents the deviation in efficiency 
in the from minute 700 to minute 950 with around (250 working minutes), the compres-
sor outlet pressure (and hence the pressure ratio for 1 bar atmospheric pressure) raised 
from 14 to 19.3 with (MPC ON) state in comparison with the normal strategy (MPC 
OFF) with corresponding efficiencies of (52.9–56.88 %), respectively (or 3.98 % increase 
in efficiency). Another investigated period of operation is shown in (Fig. 17). There is a 
small decrease in the compressor outlet from 11.7 to 11.5 that corresponds to efficien-
cies of (49.7–50 % = −0.3 %). Similarly, in Fig. 18, there is a decline in the compressor 
outlet pressure from 13 to 11.5 bars from the existing to the new strategy; However, this 
will result in decreasing the efficiency from 51.8 to 49.9 % (i.e. 49.9–51 = −1.1 %). The 
average thermal efficiency for three equal intervals of operation (ηav = (3.98 – 0.3 – 1.
1)/3 = 1.1 %). However, this argument can also be supported from time based simula-
tions. NG control valve position is also an obvious indicator for reduced fuel consuming 
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(Fig. 14). The plant situation with integration of MPC is more improved than existing 
control strategy without MPC and more suitable for satisfying the grid obligations.        

Conclusions
A feasible application of model predictive control into GT air and its associated controls 
is newly proposed. The suggested configuration acts as corrector for the key control-
lers and their actuators that affect the system efficiency through the compression ratio, 
power dynamic response contribution to the grid, and heat sent to the HRSG. Simula-
tion studies have shown encouraging results that stimulates further research and prac-
tical implementation. As a future recommendation, it is suggested that the attention 
is turned to the HRSG for further enhancement to the system performance. Also, it is 
intended to handle some practical issues that are not undertaken by the model and its 
associated control system. These are the two points mainly to extend this research:

1. The composition of natural gas produced in Libyan varies from time to another and 
here are some examples supplied by our industrial partners in Sirte Oil Company 
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for Production and Manufacturing of Oil & Gas, Technical Dept/Process Engineer-
ing & Labs Division. The compositions are in two different dates in different years. 
On 16/02/2011: Methane (81.47  %), ethane (11.15  %), propane (2.7  %), iso-Butane 
(0.5  %), n-Butane (0.61  %), iso-Pentane (0.19  %), n-Pentane (0.13  %), nitrogen 
(0.52 %), Carbon Dioxide (2.7 %), Hexane (0.03 %).

 On 19/01/2012: Methane (82.98  %), ethane (6.82  %), propane (1.97  %), iso-Butane 
(0.38  %), n-Butane (0.48  %), iso-Pentane (0.24  %), n-Pentane (0.16  %), nitrogen 
(0.41 %), Carbon Dioxide (6.5 %), Hexane (0.06 %). These variations affect fuel calo-
rific value and consequently the efficiency of the plant. However, including all factors 
that affect the thermal efficiency and/or dynamic responses is quite complex and dif-
ficult to achieve in the present industry.

2. The MPC performance is not very ambitious in some small intervals like that men-
tioned in the previous section, although these small intervals are not likely to remain 
and the average overall efficiency over 800  min is higher. These limitations in the 
controller performance can be handled by adapting the control parameters and/or 
using nonlinear model predictive control. The value of using nonlinear model predic-
tive control is that it handles the uncertainty associated with the nonlinearity of the 
plant. Thereby, improved control performance but increasing the computation bur-
dens on the centralized computer used for control. This practical issue along with the 
1st one are the authors’ interest for the long-term research work.

List of symbols
A: system matrix ∈ R

n×n; B: system matrix ∈ R
n×m; C: system matrix ∈ R

l×n; D: system matrix ∈ R
l×m; Ef: future noise; Hi

d: 
deterministic Toeplitz matrix; Hi

s: stochastic Toeplitz matrix; HP: prediction horizon; HC: control horizon; Hw: control inter‑
val; Nf: future noise; n: system order; Oi: extended observability matrix; Q: system matrix ∈ R

n×n or weighting coefficient in 
MPC; R: system matrix ∈ R

n×l or weighting coefficient in MPC; S: system matrix ∈ R
l×l; uk: input at instant k; U: orthogo‑

nal matrix; Uf: future input; Up: past input; vk: zero mean white noise innovations at instant k; V: orthogonal matrix; V: 
subspace; W1: weighting matrix; W2: weighting matrix; W: subspace; xk+1: system state at instant k + 1; xk: system state at 
instant k; Xi: sequence of states vector; Xf: future states; yk+1: system output at instant k + 1; yk: system state at instant k; Yf: 
future output; Yp: past output; ξ(k): objective function to be minimized by the MPC.
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