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Introduction
Cutting-edge microarray and sequencing techniques for transcriptome and DNA 
methylome have received increasing attentions to decipher biological processes and to 
predict the multi-causes of complex diseases [e.g., cancer diagnosis (Ramaswamy et al. 
2001), prognosis (Vijver et al. 2002), and therapeutic outcomes (Ma et al. 2004)]. To this 
end, the supervised machine learning has considerably contributed to developing tools 
towards the translational and clinical application. For example, diverse biomarker panels 
on the basis of transcriptional expressions have been released [e.g. MammaPrint (van ’t 
Veer 2002), Oncotype DX (Paik et al. 2004), Breast Cancer Index BCI (Zhang et al. 2013) 
and PAM50 (Parker et al. 2009)] for survival, recurrence, drug response and disease sub-
types. It is evident that effective prediction tasks advance clinical diagnosis tools that 
build on translating models from transcriptomic studies. In this standpoint, rapid and 
precise classification rules are imperative to support exploring disease-related biomark-
ers, diagnosis and sub-types identification, and to deliver meaningful information for 
tailored treatment and precision medicine.

Abstract 

To date, the support vector machine (SVM) has been widely applied to diverse bio-
medical fields to address disease subtype identification and pathogenicity of genetic 
variants. In this paper, I propose the weighted K-means support vector machine 
(wKM-SVM) and weighted support vector machine (wSVM), for which I allow the SVM 
to impose weights to the loss term. Besides, I demonstrate the numerical relations 
between the objective function of the SVM and weights. Motivated by general ensem-
ble techniques, which are known to improve accuracy, I directly adopt the boosting 
algorithm to the newly proposed weighted KM-SVM (and wSVM). For predictive per-
formance, a range of simulation studies demonstrate that the weighted KM-SVM (and 
wSVM) with boosting outperforms the standard KM-SVM (and SVM) including but not 
limited to many popular classification rules. I applied the proposed methods to simu-
lated data and two large-scale real applications in the TCGA pan-cancer methylation 
data of breast and kidney cancer. In conclusion, the weighted KM-SVM (and wSVM) 
increases accuracy of the classification model, and will facilitate disease diagnosis and 
clinical treatment decisions to benefit patients. A software package (wSVM) is publicly 
available at the R-project webpage (https://www.r-project.org).
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The support vector machine (SVM) was originally introduced by Cortes and Vapnik 
(1995). Over the decades, the SVM has been applied to a range of study fields, includ-
ing pattern recognition (Kikuchia and Abeb 2005), disease subtype identification (Gould 
et al. 2014), pathogenicity of genetic variants (Kircher et al. 2014) and so on. In theory, 
the forte of the SVM is attributed to its flexibility and outstanding classification accu-
racy. However, the SVM relies on the quadratic programming (QP), whose compu-
tational complexity is commonly costly and subject to size of data. Some methods to 
circumvent this drawback (Wang and Wu 2005; Lee et al. 2007) were proposed to speed 
up its computation with minimizing loss of accuracy. Interestingly, Wang and Wu (2005) 
applied the SVM to centers of K-means clustering alone (KM-SVM). Due to small clus-
ter size K, this method dramatically diminishes the number of observations, and hence 
can reduces the high-computational cost. The KM-SVM assumes that cluster centers 
adequately account for original data. This KM-SVM is also called the Global KM-SVM 
(Lee et al. 2007) in short. Similarly, Lee et al. (2007) also proposed so-called the By-class 
KM-SVM, where class labels separate samples into two groups at the outset, to which I 
apply K-means clustering respectively, while the Global KM-SVM, in contrast, employs 
a majority voting to determine class labels of respective centers. Not surprisingly, it 
is commonplace that the KM-SVM performs worsen than the standard SVM in most 
cases. In other words, the KM-SVM pursues computational efficiency at the expense of 
prediction accuracy.

Yang et  al. (2007) and Bang and Jhun (2014) proposed the weighted support vector 
machine and the weighted KM-SVM to improve accuracy in the context of the outlier 
sensitivity problem (i.e., WSVM-outlier). The primary idea is to assign weights to each 
data sample, which manipulates relative importance. It is proved that WSVM-outlier 
reduces the effect of outliers, and yields higher classification rates. Yet I notice that the 
WSVM-outlier solely adopts outlier-sensitive algorithms (e.g., a robust fuzzy clustering, 
kernel-based possibilistic c-means), that are only well-suited to adjusting outlier effects, 
but not always guarantees to perform best in general cases. It is, therefore, interesting to 
add other weight schemes applicable to general scenarios.

Boosting is a machine learning ensemble algorithm, making it possible to reduce bias 
and variance, and to boost predictive power. More specifically, most boosting algorithms 
(Schapire 1990; Breiman 1998; Freund and Schapire 1997) iteratively glean weak classi-
fiers, and incorporate them to a strong classifier. At each iteration, weak classifiers gain 
weights in some reasonable ways, and thereby subsequent weak learners focus more 
on samples that preceding weak learners mis-classified. Over the decades, many have 
introduced diverse boosting algorithms: Schapire (1990) originally proposed (a recursive 
majority gate formulation), and Mason et al. (2000) developed boost by majority. Inter-
estingly, Freund and Schapire (1997) then developed AdaBoost.M1, an adaptive algo-
rithm known to be superior to the previous ones.

Taking all things into consideration, I proposed a new algorithm, the weighted KM-
SVM (wKM-SVM) and weighted support vector machine (wSVM) to improve the 
KM-SVM (and SVM) via weights, together with the boosting algorithm. In this paper, 
I utilize AdaBoost.M1 (Freund and Schapire 1997) in place of the outlier-sensitive algo-
rithms used in WSVM-outlier (Yang et al. 2007). The wKM-SVM (wSVM) adds weights 
to the hinge loss term, making it straightforward to derive the quadratic programming 
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(QP) objective function, while the WSVM-outlier, to the contrary, directly maneuvers 
the penalization constant corresponding to each sample. Yang et al. (2007) hardly ena-
bles to grasp how each weight is implemented in optimization, whereas my proposed 
wKM-SVM (wSVM) can demonstrate the numerical relationship between the objective 
function and weights. The weighted KM-SVM (wKM-SVM) is universally applicable 
to many different data analysis scenarios, for which comprehensive experiments assess 
accuracy and provide comparisons with other methods.

In this paper, I applied the proposed method to pan-cancer methylation data (https://
tcga-data.nci.nih.gov/tcga/) including breast cancer (breast invasive carcinoma) and kid-
ney cancer (kidney renal clear cell carcinoma). From simulations and real applications, 
the proposed wKM-SVM (wSVM) is shown to be more efficient in predictive power, as 
compared to the standard SVM and KM-SVM, including but not limited to many popu-
lar classification rules (e.g., decision trees and k-NN and so on). In conclusion, the wKM-
SVM (and wSVM) increases accuracy of the classification model that will ultimately 
improve disease understanding and clinical treatment decisions to benefit patients.

This paper is outlined as follows. In “Backgrounds” section, I review background stud-
ies in terms of the SVM and ensemble methods. In “Proposed methods” section, the 
weighted SVM algorithm is proposed. In “Numerical studies” section, I compare perfor-
mance of my proposed methods with other methods, and claim biological implications 
from analysis of the TCGA pan-cancer data. In “Conclusion and discussion” section, 
conclusions and further studies are discussed.

Backgrounds
Support vector machine

Consider the data of (x1, y1), . . . , (xN , yN ), with xn ∈ χ ⊂ R
m and yn ∈ {−1, 1} for 

n = 1, . . . ,N , where χ denotes an input space. Let xn and yn be an input and class label 
of the nth sample. �·, ·� and � · � denote the inner product and norm in Rm. Define hyper-
plane by f (xn) = �w, xn� + b. A classification rule that builds on f(x) is

Commonly, w and b are called the weight vector and bias. The optimal vector and bias 
can be obtained by solving the following quadratic optimization problem,

subject to yn(�w, x� + b) ≥ 1− ξn, ξ ≥ 0 for n = 1, . . . ,N , where ξn are slack variables 
and C is the regularization parameter. Note that (1) can be reformulated with the Wolfe 
dual form by introducing the Lagrange multipliers.

G(x) = sign[f (x)].

(1)minw,b
1

2
�w�2 + C

N
∑

n=1

ξn,

(2)

argmaxα
1

2

N
∑

n=1

N
∑

m=1

ynymαnαm�xn, xm� −

N
∑

n=1

αn,

subject to

N
∑

n=1

ynαn = 0 and 0 ≤ αn ≤ C ,

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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where αn is the Lagrange multiplier with respect to xn for n = 1, . . . ,N . α̂n is then the 
solution of (2). From the derivatives of the Lagrange equations, I see that the solution of 
f(x) as below:

Importantly, α̂n (1 ≤ n ≤ N) is a non-zero solution and its properties are induced by the 
Karush–Kuhn–Tucker conditions including boundary constraints. Taken together, the 
decision rule can be formed as

For nonlinear decision rules, a kernel method can be applicable with the inner prod-
uct �·, ·� replaced by a nonlinear kernel, k(·, ·). For more details, see Cortes and Vapnik 
(1995).

K‑means SVM

The support vector machine using the K-means clustering (KM-SVM) is the SVM algo-
rithm sequentially combined with the K-means clustering. Importantly, it is believed 
that the K-means clustering is one of the most popular clustering methods. The fol-
lowing describes how to implement KM-SVM. I first divide samples of train data into 
several clusters by applying the K-means clustering. Given pre-defined K, the K-means 
clustering produces clusters C1, . . . ,CK . Class labels (i.e., −1 or 1) of Cn are assigned via 
majority voting (1 ≤ n ≤ K). Second, I build up a SVM classifier over derived cluster 
centers. It is interesting to note that the KM-SVM greatly cut down the number of data 
and support vectors used to estimate solutions, and so has the forte of computational 
efficiency. Wang and Wu (2005) originally introduced the prototype KM-SVM (Global 
KM-SVM). Due to its practical utilities, diverse KM-SVM-type classification rules have 
been proposed afterward (Gu and Han 2013; Lee et  al. 2007). In this paper, I mainly 
focus on the KM-SVM methods proposed by Lee et  al. (2007). Wang and Wu (2005) 
applies the K-means clustering to whole input data, while Lee et  al. (2007) uses the 
K-means clustering to two sample groups independently separated by each class label 
(By-class KM-SVM). It is known that the By-class KM-SVM improves error rates, and 
efficiently circumvents the problem of imbalanced class labels.

Proposed methods
Weighted support vector machine

In this section, I newly introduce the weighted SVM that can accommodate some 
weights. The previous weighted SVMs (Yang et al. 2007; Bang and Jhun 2014) directly 
maneuver the penalization constant corresponding to each sample. With these strate-
gies, I hardly grasp how each weight plays a role in optimization, leading to challenges 
to verify the numerical relationship between the objective function and weights. To the 
contrary, my proposed method adds weights to the hinge loss term, making it tractable 

f̂ (x) =

N
∑

n=1

α̂nyn�w, x� + b̂.

G(x) = sign[f (x)]

= sign[�ŵ, x� + b̂].
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to derive the quadratic programming (QP) objective function, and to impose weights to 
the hinge loss. In short, I call this the weighted KM-SVM (wKM-SVM) henceforth. In 
what follows, I formulate the SVM objective function with the penalization form:

where cn is a weight of the nth sample. This penalization form with � = 1
2C is the same as

subject to the constraints ξn ≥ 0, ξn ≥ cn(1− yn(�w, xn� + b)). Consider the soft margin 
SVM. Let

and

where β = (w, b) and h(x;β) = �w, x� + b. Equivalence between (4) and (5) is proved in 
Lemmas 1 and 2.

Lemma 1  Let ξ∗n = cn[1− ynh(xn;β)]+  for n = 1, . . . ,N  and cn ≥ 0. Then, I get

subject to ξ∗n ≥ 0 and ξ∗n ≥ cn[1− ynh(xn;β)]+  for n = 1, . . . ,N . The details of the proof 
are presented in Additional file 1.

Lemma 2  Let (β∗, ξ∗) be the minimizer of Q(β , ξ) subject to (3.5). I obtain

Hence, (4) is derived by optimizing (5) with respect to ξ. See the details of the proof in 
Additional file 1.

(3)

f (x) = �w, x� + b,

minw,b

N
∑

n=1

cn[1− (yn�w, xn� + b)]+ + ��w�2,

minw,b
1

2C
�w�2 +

N
∑

n=1

cn[1− yn(�w, xn� + b)]+

= minw,b
1

2
�w�2 + C

N
∑

n=1

ξn,

(4)Q(β , ξ) =
1

2
�w�2 + C

N
∑

n=1

ξn

(5)R(β) =
1

2
�w�2 + C

N
∑

n=1

cn[1− ynh(xn;β)]+,

ξ∗n = argminξQ(β , ξ),

β∗ = argminβR(β).



Page 6 of 11Kim ﻿SpringerPlus  (2016) 5:1162 

Solutions for weighted SVM

In this section, I derive the solution of the weighted SVM. I adopt the quadratic pro-
gramming (QP) to solve for some C > 0,

subject to the constraints ξn ≥ 0 and ξn ≥ cn
(

1− yn(�w, xn� + b)
)

 for n = 1, . . . ,N . Con-
sider the Lagrangian

With a little of algebra, I can build the Wolfe dual form to estimate the weight term w 
and b, and it is enough to solve the dual problem as below:

subject to 
∑N

n=1 αn cnyn = 0 and 0 ≤ αn ≤ C for n = 1, . . . ,N . See the details of the 
proof in Additional file 1.

Weighted KM‑SVM with an ensemble technique

Generally it is known that the KM-SVM boosts computational efficiency at the expense 
of prediction accuracy. Such low accuracy of KM-SVM can be overcome with import-
ing ensemble methods (e.g., boosting Schapire 1990; Breiman 1998), and these ensem-
ble methods can be applicable to the standard SVM as well. In this paper, I make use 
of AdaBoost.M1 introduced by Freund and Schapire (1997). In principle, AdaBoost.M1 
increases weights to mis-classified samples. At each boosting iteration, weighted weak 
classifiers are stacked by samples, and produces integrated classification rules by major-
ity voting. Simply put, the weighted KM-SVM (and wSVM) is more of applying boosting 
to weights in order to add an artificial impact to mis-classified samples. The following is 
the weighted KM-SVM (and wSVM) objective function (3):

The weight cn is updated via cn · exp
[

αm · I(yn �= Gm(xn))
]

, where αm = log
(

1−errm
errm

)

 and 

errm =

∑N
n=1 cnI

(

yn �=Gm(xn)
)

∑N
n=1 wn

. Table 1 summarizes the algorithm of the weighted KM-SVM 

(and SVM) with the boosting method. At each iteration (1 ≤ m ≤ M), I fit a KM-SVM 
weak classifier Gm(x) together with the weighted term cn as in Step 2-(1). The weighted 
error rate (= errm) is then calculated in Step 2-(2). In Step 2-(3), I calculate the weight 
constant αm given Gm(x). It is worthwhile to note that weights of clustering centers mis-
classified by Gm(x) increases by exp(αm). In other words, αm serves to adjust relative 

(6)minw,b,ξ
1

2
�w�2 + C

N
∑

n=1

ξn,

(7)

L(w, b, ξ ,α, r) =
1

2
�w�2 + C

N
∑

n=1

ξn −

N
∑

n=1

α
{

cnyn
(

�w, xn� + b
)

− cn + ξn
}

−

N
∑

n=1

rnξn.

Maximize

N
∑

n=1

αn cn −
1

2

N
∑

n=1

N
∑

m=1

αn cnynαm cmym�xm, xn�,

minw,b

N
∑

n=1

cn[1− (yn�w, xn� + b)]+ + ��w�2,
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importance of misclassified samples. In Step 2-(4), I finalize the classifier G(x) by inte-
grating all weak classifiers via majority voting.

Numerical studies
Simulated data

In this section, I examine predictive performance of the weighted KM-SVM (and 
SVM) with boosting. Below I briefly illustrate how I generate simulated data. Let 
yn ∈ {−1, 1} be the binary variable of the nth sample (yn = −1 for 1 ≤ n ≤ N

2 ; yn = 1 
for N2 + 1 ≤ n ≤ N), and X ∈ R

N×2 be a matrix of two predictor variables (x1n, x2n) ran-
domly generated from the bivariate normal distribution, where µ = (0, 0) for 1 ≤ n ≤ N

2  
and µ = (r, r) for N2 + 1 ≤ n ≤ N , r = 2 and � = I. With the simulation scheme above, 
I generated N = 100 samples for train data and N = 1000 samples for test data. The 
regularization parameter C was chosen by 5-fold cross-validation over 2−5, . . . , 25 
from train data, and the radial based kernel was applied with σ = 1 (a.k.a. free param-
eter). The number of clusters (K) is defined by half size of train data. Making use of the 
weighted KM-SVM (and SVM) fitted by the optimal parameter, I calculated error rates 
of test data. The experiment to generate test error rates (= error rates of test data) was 
repeated 1000 times and average values are presented in Fig. 1a, b. The test error rates 
were benchmarked to compare with other classification rules. In Fig. 1a, I first observe 
that the SVM (= 0.265) performs better than the KM-SVM (= 0.291) in accuracy. This is 
consistent with previous experimental knowledge (Lee et al. 2007). In addition, I notice 
that the weighted KM-SVM (= 0.278) (and SVM = 0.265) considerably improves the 
non-weighted KM-SVM (= 0.291) (and SVM = 0.26). Generally, the SVM is believed to 
be superior to many popular prediction rules. In this simulation, I consider CART (Brei-
man et al. 1984), kNN (Altman et al. 1992) and Random forest (Ho 1998) for comparison 
with the family of SVM classifiers. In Fig. 1a, the weighted SVM performs best among 
all of classification rules. Moreover, it is remarkable to see that the weighted KM-SVM 
performs better than CART and Random forest despite its data reduction. Figure 2a, b 
illustrate how the proposed methods reduce error rates as iterated. The test error rates 
dramatically drop after the first few iterations, and hence boosting evidently helps 
increasing accuracy. In Fig. 1b, the declining pattern of test error rates are presented as r 
(i.e., a parameter for µ for N2 + 1 ≤ n ≤ N) increases in size ranging from 0.6 to 1.4. It is 
clear to say that the weighted KM-SVM (and wSVM) is consistently better than the KM-
SVM (and SVM).

Table 1  The weighted KM-SVM (or SVM) with the boosting algorithm

1. Initialize the weight cn with 1
N

.

2. For m = 1 to M:

  (1) Fit a KM-SVM (or SVM) Gm(x) with weights cn to clustering centers of train data.

  (2) Compute

        errm =

∑N
n=1 cnI

(

yn �=Gm(xn)
)

∑N
n=1 wn

  (3) Compute αm = log
(

1−errm
errm

)

  (4) Set cn ← cn · exp
[

αm · I(yn �= Gm(xn))
]

3. Output G(x) = Sign
[

∑M
m=1 αmGm(x)

]

.
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Application to genomic data

Below I demonstrate applications to two real methylation expression profiles for breast 
and kedney cancer. TCGA cancers data (Level 3 DNA methylation of beta values target-
ing on methylated and the unmethylated probes) from the TCGA database (https://tcga-
data.nci.nih.gov/tcga/), where I retrieved methylation data of two cancer types (Breast 
carcinoma (BRCA), Kidney renal clear cell carcinoma (KIRC). I matched up features 
across all studies and filtered out probes by the rank sum of mean and standard devia-
tion (Wang et al. 2012) (mean <0.7, SD <0.7), which leaves 910 probes. Table 2 describes 
details of TCGA data. In this application, I pose a hypothetical question if the proposed 
methods (wKM-SVM and wSVM) can improve accuracy for cancer prediction. To this 
end, I first randomly split the whole data set into two parts with approximately same 

Fig. 1  Performance comparisons across different classification rules. Each dot represents the averaged values 
of repeated simulations, and the bars overlaid with dots represent standard errors. a Prediction errors of six 
different classification rules, b decreasing patterns of test error rates as r (coordinates of centers) increases in 
value

Fig. 2  a Test error rates of the weighted SVM as the boosting increases in iteration. b Test error rates of the 
weighted KM-SVM as the boosting increases in iteration

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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size, which I denote as train and test data. The number of clusters (K) is defined by half 
size of train data. I examined by the test set weighted KM-SVM’s (and wSVM’s) per-
formance using each SVM constructed by the train set. Similar to simulation studies, I 
observe that the weighted KM-SVM (and wSVM) outperforms the standard KM-SVM 
(and SVM) in prediction accuracy. It is also notable that the weighted KM-SVM (and 
wSVM) better performs than CART, kNN and Random Forest, as shown in Fig. 3a, b. 
Therefore, I conclude that the proposed weighted SVM can facilitate cancer prediction 
with enhanced accuracy.

Conclusion and discussion
In this paper, I propose the new algorithm for the weighted KM-SVM to improve predic-
tion accuracy. Typically, the KM-SVM has higher error rate than that it appears in the 
SVM, due to data reduction. To circumvent this issue, I suggest the weighted KM-SVM 
(and SVM) and evaluated performance of each of classifiers through various experi-
mental scenarios. Putting together, I conclude that the proposed weighted KM-SVM 
(and SVM) is effective to diminish its error rates. In particular, I applied the weighted 
KM-SVM (and SVM) to TCGA cancer methylation data, and found its improved per-
formance for disease prediction. Due to high accuracy, the weighted KM-SVM (and 
wSVM) can be widely used to facilitate predicting the complex diseases and therapeu-
tic outcomes. Looking beyond this scope, this precise classification rule advances the 

Table 2  Shown are the brief descriptions of the nineteen microarray datasets of disease-
related binary phenotypes (e.g., case and control). All datasets are publicly available

Name Study Type # of samples Control Case # of matched 
genes

Reference

BRCA Breast cancer Methylation 343 27 316 10,121 The Cancer Genome 
Atlas (TCGA)

KIRC Kidney cancer Methylation 418 199 219 10,121 The Cancer Genome 
Atlas (TCGA)

Fig. 3  a Performance comparisons of breast cancer data across different classification rules, b performance 
comparisons of kidney cancer data across different classification rules
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upcoming horizon in pursuit of precision medicine, as it is urgently required in the bio-
medical field to identify relations between bio-molecular units and clinical phenotype 
patterns (e.g., candidate biomarker detection, disease subtypes identification and associ-
ated biological pathways). The KM-SVM, however, does not involve size of clusters (i.e., 
the number of samples that belong to a cluster), and so clustering centers may not suit-
ably represent original data structures. This weakness point may potentially results in 
poor prediction. For future work, I may suggest a new weighting scheme in proportion 
to size of clusters to improve more in accuracy. I leave this idea to next study.
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