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Background
Today, we are surrounded by voluminous data which is collected from a wide variety of 
fields at a great speed. In order to extract useful information from such a great volume of 
data, which in many cases contains imprecision and uncertainty, the research commu-
nity has proposed and applied several tools like the theory of rough sets (Pawlak 1982; 
Pawlak et al. 1988; Pawlak 1991, 1995), and its extensions (Yao 1996, 1998; Skowron and 
Stepaniuk 1996; Pei and Xu 2004), S-approximation spaces (Hooshmandasl et al. 2014; 
Shakiba and Hooshmandasl 2015a, b; Shakiba et al. 2016), granular computing (Bargiela 
and Pedrycz 2003; Lin 2002, 2003) and fuzzy set theory (Zadeh 1965, 1983). Among 
them, rough set theory is a well-established and popular choice to study information 
systems.

The theory of rough set was originally proposed by Pawlak (1982) and Pawlak et  al. 
(1988) and has been applied to a wide variety of applications like studying incomplete 
information systems through coverings (Bonikowski 1994; Bonikowski et  al. 1998; 
Bryniarski 1989; Cattaneo and Ciucci 2005; Kryszkiewicz 1998), granular computing 
(Lin 2002, 2003; Lin and Liau 2005; lzak and Wasilewski 2007), rule learning (Zhu and 
Hu 2013; Du et al. 2011) and feature selection (Hu et al. 2008). This theory provides a 
systematic approach to data analysis through the notion of indiscernibility. The notion 
of indiscernibility in Pawlak’s original definition is based on equivalence relation, but 
in many situations in real world, equivalence relations are not applicable. Therefore, 
this formulation was extended to tolerance (Skowron and Stepaniuk 1996), dominance 
(Greco et al. 2001), covering (Zakowski 1983; Zhu and Wang 2007), similarity (Slowinski 
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and Vanderpooten 2000), fuzzy (Wu et al. 2003) and arbitrary relations (Yao 1998, 2003). 
Usually, a concept in rough set theory and its generalizations is approximated by a pair 
of lower and upper approximations. There are some papers devoted to study the behav-
ior of the lower and upper approximation operators using topology (Zhu 2007; Zhu and 
Wang 2007).

The covering based rough set theory is a well studied generalized version of rough set 
theory with important applications such as rule learning (Zhu and Hu 2013; Du et al. 
2011) and feature selection (Hu et al. 2008). There exists some types of approximation 
operator pairs. Zakowski was the first who generalized the Pawlak’s original formulation 
to covering relations (Zakowski 1983). This model is often called the first type of cover-
ing based rough sets. The second type of rough set was proposed by Pomykala along 
a topological analysis of these approximation spaces (Zhu and Wang 2007), since cov-
erings are a fundamental concept in topological spaces (Zhu 2011). The third type of 
covering based rough sets were proposed in Tsang et al. (2004) and then studied in Zhu 
and Wang (2006b) in more details. The fourth type of covering based rough sets were 
proposed in Zhu and Wang (2012). The fifth pair was introduced in Zhu (2007). There 
are many approximation pairs for covering rough sets which are studied in Zhang and 
Luo (2013), Bonikowski (1994), Bonikowski et al. (1998), Bryniarski (1989) and Zhu and 
Wang (2006a).

In this paper, we take three types of covering based upper approximation operators 
and then combine them with four types of covering lower based approximation opera-
tors, which gives us twelve types of covering approximation operator pairs. Then, we 
study their properties and compare them to the properties of Pawlaks’s original formula-
tion. Moreover, we study the relation between these new approximation operators.

The organization of this paper is as follows: in “Preliminaries” section, we will review 
some necessary concepts on rough sets and covering-based approximation spaces. Next, 
in “Combined types of covering-based rough sets” section, we will introduce twelve new 
types of covering based approximation pairs. Also, in this section we will investigate 
basic properties of rough sets for these new types. Then, the results of this section are 
summarized in two tables. In “Relationships between approximations” section, we will 
study the relationships between these new types of covering based approximation opera-
tors. After giving an illustrative example in “Illustrative example” section, we conclude 
the paper in “Conclusion and future research directions” section.

Preliminaries
This section presents a review of some fundamental notions of Pawlak’s rough sets and 
covering rough sets. We refer to Pawlak (1991) for details.

Pawlak’s rough set theory

Let U be a finite non-empty set and R be an equivalence relation over U. The equivalence 
class of x with respect to R is denoted by [x]R and is defined as [x]R = {y ∈ U |(x, y) ∈ R}. 
The lower and upper approximations of a set X ⊆ U are defined as

RX =
⋃

{[x]R : [x]R ⊆ X},
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and

The pair (U, R) is called a Pawlak approximation space and from the definitions of the 
approximation sets, the following conclusions have been established.

Proposition 1  (Pawlak 1991) Let U be a finite non-empty set and R an equivalence 
relation on U. Then for any X ,Y ⊆ U , the followings hold:

(1L)	� R(U) = U ,
(1H)	� R(U) = U ,
(2L)	� R(∅) = ∅,
(2H)	� R(∅) = ∅,
(3L)	� R(X) ⊆ X,
(3H)	� X ⊆ R(X),
(4L)	� R(X ∩ Y ) = R(X) ∩ R(Y ),
(4H)	� R(X ∪ Y ) = R(X) ∪ R(Y ),
(5L)	� R(R(X)) = R(X),
(5H)	� R(R(X)) = R(X),
(6L)	� X ⊆ Y ⇒ R(X) ⊆ R(Y ),
(6H)	� X ⊆ Y ⇒ R(X) ⊆ R(Y ),
(7L)	� R(−R(X)) = −R(X),
(7H)	� R(−R(X)) = −R(X),
(8LH)	� R(−X) = −R(X),
(9LH)	� R(X) ⊆ R(X), where −X = U\X.

Covering‑based rough set theory

Definition 1  (Coverings) Let U be a finite non-empty set and C be a family of subsets 
of U. Then, C is called a covering of U if K �= ∅ for every K ∈ C and 

⋃

K∈C K = U .

For every x ∈ U , the neighborhood of x induced by C is defined as 
Cx = ∩{K ∈ C|x ∈ K }. Also, the minimal description of x with respect to C is 
defined as MdC(x) = {K ∈ C|x ∈ K ∧ (∀S ∈ C, x ∈ S ∧ S ⊆ K ⇒ S = K )}. The set 
CFriendsC(x) = ∪K∈MdC(x)K  is called the set of close friends of x with respect to C (Zhu 
and Wang 2007). There are plenty of covering based rough approximation operators 
defined by means of neighborhoods, e.g. Zhu and Wang (2007), Bonikowski et al. (1998) 
and Zhu and Wang (2012). In the following definition, we will review ten types of them.

Definition 2  (Bonikowski et al. 1998; Zhu and Wang 2007; Tsang et al. 2004; Zhu and 
Wang 2012; Zhang and Luo 2013) Let U be a finite non-empty set, C a covering on U and 
X ⊆ U . Then,

RX =
⋃

{[x]R : [x]R ∩ X �= ∅}.
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	 1.	 C1(X) = ∪{K ∈ C|K ⊆ X},

		  C1(X) = ∪{CFriendsC(x)|x ∈ X \ C1(X)} ∪ C1(X).

	 2.	 C2(X) = C1(X),

		  C2(X) = ∪{K ∈ C|K ∩ X �= ∅}.

	 3.	 C3(X) = C1(X),

		  C3(X) = ∪{CFriendsC(x)|x ∈ X}.

	 4.	 C4(X) = C1(X),

		  C4(X) = C4(X) ∪
(

∪{K ∈ C|K ∩ (X \ C4(X)) �= ∅}
)

.

	 5.	 C5(X) = C1(X),

		  C5(X) = C5(X) ∪
(

∪{Cx|x ∈ X \ C5(X)}
)

.

	 6.	 C6(X) = {x ∈ U |Cx ⊆ X},

		  C6(X) = {x ∈ U |Cx ∩ X �= ∅}.

	 7.	 C7(X) = {x ∈ U |∀y ∈ U
(

x ∈ Cy ⇒ y ∈ X
)

},

		  C7(X) = ∪{Cx|x ∈ X}.

	 8.	 C8(X) = {x ∈ U |∀K ∈ C(x ∈ K ⇒ K ⊆ X)},

		  C8(X) = ∪{K ∈ C|K ∩ X �= ∅}.

	 9.	 C9(X) = {x ∈ U |∀y ∈ U \ X , x /∈ CFriend(y)},

		  C9(X) = ∪{CFriend(x)|x ∈ X}.

	10.	 C10(X) = {x ∈ U |∀y ∈ U , x ∈ Cy ⇒ Cy ⊆ X},

		  C10(X) = ∪{Cx|Cx ∩ X �= ∅, x ∈ U}. 

In Tables 1 and 2, the basic properties of these covering based approximation opera-
tors are summarized.

Combined types of covering‑based rough sets

Definition 3  Let (U, C) be a covering approximation space. Then, by combining lower 
approximation operators of types 6, 7, 8, and 10 with upper approximation operators of 
types 1, 4, and 5, we can define twelve different types of covering based rough set as follows:

	 1.	 C61(X) = ∪{CFriends(x)|x ∈ X − C6(X)} ∪ C6(X),

	 2.	 C64(X) = ∪{K ∈ C|K ∩ (X − C6(X)) �= ∅} ∪ C6(X),

	 3.	 C65(X) = ∪{Cx|x ∈ X − C6(X)} ∪ C6(X),

Table 1  Properties of lower approximation operations (Zhu and Wang 2012, 2007; Zhang 
and Luo 2013; Qin et al. 2007)

C
1

C
6

C
7

C
8

C
10

1L � � � � �

2L � � � � �

3L � � � � �

4L – � � � �

5L � � � – –

6L � � � � �

7L – – – – –
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	 4.	 C71(X) = ∪{CFriends(x)|x ∈ X − C7(X)} ∪ C7(X),

	 5.	 C74(X) = ∪{K ∈ C|K ∩ (X − C7(X)) �= ∅} ∪ C7(X),

	 6.	 C75(X) = ∪{Cx|x ∈ X − C7(X)} ∪ C7(X),

	 7.	 C81(X) = ∪{CFriends(x)|x ∈ X − C8(X)} ∪ C8(X),

	 8.	 C84(X) = ∪{K ∈ C|K ∩ (X − C8(X)) �= ∅} ∪ C8(X)

	 9.	 C85(X) = ∪{Cx|x ∈ X − C8(X)} ∪ C8(X),

	10.	 C101(X) = ∪{CFriends(x)|x ∈ X − C10(X)} ∪ C10(X),

	11.	 C104(X) = ∪{K ∈ C|K ∩ (X − C10(X)) �= ∅} ∪ C10(X),

	12.	 C105(X) = ∪{Cx|x ∈ X − C10(X)} ∪ C10(X).

Note that the naming convention for Cxy(X) is as follows:

• • x represents the type of lower approximation operator in use, e.g. 6, 7, 8, and 10,
• • y represents the type of upper approximation operator in use, e.g. 1, 4, and 5,

and Cxy(X) = Cx(X). 

Lemma 2  Let (U, C) be a covering based approximation space, then for any X ⊆ U , we 
have C6(C61(X)) = C61(X).

Proof  By property (3L) in Proposition (1), C6(C61(X)) ⊆ C61(X). On the other 
hand, for any x ∈ C61(X), we have x ∈ C6(X) or x ∈ ∪{CFriends(x)|x ∈ X − C6(X)}. If 
x ∈ C6(X), then Cx ⊆ X. By definition of C61(X), X ⊆ C61(X). Thus Cx ⊆ C61(X) and by 
definition of C6(X), x ∈ C6(C61(X)). So C61(X) ⊆ C6(C61(X)).

Also, if x ∈ ∪{CFriends(x)|x ∈ X − C6(X)}, there exists x0 ∈ X − C6(X) such 
that x ∈ CFriends(x0), then Cx ⊆ CFriends(x0). Since CFriends(x0) ⊆ C61(X) , 
then Cx ⊆ C61(X). So x ∈ C6(C61(X)). Thus C61(X) ⊆ C6(C61(X)). Therefore, 
C6(C61(X)) = C61(X).�  �

Proposition 3  For C61(X) properties (1H), (2H), (3H) and (5H) do hold.

Proof  Properties (1H), (2H), and (3H) are directly derivable from defini-
tions. For property (5H), using the property (3H) in Proposition (1), we have 

Table 2  Properties of upper approximation operations (Zhu and Wang 2012, 2007; Zhang 
and Luo 2013)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1H � � � � � � � � � �

2H � � � � � � � � � �

3H � � � � � � � � � �

4H – � � – � � � � � �

5H � – – � � � � – – –

6H – � � – � � � � � �

7H – – – – – – – – – –
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C61(X) ⊆ C61(C61(X)). On the other hand, for any x ∈ C61(C61(X)), either 
x ∈ C6(C61(X)) or x ∈ ∪{CFriends(x)|x ∈ (C61(X)− C6(C61(X))}. However, by Lemma 
(2), C6(C61(X)) = C61(X), which implies that x ∈ C61(X). So C61(C61(X)) ⊆ C61(X). �

For C61(X) properties (4H), (6H) and (7H) do not hold.

Example 1  Let U = {a, b, c, d, e, f , g , h}, X = {a, b, f , h}, Y = {a, b, f , h, d} and C = {{f , d, g}, 
{a, b, c}, {a, d, e, f }, {h}} is a covering of U. C61(X) = U  , C61(Y ) = {a, b, c, d, f , h} and 
C61(X ∪ Y ) = {a, b, c, d, f , h}, thus C61(X ∪ Y ) �= C61(X) ∪ C61(Y )and X ⊆ Y , but 
C61(X) � C61(Y ).

Example 2  Let U = {a, b, c, d},X = {b, c} and C = {{a, b}, {b, c, d}, {c, d}} is a cover-
ing of U. C61(X) = {b, c, d} then −C61(X) = {a} and C61(−C61(X)) = {a, b}. Thus 
C61(−C61(X)) �= −C61(X).

Lemma 4  C6(C64(X)) = C64(X).

Proof  By property (3L) in Proposition (1), C6(C64(X)) ⊆ C64(X). On the other hand, 
for any x ∈ C64(X), we have x ∈ C6(X) or x ∈ ∪{K ∈ C|K ∩ (X − C6(X)) �= ∅}. If 
x ∈ C6(X), then Cx ⊆ X. By the definitions of C64(X), X ⊆ C64(X). Thus Cx ⊆ C64(X). 
According to definition C6(X) we have x ∈ C6(C64(X)). So C64(X) ⊆ C6(C64(X)).

If x ∈ ∪{K ∈ C|K ∩ (X − C6(X)) �= ∅} there exists Ki ∈ C such that 
Ki ∩ (X − C6(X)) �= ∅ and x ∈ Ki. Since Cx ⊆ Ki and Ki ⊆ C64(X), then 
Cx ⊆ C64(X). So x ∈ C6(C64(X)), then C64(X) ⊆ C6(C64(X)). Thus, we proved that 
C6(C64(X)) = C64(X) .�  �

Proposition 5  For C64(X) properties (1H), (2H), (3H) and (5H) do hold.

Proof  (1H), (2H), and (3H) are obvious from the definition.
(5H): By property (3H) in Proposition (1), C64(X) ⊆ C64(C64(X)).
On the other hand, for any x ∈ C64(C64(X)), x ∈ C6(C64(X)) or x ∈ ∪{K ∈ C|K∩

(C64(X)− C6(C64(X)) �= ∅}. but By Lemma (4), C6(C64(X) = C64(X) , then x ∈ C64(X). 
So C64(C64(X)) ⊆ C64(X). Therefore, C64(X) = C64(C64(X)). � �

For C64(X) properties (4H), (6H), (7H) do not hold.

Example 3  Let U = {a, b, c, d, e, f , g , h}, X = {a, b, f , h}, Y = {a, b, f , h, d} and  
C = {{f , d, g}, {a, b, c}, {a, d, e, f }, {h}} is a covering of U. C64(X) = U , C64(Y ) 
= {a, b, c, d, f , h} and C64(X ∪ Y ) = {a, b, c, d, f , h}, then C64(X ∪ Y ) �= C64(X) ∪ C64(Y ) 
and howeverX ⊆ Y , but C64(X) � C64(Y ).

Example 4  Let U = {a, b, c, d}, X = {b, c} and C = {{a, b}, {b, c, d}, {c, d}} is a covering 
of U. C64(X) = {b, c, d} and C64(−C64(X)) = {a, b}. Thus C64(−C64(X)) �= −C64(X).

Theorem 6  C65(X) = ∪{Cx|x ∈ X}.
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Proof  It is obvious that ∪{Cx|x ∈ X − C6(X)} ⊆ ∪{Cx|x ∈ X}. By property (3L) in 
Proposition (1), C6(X) ⊆ X and since X ⊆ ∪{Cx|x ∈ X}, then C6(X) ⊆ ∪{Cx|x ∈ X}. So 
C65(X) = ∪{Cx|x ∈ X − C6(X)} ∪ C6(X) ⊆ ∪{Cx|x ∈ X}.

On the other hand, it is easy to see ∪{Cx|x ∈ X} = ∪{Cx|x ∈ X − C6(X)}∪

(∪{Cx|x ∈ C6(X)}). For any x ∈ C6(X) , we have Cx ⊆ X. By the definition C65(X),  
X ⊆ C65(X), then Cx ⊆ C65(X). So ∪{Cx|x ∈ X} ⊆ C65(X). We proved that 
C65(X) = ∪{Cx|x ∈ X}. � �

Proposition 7  For C65(X) properties (1H), (2H), (3H), (4H), (5H), (6H) do hold.

Proof  (1H), (2H), and (3H) are obvious from the definition.

(4H): By Theorem (6) we have:

(5H): By Theorem (6) we have:

(6H) If X ⊆ Y  then C65(X) = ∪{Cx|x ∈ X} ⊆ ∪{Cx|x ∈ Y } = C65(Y ). � �

For C65(X) property (7H) does not hold.

Example 5  Let U = {a, b, c, d, e}, X = {a, b, c, d} and C = {{a, b, c}, {a, b, c, d}, {d, e}} is 
a covering of U. C65(X) = {a, b, c, d} and C65(−C65(X)) = {d, e}, thus C65(−C65(X))

�= −C65(X).

Proposition 8  For C71(X) properties (1H), (2H) and (3H) do hold.

Proof  (1H), (2H), and (3H) are obvious from the definition.� �

For C71(X) properties (4H), (5H), (6H) and (7H) do not hold.

Example 6  Let U = {a, b, c, d}, X = {c, d}, Y = {d} and C = {{a, b}, {a, c, d}} is a 
covering of U. C71(X) = {c, d} and C71(Y ) = {a, c, d}, thus C71(X ∪ Y ) = {c, d} �=

C71(X) ∪ C71(Y )and however X ⊆ Y , but C71(X) � C71(Y ).

Example 7  In Example (6) let X = {d}. C71(X) = {a, c, d} and C71(C71(X)) = U  thus 
C71(C71(X)) �= C71(X).

C65(X ∪ Y ) = ∪{Cx|x ∈ (X ∪ Y )}

= ∪{Cx|(x ∈ X) ∪ (x ∈ Y )}

= ∪{Cx|x ∈ X} ∪ (∪{Cx|x ∈ Y })

= C65(X) ∪ C65(Y ).

C65(C65(X)) = ∪{Cx|x ∈ C65(X)}

= ∪{Cx|x ∈ Cy, y ∈ X}

= ∪{Cy|y ∈ X}

= C65(X).
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Example 8  In Example (6) let X = {b}. C71(X) = {b} then −C71(X) = {a, c, d} and 
C71(−C71(X)) = U thus C71(−C71(X)) �= −C71(X).

Proposition 9  For C74(X) properties (1H), (2H) and (3H) do hold.

Proof  (1H), (2H), and (3H) are obvious from the definition.� �

For C74(X) properties (4H), (6H), (5H) and (7H) do not hold.

Example 9  Let U = {a, b, c, d, e} and C = {{a, b, c}, {a, b, c, d}, {d, e}} is a cover-
ing of U.if X = {a} and Y = {a, b, c},then C74(X) = {a, b, c, d}, C74(Y ) = {a, b, c} and 
C74(X ∪ Y ) = {a, b, c}. Thus C74(X ∪ Y ) �= C74(X) ∪ C74(Y ). Although X ⊆ Y , but 
C74(X) � C74(Y ).

Example 10  Let U = {a, b, c, d}, X = {b} and C = {{a, b, c}, {a, d}} is a covering of U. 
C74(X) = {a, b, c} and C74(C74(X)) = {a, b, c, d}, thus C74(C74(X)) �= C74(X).

Example 11  In Example (10) let X = {d}. C74(X) = {d} and C74(−C74(X)) = {a, b, c, d} , 
thus C74(−C74(X)) �= −C74(X).

Proposition 10  For C75(X) properties (1H), (2H), (3H), (5H) and (7H) do hold.

Proof  (1H), (2H), and (3H) are obvious from the definition.�  �

For C75(X) properties (4H) and (6H) do not hold.

Example 12  Let U = {a, b, c, d, e, f }, X = {b, d},Y = {a, b, c, d} and C = {{a, b}, {a, c, d, e}, 
{e, f }} is a covering of U. C75(X) = {a, b, c, d, e}, C75(Y ) = {a, b, c, d} and 
C75(X ∪ Y ) = {a, b, c, d}. Thus C75(X ∪ Y ) �= C75(X) ∪ C75(Y ) . However X ⊆ Y , but 
C75(X) � C75(Y ).

Theorem 11  C81(X) = ∪{CFriends(x)|x ∈ X}.

Proof  It is obvious that ∪{CFriends(x)|x ∈ X − C8(X)} ⊆ ∪{CFriends(x)|x ∈ X} . By 
property (3L) in Proposition (1), C8(X) ⊆ X and since X ⊆ ∪{CFriends(x)|x ∈ X}, then  
C8(X) ⊆ ∪{CFriends(x)|x ∈ X}. So C81(X) = ∪{CFriends(x)|x ∈ X − C8(X)} ∪ C8(X) 
⊆ ∪{CFriends(x)|x ∈ X}. On the other hand, it is easy to see

For any x ∈ C8(X), we have ∀K ∈ C(x ∈ K ⇒ K ⊆ X). Thus CFriends(x) ⊆ X . By the 
definition C81(X), X ⊆ C81(X). Then CFriends(x) ⊆ C81(X). So ∪{CFriends(x)|x ∈ X}

⊆ C81(X).
We proved that C81(X) = ∪{CFriends(x)|x ∈ X}. � �

Proposition 12  For C81(X) properties (1H), (2H), (3H), (4H) and (6H) do hold.

Proof  (4H): by Theorem (11) we have:

∪{CFriends(x)|x ∈ X} = ∪{CFriends(x)|x ∈ X − C8(X)} ∪ (∪{CFriends(x)|x ∈ C8(X)}).
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(6H): If X ⊆ Y , then by Theorem (11)

� �

For C81(X) properties (5H) and (7H) do not hold.

Example 13  Let U = {a, b, c, d, e}, X = {a, b} and C = {{a, b}, {a, c, d}, {d, e}} 
is a covering of U. C81(X) = {a, b, c, d} and C81(C81(X)) = {a, b, c, d, e}, thus 
C81(C81(X)) �= C81(X).

Example 14  In Example (13) −C81(X) = {e} and C81(−C81(X)) = {d, e}, thus 
C81(−C81(X)) �= −C81(X).

Theorem 13  C84(X) = ∪{K ∈ C|K ∩ X �= ∅}.

Proof  It is obvious that ∪{K ∈ C|K ∩ (X − C8(X)) �= ∅} ⊆ ∪{K ∈ C|K ∩ X �= ∅} . 
By property (3L) in Proposition (1), C8(X) ⊆ X and since X ⊆ ∪{K ∈ C|K ∩ X �= ∅},  
then C8(X) ⊆ ∪{K ∈ C|K ∩ X �= ∅}. So C84(X) = ∪{K ∈ C|K ∩ (X − C8(X)) �= ∅}

∪C8(X) ⊆ ∪{K ∈ C|K ∩ X �= ∅}. On the other hand, it is easy to see

For any x ∈ ∪{K ∈ C|K ∩ C8(X) �= ∅} there exists K ∈ C such that K ∩ C8(X) �= ∅ and 
x ∈ K  and x ∈ C8(X). Since K ∩ C8(X) �= ∅ then K ⊆ X. By the definition of C84(X) 
we have X ⊆ C84(X), then K ⊆ C84(X), thus x ∈ C84(X). x ∈ C8(X) and By property 
(3L) in Proposition (1), C8(X) ⊆ X and by the definition of C84(X), X ⊆ C84(X), then 
x ∈ C8(X) ⊆ C84(X).So ∪{K ∈ C|K ∩ X �= ∅} ⊆ C84(X).

We proved that C84(X) = ∪{K ∈ C|K ∩ X �= ∅}. � �

Proposition 14  For C84(X) properties (1H), (2H), (3H), (4H) and (6H) do hold.

Proof  (4H) By Theorem (13)

(6H) If X ⊆ Y , then by Theorem (13) C84(X) = ∪{K ∈ C|K ∩ X �= ∅} ⊆ ∪

{K ∈ C|K ∩ Y �= ∅} = C84(Y ).� �

For C84(X) properties (5H) and (7H) do not hold.

C81(X ∪ Y ) = ∪{CFriends(x)|x ∈ (X ∪ Y )}

= ∪{CFriends(x)|x ∈ X} ∪ (∪{CFriends(x)|x ∈ Y })

= C81(X) ∪ C81(Y ).

C81(X) = ∪{CFriends(x)|x ∈ X}

⊆ ∪{CFriends(x)|x ∈ Y }

= C81(Y ).

∪{K ∈ C|K ∩ X �= ∅} = ∪{K ∈ C|K ∩ (X − C8(X)) �= ∅} ∪ (∪{K ∈ C|K ∩ C8(X) �= ∅}).

C84(X ∪ Y ) = ∪{K ∈ C|K ∩ (X ∪ Y ) �= ∅}

= ∪{K ∈ C|(K ∩ X) ∪ (K ∩ Y ) �= ∅}

= ∪{K ∈ C|K ∩ X �= ∅} ∪ (∪{K ∈ C|K ∩ Y �= ∅})

= C84(X) ∪ C84(Y ).
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Example 15  Let U = {a, b, c, d}, X = {a, b, c} and C = {{a, b, c}, {a, b, c, d}, {d, e}} 
is a covering of U. C84(X) = {a, b, c, d} and C84(C84(X)) = {a, b, c, d, e}, thus 
C84(C84(X)) �= C84(X).

Example 16  In Example (15) C84(X) = {a, b, c, d} then −C84(X) = {e} and 
C84(−C84(X)) = {d, e}, thus C84(−C84(X)) �= −C84(X).

Theorem 15  C85(X) = ∪{Cx|x ∈ X}.

Proof  It is obvious that ∪{Cx|x ∈ X − C8(X)} ⊆ ∪{Cx|x ∈ X}. By Property(3L) in 
Proposition (1), C8(X) ⊆ X and since X ⊆ ∪{Cx|x ∈ X}, then C8(X) ⊆ ∪{Cx|x ∈ X}. So 
C85(X) = ∪{Cx|x ∈ X − C8(X)} ∪ C8(X) ⊆ ∪{Cx|x ∈ X}. On the other hand, it is easy 
to see

For any x ∈ C8(X), we have ∀K ∈ C(x ∈ K ⇒ K ⊆ X). Thus Cx ⊆ X. Since X ⊆ C85(X), 
then Cx ⊆ C85(X). Therefore, ∪{Cx|x ∈ X} ⊆ C85(X).

We proved that C85(X) = ∪{Cx|x ∈ X}. � �

Corollary 16  C65(X) = C85(X).

Proposition 17  For C85(X) properties (1H), (2H), (3H), (4H), (5H) and (6H) do hold.

Proof  (4H): by Theorem (15) we have:

(5H): by Theorem (15) we have:

(6H): If X ⊆ Y  then C85(X) = ∪{Cx|x ∈ X} ⊆ ∪{Cx|x ∈ Y } = C85(Y ). � �

For C85(X) property (7H) does not hold.

Example 17  Let U = {a, b, c, d, e},X = {a, b} and C = {{a, c}, {a, b}, {d, e}} is a covering 
of U. C85(X) = {a, b} and C85(−C85(X)) = {a, c, d, e}, thus C85(−C85(X)) �= −C85(X).

Theorem 18  C101(X) = ∪{CFriends(x)|x ∈ X}.

∪{Cx|x ∈ X} = ∪{Cx|x ∈ X − C8(X) ∪ (∪{Cx|x ∈ C8(X))}.

C85(X ∪ Y ) = ∪{Cx|x ∈ (X ∪ Y )}

= ∪{Cx|(x ∈ X) ∪ (x ∈ Y )}

= ∪{Cx|x ∈ X} ∪ (∪{Cx|x ∈ Y })

= C85(X) ∪ C85(Y ).

C85(C85(X)) = ∪
{

Cx|x ∈ C85(X)
}

= ∪
{

Cx|x ∈ Cy, y ∈ X
}

= ∪{Cy|y ∈ X}

= C85(X).
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Proof  It is obvious that ∪{CFriends(x)|x ∈ X − C10(X)} ⊆ ∪{CFriends(x)|x ∈ X} . 
By Property(3L) in Proposition (1), C10(X) ⊆ X and since X ⊆ ∪{Cx|x ∈ X},  
then C10(X) ⊆ ∪{Cx|x ∈ X}. So C101(X) = ∪{CFriends(x)|x ∈ X − C10(X)}∪ 
C10(X) ⊆ ∪{CFriends(x)|x ∈ X}.

On the other hand, it is easy to see

For any x ∈ C10(X), we have ∀y ∈ U , x ∈ Cy =⇒ Cy ⊆ X. Thus CFriends(x) ⊆ X 
and from definition C101(X), X ⊆ C101(X), then CFriends(x) ⊆ C101(X). So 
∪{CFriends(x)|x ∈ X} ⊆ C101(X). Therefore C101(X) = ∪{CFriends(x)|x ∈ X}. � �

Corollary 19  C81(X) = C101(X).

Proposition 20  For C101(X) properties (1H), (2H), (3H), (4H) and (6H) do hold.

Proof  (4H): By Theorem (13) we have:

(6H) If X ⊆ Y ,then C101(X) = ∪{CFriends(x)|x ∈ X} ⊆ ∪{CFriends(x)|x ∈ Y }  
= C101(Y ) . � �

For C101(X) properties (5H) and (7H) do not hold.

Example 18  Let U = {a, b, c, d, e},X = {a, b} and C = {{a, b}, {a, c, d}, {d, e}} is 
a covering of U. C101(X) = {a, b, c, d} and C101(C101(X)) = {a, b, c, d, e}, thus 
C101(C101(X)) �= C101(X).

Example 19  In Example (18) C101(X) = {a, b, c, d} and C101(−C101(X)) = {d, e}, thus 
C101(−C101(X)) �= −C101(X).

Proposition 21  For C104(X) properties (1H), (2H) and (3H) do hold.

Proof  (1H), (2H) and (3H) are obvious from the definition. � �

For C104(X) properties (4H), (6H), (5H) and (7H) do not hold.

Example 20  Let U = {a, b, c, d, e} and C = {{a, b, c}, {a, b, c, d}, {d, e}} is a covering 
of U. If X = {a} and Y = {a, b, c}, then C104(X) = {a, b, c, d}, C104(Y ) = {a, b, c} and 
C104(X ∪ Y ) = {a, b, c}. Thus C104(X ∪ Y ) �= C104(X) ∪ C104(Y ). Although X ⊆ Y  , but 
C104(X) � C104(Y ).

Example 21  In Example (20) C104(X) = {a, b, c, d} and C104(C104(X)) = {a, b, c, d, e}, 
thus C104(C104(X)) �= C104(X).

∪{CFriends(x)|x ∈ X} = ∪{CFriends(x)|x ∈ X − C10(X)} ∪ (∪{CFriends(x)|x ∈ C10(X)}).

C101(X ∪ Y ) = ∪{CFriends(x)|x ∈ (X ∪ Y )}

= ∪{CFriends(x)|x ∈ X} ∪ (∪{CFriends(x)|x ∈ Y })

= C101(X) ∪ C101(Y ).



Page 12 of 18Safari and Hooshmandasl ﻿SpringerPlus  (2016) 5:1003 

Example 22  In Example (20) C104(X) = {a, b, c, d} and C104(−C104(X)) = {d, e}, thus 
C104(−C104(X)) �= −C104(X).

Theorem 22  C105(X) = ∪{Cx|x ∈ X}.

Proof  It is obvious that ∪{Cx|x ∈ X − C10(X)} ⊆ ∪{Cx|x ∈ X}. By property (3L) in 
Proposition (1), C10(X) ⊆ X and since X ⊆ ∪{Cx|x ∈ X}, then C10(X) ⊆ ∪{Cx|x ∈ X}. So 
C105(X) = ∪{Cx|x ∈ X − C10(X)} ∪ C10(X) ⊆ ∪{Cx|x ∈ X}. On the other hand, it is easy 
to see

For any x ∈ C10(X), we have ∀y(x ∈ Cy ⇒ Cy ⊆ X). Since x ∈ Cy and X ⊆ C105(X) , 
then Cx ⊆ Cy and Cx ⊆ C105(X). Thus ∪{Cx|x ∈ X} ⊆ C105(X). Therefore, 
C105(X) = ∪{Cx|x ∈ X}. � �

Corollary 23  C65(X) = C85(X) = C105(X).

Proposition 24  For C105(X) properties (1H), (2H), (3H), (4H), (5H), (6H) do hold.

Proof  (4H): By Theorem (22)

(5H): �

(6H): If X ⊆ Y  then C105(X) = ∪{Cx|x ∈ X} ⊆ ∪{Cx|x ∈ Y } = C105(Y ). � �

For C105(X) property (7H) does not hold.

Example 23  Let U = {a, b, c, d}, X = {a, b} and C = {{a, b, c}, {a, d}} is a covering of U. 
C105(X) = {a, b, c} and C105(−C105(X)) = {a, d}, thus C105(−C105(X)) �= −C105(X).

The results of this section are summarized in Table 3.

Relationships between approximations
In this section, we will establish the following relationships between the new combined 
types of coverings for a covering approximation space (U, C) and X ⊆ U :

∪{Cx|x ∈ X} = ∪{Cx|x ∈ X − C10(X) ∪ (∪{Cx|x ∈ C10(X))}.

C105(X ∪ Y ) = ∪{Cx|x ∈ (X ∪ Y )}

= ∪{Cx|(x ∈ X) ∪ (x ∈ Y )}

= ∪{Cx|x ∈ X} ∪ (∪{Cx|x ∈ Y })

= C105(X) ∪ C105(Y ).

C105(C105(X)) = ∪{Cx|x ∈ C105(X)} = ∪{Cx|x ∈ Cy, y ∈ X} = ∪{Cy|y ∈ X}

= C105(X).

C75(X) ⊆ C85(X) = C65(X) = C105(X) ⊆ C61(X) ⊆ C64(X) ⊆ C104(X) ⊆ C84(X)

C75(X) ⊆ C85(X) = C65(X) = C105(X) ⊆ C61(X) ⊆ C81(X) = C101(X) ⊆ C104(X) ⊆ C84(X)

C75(X) ⊆ C71(X) ⊆ C101(X) = C81(X) ⊆ C104(X) ⊆ C84(X)

C75(X) ⊆ C71(X) ⊆ C74(X) ⊆ C84(X)
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Theorem 25  Let U be a finite non-empty set, C a covering on U and X ⊆ U . Then, we 
have

	 1.	 C65(X) ⊆ C61(X)

	 2.	 C61(X) ⊆ C64(X)

	 3.	 C75(X) ⊆ C71(X)

	 4.	 C71(X) ⊆ C74(X)

	 5.	 C85(X) ⊆ C81(X)

	 6.	 C81(X) ⊆ C84(X)

	 7.	 C105(X) ⊆ C101(X)

	 8.	 C101(X) ⊆ C104(X)

	 9.	 C61(X) ⊆ C81(X)

	10.	 C64(X) ⊆ C104(X)

	11.	 C71(X) ⊆ C101(X)

	12.	 C74(X) ⊆ C84(X)

	13.	 C74(X) ⊆ C104(X)

	14.	 C75(X) ⊆ C85(X) = C65(X) = C105(X)

Proof 	  1.  By the definitions C65(X) and C61(X), we need only to prove ∪{Cx|x ∈ 
X − C6(X)} ⊆ ∪{CFriends(x)|x ∈ X − C6(X)} . Since Cx = ∩Md(x) ⊆ CFriends(x), 
then ∪{Cx|x ∈ X − C6(X)} ⊆ ∪{CFriends(x)|x ∈ X − C6(X)}.

	 2.	 By the definitions C61(X) and C64(X), we need only to prove ∪{CFriends(x)|x ∈  
X − C6(X)} ⊆ ∪{K ∈ C|K ∩ (X − C6(X)) �= ∅} . For any x ∈ X − C6(X), there exists  
K ∈ C such that x ∈ K . Then x ∈ K ∩ (X − C6(X)). Therefore by the definition  
CFriends(x) we have ∪{CFriends(x)|x ∈ X − C6(X)} ⊆ ∪{K ∈ C|K ∩ (X − C6(X))

�= ∅}.
	3, 5, 7.	 The proof is similar to part (1).
	4, 6, 8.	 The proof is similar to part (2).
	 9.	 By Theorem (11) it is obvious that ∪{CFriends(x)|x ∈ X − C6(X)} ⊆ C81(X) . 

By property (3L) in Proposition (1), C6(X) ⊆ X and by property (3H) in Proposi-
tion (1), X ⊆ C81(X), then C6(X) ⊆ C81(X). So C61(X) = ∪{CFriends(x)|x ∈ X

−C6(X)} ∪ C6(X) ⊆ C81(X).
	10.	 By property (3L) in Proposition (1), C6(X) ⊆ X and by property (3H) in Propo-

sition (1), X ⊆ C104(X), then C6(X) ⊆ C104(X). By Theorem  8 in Qin et  al. 
(2007), C10(X) ⊆ C6(X), Then for any x ∈ ∪{K ∈ C|K ∩ (X − C6(X)) �= ∅} we 

Table 3  Properties of upper approximation operations

C61 C64 C65 C71 C74 C75 C81 C84 C85 C101 C105

1H � � � � � � � � � � � �

2H � � � � � � � � � � � �

3H � � � � � � � � � � � �

4H – – � – – – � � � � – �

5H � � � – – � – – � – – �

6H – – � – – – � � � � - �

7H – – – – – � – – – – – –
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have x ∈ ∪{K ∈ C|K ∩ (X − C10(X)) �= ∅}. Therefore, C64(X) = ∪{K ∈ C|K∩ 
(X − C6(X)) �= ∅} ∪ C6(X) ⊆ C104(X).

	11.	 By Theorem (18) it is obvious that ∪{CFriends(x)|x ∈ X − C7(X)} ⊆ C101(X) . 
By property (3L) in Proposition (1), C7(X) ⊆ X and by prop-
erty (3H) in Proposition (1), X ⊆ C101(X), then C7(X) ⊆ C101(X). So 
C71(X) = ∪{CFriends(x)|x ∈ X − C7(X)} ∪ C7(X) ⊆ C101(X).

	12.	 By Theorem (13) it is obvious that ∪{K ∈ C|K ∩ (X − C7(X)) �= ∅} ⊆ C84(X) . 
By property (3L) in Proposition (1), C7(X) ⊆ X and by prop-
erty (3H) in Proposition (1), X ⊆ C84(X), then C7(X) ⊆ C84(X). So 
C74(X) = ∪{K ∈ C|K ∩ (X − C7(X)) �= ∅} ∪ C7(X) ⊆ C84(X).

	13.	 By property (3L) in Proposition (1), C7(X) ⊆ X and by property (3H) in Propo-
sition (1), X ⊆ C104(X), then C7(X) ⊆ C104(X). By Theorem  8 in Qin et  al. 
(2007), C10(X) ⊆ C7(X), Then for any x ∈ ∪{K ∈ C|K ∩ (X − C7(X)) �= ∅} 
we have x ∈ ∪{K ∈ C|K ∩ (X − C10(X)) �= ∅}. Therefore, C74(X) = ∪{K ∈ C|

K ∩ (X − C7(X)) �= ∅} ∪ C7(X) ⊆ C104(X).
	14.	 By Theorem (6), it is obvious that ∪{Cx|x ∈ X − C7(X)} ⊆ C85(X). By property (3L) 

in Proposition (1), C7(X) ⊆ X and by property (3H) in Proposition (1), X ⊆ C85(X), 
then C7(X) ⊆ C85(X). So C75(X) = ∪{Cx|x ∈ X − C7(X)} ∪ C7(X) ⊆ C85(X).

� �

Corollary 26  Let U be a finite non-empty set, C a covering on U and X ⊆ U . Then, we 
have

	 1.	 C65(X) ⊆ C61(X) ⊆ C64(X)

	 2.	 C75(X) ⊆ C71(X) ⊆ C74(X)

	 3.	 C85(X) ⊆ C81(X) ⊆ C84(X)

	 4.	 C105(X) ⊆ C101(X) ⊆ C104(X)

	 5.	 C61(X) ⊆ C84(X)

	 6.	 C65(X) ⊆ C104(X)

	 7.	 C65(X) ⊆ C81(X)

	 8.	 C65(X) ⊆ C84(X)

	 9.	 C71(X) ⊆ C104(X)

	10.	 C75(X) ⊆ C81(X) ⊆ C84(X)

	11.	 C75(X) ⊆ C61(X) ⊆ C64(X)

	12.	 C75(X) ⊆ C101(X) ⊆ C104(X)

Proof 	
	 1.	 It follows from parts (1) and (2) of Theorem (25).
	 2.	 It follows from parts (3) and (4) of Theorem (25).
	 3.	 It follows from parts (5) and (6) of Theorem (25).
	 4.	 It follows from parts (7) and (8) of Theorem (25).
	 5.	 It follows from parts (5) and (8) of Theorem (25).
	 6.	 It follows from part (10) of Theorem (25) and part (1).
	 7.	 It follows from part (9) of Theorem (25) and part (1).
	 8.	 It follows from part (6) of Theorem (25) and part (7).
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	 9.	 It follows from parts (8) and (11) of Theorem (25).
	10.	 It follows from part (14) of Theorem (25) and part (3).
	11.	 It follows from part (14) of Theorem (25) and part (1).
	12.	 It follows from part (14) of Theorem (25) and part (4).

� �

Theorem 27  C104(X) ⊆ C84(X).

Proof  The proof is similar to part (12) of Theorem (25). � �

Corollary 28  C64(X) ⊆ C84(X).

Proof  It follows from part (10) of Theorem (25) and Theorem (27). � �

Corollary 29  C71(X) ⊆ C84(X).

Proof  It follows from part (9) of Corollary (26) and Theorem (27).�  �

Proposition 30  C61(X) has no relationship with C71(X) and C74(X).

Example 24  Let U = {a, b, c, d, e} and C = {{a}, {a, b}, {a, c, d}, {d, e}} is a covering of U.

If X = {a, c, d} then C61(X) = {a, c, d} and C74(X) = U , so C61(X) ⊆ C74(X) .
If X = {b} then C61(X) = {a, b} and C74(X) = {b}, so C74(X) ⊆ C61(X).

Example 25  In Example (24) let X = {b} , then C71(X) = {b} and C61(X) = {a, b}, so 
C71(X) ⊆ C61(X). But, if X = {a, c, d}, C71(X) = {a, c, d, e} and C61(X) = {a, c, d}, so 
C61(X) ⊆ C71(X).

Proposition 31  C64(X) and has no relationship with C71(X), C74(X) and C81(X).

Example 26  Let U = {a, b, c, d, e} and C = {{a, b, c}, {a, b, c, d}, {d, e}} is a cover-
ing of U and X = {a, b, c, d}, then C64(X) = {a, b, c, d} and C81(X) = {a, b, c, d, e}, so 
C64(X) ⊆ C81(X). But, if X = {b, c}, C64(X) = {a, b, c, d} and C81(X) = {a, b, c}. So 
C81(X) ⊆ C64(X).

Example 27  Let U = {a, b, c, d, e} and C = {{a}, {a, b}, {a, c, d}, {d, e}} is a covering 
of U. If X = {b}, then C71(X) = {b} and C64(X) = {a, b}, so C71(X) ⊆ C64(X). But, if 
X = {a, c, d}, C71(X) = {a, c, d, e} and C64(X) = {a, c, d}. So C64(X) ⊆ C71(X).

Example 28  In Example (27) if X = {b}, then C74(X) = {b} and C64(X) = {a, b}, so 
C74(X) ⊆ C64(X). But,if X = {a, c, d},C74(X) = {a, b, c, d, e} and C64(X) = {a, c, d}. So 
C64(X) ⊆ C74(X).

Proposition 32  C65(X) = C85(X) = C105(X) has no relationship with C71(X) and 
C74(X).
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Example 29  Let U = {a, b, c, d, e} and C = {{a}, {a, b}, {a, c, d}, {d, e}} is a covering 
of U. if X = {b}, then C71(X) = {b} and C65(X) = {a, b}, so C71(X) ⊆ C65(X) but, if 
X = {a, c, d}, C71(X) = {a, c, d, e} and C65(X) = {a, c, d}. So C65(X) ⊆ C71(X).

Example 30  In Example (29) if X = {b}, then C74(X) = {b} and C65(X) = {a, b}, so 
C74(X) ⊆ C65(X) but, if X = {a, c, d}, C74(X) = {a, b, c, d, e} and C65(X) = {a, c, d}. So 
C65(X) ⊆ C74(X).

Proposition 33  C81(X) = C101(X) have no relationship with C64(X) and C74(X),

Example 31  Let U = {a, b, c, d, e} and X = {b, c}, C = {{a}, {a, b}, {a, c, d}, {d, e}} is 
a covering of U. C74(X) = {b, c} and C81(X) = {a, b, c, d}, so C74(X) ⊆ C81(X). But, if 
X = {a, c, d}, C74(X) = U and C81(X) = {a, c, d, e},so C81(X) ⊆ C74(X).

Illustrative example
To illustrate the approximation pairs defined so far, the following example is given.

Example 32  Let U =
{

a, b, c, d, e, f , g , h
}

 and C a covering defined as

For X = {a, b, c, d, e}, we have

Note that X �∈ C. For Y = {c, d, e}, we have

Note that Y ∈ C.

C =
{

{c, d}, {f , g}, {a, b, c}, {c, d, e}, {a, b, g}, {b, d, g}, {a, b, d}, {c, g , h}, {b, e, h}
}

.

C6(X) = X , C6(X) = X ,

C61(X) = X , C64(X) = X ,

C65(X) = X ,

C7(X) = X , C7(X) = X ,

C71(X) = X , C74(X) = X ,

C75(X) = X ,

C8(X) = ∅, C8(X) = {a, b, c, d, e, g , h},

C81(X) = {a, b, c, d, e, g , h}, C84(X) = {a, b, c, d, e, g , h},

C85(X) = X ,

C10(X) = X , C10(X) = X ,

C101(X) = X , C104(X) = X ,

C105(X) = X .

C6(Y ) = Y , C6(Y ) = Y ,

C61(Y ) = Y , C64(Y ) = Y ,

C65(Y ) = Y ,

C7(Y ) = Y , C7(Y ) = Y ,

C71(Y ) = Y , C74(Y ) = Y ,

C75(Y ) = Y ,

C8(Y ) = ∅, C8(Y ) = {a, b, c, d, e, g , h},

C81(Y ) = {a, b, c, d, e, g , h}, C84(Y ) = {a, b, c, d, e, g , h},

C85(Y ) = {c, d, e},

C10(Y ) = Y , C10(Y ) = Y ,

C101(Y ) = Y , C104(Y ) = Y ,

C105(Y ) = Y .
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Conclusion and future research directions
In this paper, we proposed a new approach in developing covering based approximation 
operators using the existing ones, e.g. combination of approximation operators. We used 
three types of covering based upper approximation operators and then combine them 
with four types of covering lower based approximation operators, which gives us twelve 
types of covering approximation operator pairs. The relationships between these new 
approximation operators is investigated as well as the properties of Pawlaks’s rough set 
theory.

Possible future research directions include studying topological properties of these 
new operators; e.g. under which conditions the lower and upper approximation opera-
tors coincide with the interior and closure operations in topological spaces, like Zhu and 
Wang (2006c) and Zhu and Wang (2007). Moreover, topology is used to count the num-
ber of different classes of equivalent covering rough sets, which is shown to be equal 
to the number of topologies of the universe (Ma 2014). Therefore, it seems feasible to 
apply the same approach to the covering approximation spaces obtained by these pairs 
of operators. Finally, studying the relation between the covering approximation spaces 
obtained by these twelve pairs of approximation operators from a topological point, like 
Zhu and Wang (2006b) and Zhu (2009), of view is another fruitful direction.
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