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Background
In this article, we investigate the existence of positive solutions of fractional differential 
inclusions with two-point boundary conditions:

where n− 1 < α < n, n ≥ 2, Dα
0+ denotes the Caputo fractional derivative, f : [0, 1]×

R → F(R), F(R) denotes the family of nonempty compact and convex subsets of R.
Fractional calculus is a generalization of ordinary differentiation and integration to 

arbitrary order. The fractional differential equations play an important role in various 
fields of science and engineering, such as chemistry, biology, control theory, viscoelas-
tic materials, signal processing, finance, life science and so on, see Kilbas et al. (2006), 
Samko et al. (1993), Podlubny (1999) and Orsingher and Beghin (2004).

During the last 10 years, boundary value problems for fractional differential equations 
are one of the most active fields in the researches of nonlinear differential equations the-
ories. For further details, see Bai and Lü (2005), Zhang (2006), Caballero et al. (2011), 
Xu et al. (2009), Lin (2007) and Goodrich (2010). Meanwhile, fractional boundary value 
problems at resonance have been extensively studied. For some recent works on the 
topic, see Kosmatov (2008, 2010), Bai (2011), Bai and Zhang (2011) and Yang and Wang 
(2011) and references therein. It is well known that differential inclusions have proved to 

(1)

{

Dα
0+
u(t) ∈ f (t,u(t)), 0 ≤ t ≤ 1,

u(i)(0) = 0, u(0) = u(1), i = 1, 2, . . . , n− 1,
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In this paper, we discuss the existence of positive solutions for a boundary value prob-
lem of fractional differential inclusions with resonant boundary conditions. By using the 
Leggett–Williams theorem for coincidences of multi-valued operators due to O’Regan 
and Zima, results on the existence of positive solutions are established. An example is 
given to illustrate the efficiency of the main theorems.
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be valuable tools in the modeling of many realistic problems, such as economics, opti-
mal control and so on. Recently, fractional differential inclusions have been investigated 
by several researchers, we refer the reader to Agarwal et al. (2010) and Chen et al. (2013).

As shown in the above mentioned works, we can see two facts. Firstly, although the 
boundary value problems for fractional differential equations at resonance have been 
studied by some authors, the existence of positive solutions to fractional differential 
equations at resonance are seldom considered. Secondly, there are few papers to deal 
with fractional differential inclusions under resonant conditions. The study of positive 
solutions for higher-order fractional differential inclusions under resonant conditions 
has yet to be initiated.

To fill this gap, we discuss the fractional differential inclusions (1) by using the Leg-
gett–Williams theorem for coincidences of multi-valued operators due to O’Regan and 
Zima (2008).

The rest of this paper is organized as follows. “Preliminaries” section, we give some 
necessary notations, definitions and lemmas. In “Main results” section, we obtain the 
existence of positive solutions of (1) by Theorem 1. Finally, an example is given to illus-
trate our results in “Example” section.

Preliminaries
First of all, we present the necessary definitions and lemmas from fractional calcu-
lus theory. For more details, see Kilbas et al. (2006), Samko et al. (1993) and Podlubny 
(1999).

Definition 1  (Kilbas et  al. 2006) The Riemann–Liouville fractional integral of order 
α > 0 of a function f : (0,∞) → R is given by

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2  (Kilbas et al. 2006) The Caputo fractional derivative of order α > 0 of a 
continuous function f : (0,∞) → R is given by

where n− 1 < α ≤ n, provided that the right-hand side is pointwise defined on (0,∞).

Lemma 1  (Kilbas et al. 2006) The fractional differential equation

has solution y(t) = c0 + c1t + · · · + cn−1t
n−1, ci ∈ R, i = 0, 1, . . . , n− 1, n = [α] + 1.

Iα0+f (t) =
1

Ŵ(α)

∫ t

0
(t − s)α−1f (s)ds,

Dα
0+ f (t) =

1

Ŵ(n− α)

∫ t

0
(t − s)n−α−1f (n)(s)ds,

Dα
0+y(t) = 0
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Furthermore, for y ∈ ACn[0, 1],

 and 

Lemma 2  (Kilbas et al. 2006) The relation

 is valid in following case: β > 0, α + β > 0, f ∈ L1(a, b).

In the following, let us recall some definitions on Fredholm operators and cones in 
Banach space (see Mawhin 1979).

Let X, Y be real Banach spaces. Consider a linear mapping L : domL ⊂ X → Y  and a 
nonlinear multivalued mapping N : X → 2Y . Assume that

(A1)	� L is a Fredholm operator of index zero, that is, ImL is closed and 
dim (KerL) = codim(ImL) < ∞,

(A2)	� N : X → 2Y  is an upper semicontinuous mapping with nonempty compact con-
vex values.

The assumption (A1) implies that there exist continuous projections P : X → X 
and Q : Y → Y  such that ImP = KerL and KerQ = ImL. Moreover, since 
dim (ImQ) = codim (ImL), there exists an isomorphism J : ImQ → KerL. Denote by Lp 
the restriction of L to KerP ∩ domL. Clearly, Lp is an isomorphism from KerP ∩ domL to 
ImL, we denote its inverse by Kp : ImL → KerP ∩ domL. It is known that the inclusion 
Lx ∈ Nx is equivalent to

Let C be a cone in X such that

1.	 µx ∈ C for all x ∈ C and µ ≥ 0,
2.	 x,−x ∈ C implies x = θ.

It is well known that C induces a partial order in X by

The following property is valid for every cone in a Banach space X.

Lemma 3  Let C be a cone in X. Then for every u ∈ C\{0} there exists a positive number 
σ(u) such that

(

Iα0+D
α
0+y

)

(t) = y(t)−

n−1
∑

k=0

y(k)(0)

k!
tk

(

Dα
0+I

α
0+y

)

(t) = y(t).

Iαa+I
β
a+f (x) = I

α+β
a+ f (x),

x ∈ (P + JQN )x + KP(I − Q)Nx.

x � y if and only if y− x ∈ C .

�x + u� ≥ σ(u)�u� for all x ∈ C .
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Let γ : X → C be a retraction, that is, a continuous mapping such that γ (x) = x for all 
x ∈ C. Set

We use the following result due to O’Regan and Zima.

Theorem  1  (O’Regan and Zima 2008) Let C be a cone in X and let �1, �2 be open 
bounded subsets of X with �1 ⊂ �2 and C ∩ (�2\�1) �= ∅. Assume that (A1), (A2) hold 
and the following assumptions hold:

(A3)	� QN : X → 2Y  is bounded on bounded subsets of C and Kp(I − Q)N : X → 2X be 
compact on every bounded subset of C,

(A4)	 γ maps subsets of �2 into bounded subsets of C,
(A5)	 Lx /∈ �Nx for all x ∈ C ∩ ∂�2 ∩ domL and � ∈ (0, 1),
(A6)	 deg{[I − (P + JQN )γ ]|ker L, ker L ∩�2, 0} �= 0,
(A7)	� there exists u0 ∈ C \ {0} such that �x� ≤ σ(u0)�y� for x ∈ C(u0) ∩ ∂�1 and 

y ∈ �x, where C(u0) = {x ∈ C : µu0 � x for some µ > 0} and σ(u0) such that 
�x + u0� ≥ σ(u0)�x� for every x ∈ C,

(A8)	 (P + JQN )γ (∂�2) ⊂ C,
(A9)	 �γ (�2 \�1) ⊂ C,
(A10)	 x /∈ (P + JQN )γ x for x ∈ ∂�2 ∩ KerL.

Then the equation Lx ∈ Nx has at least one solution in the set C ∩ (�2 \�1).

Main results
In this section, we state our result on the existence of positive solutions for (1).

For simplicity of notation, we set

By the monotonicity of the function, it is easy to verify that G(t, s) > 0, t, s ∈ [0, 1]. Here, 
we omit the proof. Moreover, κ is a constant which satisfies

Thus, we get 1− κG(t, s) > 0, t, s ∈ [0, 1].

Theorem 2  Assume that:

(H1)	 f : [0, 1] × R → F(R), f(t, u) is continuous for every u ∈ R, t ∈ [0, 1],
(H2)	� for each r > 0, there exists αr ∈ L1[0, 1] such that |f (t,u)| ≤ αr(t) for a.e. t ∈ [0, 1] 

and every u ∈ [0, r], where |f (t,u)| = sup{|w| : w ∈ f (t,u)},

� := P + JQN + Kp(I − Q)N and �γ := � ◦ γ .

G(t, s) =







α − Ŵ(α+1)
Ŵ(2α) (1− s)α − αtα

Ŵ(α+1) +
αŴ(α+1)
Ŵ(2α) , 0 ≤ t < s ≤ 1,

α − Ŵ(α+1)
Ŵ(2α) (1− s)α − αtα

Ŵ(α+1) +
αŴ(α+1)
Ŵ(2α) + 1

Ŵ(α)

�

t−s
1−s

�α−1
, 0 ≤ s < t ≤ 1.

(2)0 < κ ≤ min

{

1,
1

maxt,s∈[0,1]G(t, s)

}

.
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(H3)	 there exist positive constants b1, b2, b3, c1, c2,B with 

 such that 

 for all x ∈ [0,B] and w ∈ f (t, x) with t ∈ [0, 1],
(H4)	� there exist b ∈ (0,B), t0 ∈ [0, 1], ρ ∈ (0, 1], δ ∈ (0, 1) and the function q ∈ L1[0, 1],  

q(t) ≥ 0, t ∈ [0, 1], h ∈ C
(

(0, b],R+
)

 such that w(t,u) ≥ q(t)h(u) for 
(t,u) ∈ [0, 1] × (0, b] and w ∈ f (t,u). h(u)uρ  is non-increasing on (0, b] with 

Then the problem (1) has at least one positive solution on [0, 1].

Proof  We use the Banach space X = Y = C[0, 1] with the supremum norm 
�x� = maxt∈[0,1] |x(t)|.

Define L : domL → X and N : X → 2Y  with domL =
{

x ∈ X : Dα
0+
x(t) ∈ C[0, 1],

x(i)(0) = 0, x(0) = x(1), i = 1, 2, . . . , n− 1
}

 by

and

Then the problem (1) can be written by

By Lemma 1, Dα
0+u(t) = 0 has solution

where ci ∈ R, i = 0, 1, . . . , n− 1. According to the boundary conditions of (1), we get 
ci = 0, i = 1, 2, . . . , n− 1. Thus, we obtain

Let y ∈ ImL, so there exists u ∈ domL which satisfies Lu = y. By Lemma 1, we have

By the definition of domL, we have ci = 0, i = 1, 2, . . . , n− 1. Hence,

Taking into account u(0) = u(1), we obtain

B >
c2

c1
+

3b2c2

αb1c1
+

3b3

αb1
,

−κx ≤ w ≤ −c1x + c2 and w ≤ −b1|w| + b2x + b3,

h(b)

b

∫ 1

0
G(t0, s)(1− s)α−1q(s)ds ≥

1− δ

δρ
.

Lu = Dα
0+u

Nu(t) =
{

y ∈ Y : y(t) ∈ f (t,u(t)) a.e. on[0, 1]
}

.

Lu ∈ Nu, u ∈ domL.

u(t) = c0 + c1t + · · · + cn−1t
n−1,

KerL =
{

u ∈ domL : u(t) = c ∈ R
}

.

u(t) = Iα0+y(t)+ c0 + c1t + · · · + cn−1t
n−1.

u(t) = Iα0+y(t)+ c0.

∫ 1

0
(1− s)α−1y(s)ds = 0.
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On the other hand, suppose y satisfies the above equation. Let u(t) = Iα0+y(t), and we can 
easily prove u(t) ∈ domL. Thus, we get

Define the linear continuous projector operator P : X → X by

Next, we define the operator Q : Y → Y  by

Noting that

then we have P2 = P. Similarly, we have Q2 = Q.

Then, one has ImP = KerL and KerQ = ImL. It follows from IndL = dim(kerL)−

codim(ImL) = 0 that L is a Fredholm mapping of index zero. Then, (A1) holds.
We consider the mapping KP : ImL → domL ∩ KerP by

where

Now, we will prove that is KP the inverse of L|domL ∩ KerP. In fact, for x ∈ domL ∩ KerP , 
we have Dα

0+x(t) = y(t) ∈ ImL and α
∫ 1
0 (1− s)α−1x(s)ds = 0.

By Lemma 1, one has

According to the definition of domL, we get ci = 0, i = 1, 2, . . . , n− 1. Furthermore, by 
α
∫ 1
0 (1− s)α−1x(s)ds = 0, we have c0 = −Ŵ(1+ α)(I2α0+y)(1).

ImL =

{

y ∈ Y :

∫ 1

0
(1− s)α−1y(s)ds = 0

}

.

Px(t) = α

∫ 1

0
(1− s)α−1x(s)ds, t ∈ [0, 1].

Qy(t) = α

∫ 1

0
(1− s)α−1y(s)ds, t ∈ [0, 1].

P(Px(t)) = α

∫ 1

0
(1− s)α−1Px(t)ds

= Px(t) · α

∫ 1

0
(1− s)α−1ds

= Px(t),

KPy(t) =

∫ 1

0
k(t, s)y(s)ds, t ∈ [0, 1],

k(t, s) :=

{

1

Ŵ(α)
(t − s)α−1 − Ŵ(1+α)

Ŵ(2α)
(1− s)2α−1, 0 ≤ s ≤ t ≤ 1,

−Ŵ(1+α)
Ŵ(2α)

(1− s)2α−1, 0 ≤ t < s ≤ 1,

(KPy)(t) = x(t) = Iα0+y(t)+ c0 + c1t + · · · + cn−1t
n−1.
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Thus,

Obviously, LKPy = y. Moreover, for x ∈ domL ∩ KerP, we get α
∫ 1
0 (1− s)α−1x(s)ds = 0 

and

Thus, we know that KP = (L|domL ∩ KerP)−1. Moreover, it is easy to see that

Consider the cone

It is clear that (H1) and (H2) imply (A2) and (A3).
Let

Clearly, �1 and �2 are bounded and open sets and

Moreover, C ∩ (�2 \�1) �= ∅. Let J = I and (γ x)(t) = |x(t)| for x ∈ X, then γ is a retrac-
tion and maps subsets of �2 into bounded subsets of C, which means that (A4) holds.

Next, we will show (A5) holds. Suppose that there exist u0 ∈ ∂�2 ∩ C ∩ domL and 
�0 ∈ (0, 1) such that Lu0 ∈ �0Nu0, then Dα

0+u0(t) ∈ �0f (t,u0(t)) for all t ∈ [0, 1]. In view 
of (H3), we get that there exists w∗ ∈ f (t,u0(t)) such that

(KPy)(t) = Iα0+y(t)+ c0 = Iα0+y(t)− Ŵ(1+ α)

(

I2α0+y
)

(1)

= Iα0+y(t)− Ŵ(1+ α) ·
1

Ŵ(2α)

∫ 1

0
(1− s)2α−1y(s)ds

=

∫ 1

0
k(t, s)y(s)ds.

KPLx = Iα0+D
α
0+x(t)− Ŵ(1+ α)

(

I2α0+D
α
0+x

)

(1)

= x(t)− x(0)− Ŵ(1+ α)
(

Iα0+I
α
0+D

α
0+x

)

(1)

= x(t)− x(0)− Ŵ(1+ α)Iα0+(x(t)− x(0))|t=1

= x(t)− x(0)− Ŵ(1+ α)Iα0+x(1)+ Ŵ(1+ α)Iα0+(x(0))|t=1

= x(t)− x(0)−
Ŵ(1+ α)

Ŵ(α)

∫ 1

0
(1− s)α−1x(s)ds +

Ŵ(1+ α)

Ŵ(α)

∫ 1

0
(1− s)α−1x(0)ds

= x(t)− x(0)− α

∫ 1

0
(1− s)α−1x(s)ds + x(0)

= x(t).

(3)|k(t, s)| ≤ 3(1− s)α−1, ∀t, s ∈ [0, 1].

C = {x ∈ X : x(t) ≥ 0, t ∈ [0, 1]}.

�1 =
{

x ∈ X : δ�x� < |x(t)| < b, t ∈ [0, 1]
}

,

�2 ={x ∈ X : �x� < B}.

�1 =
{

x ∈ X : δ�x� ≤ |x(t)| ≤ b, t ∈ [0, 1]
}

⊂ �2.

(4)

Dα
0+u0(t) = �0w

∗ ≤ −�0b1|w
∗| + �0b2u0(t)+ �0b3

= −b1
∣

∣Dα
0+u0(t)

∣

∣+ �0b2u0(t)+ �0b3

≤ −b1
∣

∣Dα
0+u0(t)

∣

∣+ b2u0(t)+ b3,
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and

From (4), we obtain

which gives

From (5), we obtain

From (3) and the equation

we can get

Then, we have

which contradicts (H3). Hence (A5) holds.

(5)Dα
0+u0(t) = �0w

∗ ≤ −�0c1u0(t)+ �0c2,

0 = u0(0)− u0(1) =
(

Iα0+D
α
0+u0

)

(1)

≤ −
b1

Ŵ(α)

∫ 1

0
(1− s)α−1

∣

∣Dα
0+u0(s)

∣

∣ds+
b2

Ŵ(α)

∫ 1

0
(1− s)α−1u0(s)ds

+
b3

Ŵ(α)

∫ 1

0
(1− s)α−1ds,

∫ 1

0
(1− s)α−1

∣

∣Dα
0+u0(s)

∣

∣ds ≤
b2

b1

∫ 1

0
(1− s)α−1u0(s)ds+

b3

αb1
.

∫ 1

0
(1− s)α−1u0(s)ds ≤

c2

αc1
.

u0 = (I − P)u0 + Pu0 = KPL(I − P)u0 + Pu0 = Pu0 + KPLu0,

u0 = α

∫ 1

0
(1− s)α−1u0(s)ds +

∫ 1

0
k(t, s)Dα

0+u0(s)ds

≤
c2

c1
+

∫ 1

0
|k(t, s)| ·

∣

∣Dα
0+u0(s)

∣

∣ds

=
c2

c1
+

∫ 1

0

|k(t, s)|

(1− s)α−1
· (1− s)α−1

∣

∣Dα
0+u0(s)

∣

∣ds

≤
c2

c1
+ 3

∫ 1

0
(1− s)α−1

∣

∣Dα
0+u0(s)

∣

∣ds

≤
c2

c1
+ 3

[

b2

b1

∫ 1

0
(1− s)α−1u0(s)ds+

b3

αb1

]

≤
c2

c1
+

3b2c2

αb1c1
+

3b3

αb1
.

B = �u0� ≤
c2

c1
+

3b2c2

αb1c1
+

3b3

αb1
,



Page 9 of 12Hu ﻿SpringerPlus  (2016) 5:957 

To prove (A6), consider x ∈ KerL ∩�2, then x(t) ≡ c on [0, 1]. Let

for c ∈ [−B,B] and � ∈ [0, 1]. It is easy to show that 0 ∈ H(c, �) implies c ≥ 0. Suppose 
0 ∈ H(B, �) for some � ∈ (0, 1]. Then,

where w ∈ f (t,B), t ∈ [0, 1]. So (H3) leads to

which is a contradiction. In addition, if � = 0, then B = 0, which is impossible. Thus, 
H(x, �) �= 0 for x ∈ KerL ∩ ∂�2, � ∈ [0, 1]. As a result,

So (A6) holds.
Next, we prove (A7). Letting u0(t) ≡ 1, so we have u0 ∈ C \ {0} and 

C(u0) = {x ∈ C : x(t) > 0, t ∈ [0, 1]}. We can take σ(u0) = 1. For x ∈ C(u0) ∩ ∂�1, we 
get x(t) > 0, 0 < �x� ≤ b and x(t) ≥ δ�x�, t ∈ [0, 1].

By (H3) and (H4), for every x ∈ C(u0) ∩ ∂�1 and v ∈ �x, there exits w ∈ Nx such that

Thus, �x� ≤ σ(u0)��x� for all x ∈ C(u0) ∩ ∂�1, i.e., (A7) holds.

H(c, �) = [I − �(P + JQN )γ ]c

= c − �α

∫ 1

0
(1− s)α−1|c|ds − �α

∫ 1

0
(1− s)α−1f (s, |c|)ds

= c − �|c| − �α

∫ 1

0
(1− s)α−1f (s, |c|)ds,

0 = B− �B− �α

∫ 1

0
(1− s)α−1w(s,B)ds,

0 ≤ B(1− �) = �α

∫ 1

0
(1− s)α−1w(s,B)ds ≤ �(−c1B+ c2) < 0,

deg{[I − (P + JQN )γ ]KerL, KerL ∩�2, 0}

= deg{H(·, 1), KerL ∩�2, 0}

= deg{H(·, 0), KerL ∩�2, 0}

= deg{I , KerL ∩�2, 0} = 1 �= 0.

v(t0) = α

∫ 1

0
(1− s)α−1x(s)ds +

∫ 1

0
G(t0, s)(1− s)α−1w(s, x(s))ds

≥ δ�x� +

∫ 1

0
G(t0, s)(1− s)α−1q(s)h(x(s))ds

= δ�x� +

∫ 1

0
G(t0, s)(1− s)α−1q(s) ·

h(x(s))

xρ(s)
xρ(s)ds

≥ δ�x� + δρ�x�ρ
∫ 1

0
G(t0, s)(1− s)α−1q(s) ·

h(b)

bρ
ds

= δ�x� + δρ�x� ·
b1−ρ

�x�1−ρ

∫ 1

0
G(t0, s)(1− s)α−1q(s)

h(b)

b
ds

≥ δ�x� + δρ�x� ·

∫ 1

0
G(t0, s)(1− s)α−1q(s)

h(b)

b
ds

≥ δ�x� + δρ�x� ·
1− δ

δρ

= �x�.
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Since for x ∈ ∂�2 and w ∈ Nγ x, from (H2) we have

Thus, (P + JQN )γ x ⊂ C for x ∈ ∂�2. Then (A8) holds.
Next, we prove (A9). Let x ∈ �2\�1

According to (H3) and (2), for x ∈ �2\�1 and v ∈ �γ x, there exits w ∈ Nγ x such that

Hence, �γ

(

�2\�1

)

⊂ C; i.e., (A9) holds.
To prove (A10), suppose there exists u0 ∈ ∂�2 ∩ KerL, i.e., u0 = c ∈ R and |c| = B 

such that c ∈ (P + JQN )γu. For w ∈ Nγ c, we have

Hence, we get c ∈ (P + JQN )γu implies c ≥ 0. Then for c = B and w ∈ NγB, we have

Hence,

On the other hand, from (H3), we have

This contradiction implies (A10) holds.

(P + JQN )γ x = α

∫ 1

0
(1− s)α−1|x(s)|ds + α

∫ 1

0
(1− s)α−1w(s, |x(s)|)ds

≥ α

∫ 1

0
(1− s)α−1(1− κ)|x(s)|ds

≥ 0.

�γ x(t) =

{

v ∈ X : ∃w ∈ Nγ x such that v = α

∫ 1

0
(1− s)α−1|x|ds

+

∫ 1

0
G(t, s)(1− s)α−1w(s, |x|)ds

}

.

v(t) = α

∫ 1

0
(1− s)α−1|x(s)|ds +

∫ 1

0
G(t, s)(1− s)α−1w(s, |x(s)|)ds

>

∫ 1

0
(1− s)α−1|x(s)|(1− κG(t, s))ds

≥ 0.

c = α

∫ 1

0
(1− s)α−1|c|ds + α

∫ 1

0
(1− s)α−1w(s, |c|)ds

≥ α

∫ 1

0
(1− s)α−1(1− κ)|c|ds

≥ 0.

B = α

∫ 1

0
(1− s)α−1Bds + α

∫ 1

0
(1− s)α−1w(s,B)ds.

α

∫ 1

0
(1− s)α−1w(s,B)ds = 0.

0 = α

∫ 1

0
(1− s)α−1w(s,B)ds ≤ −c1B+ c2 < 0.
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Hence, applying Theorem  1, BVP (1) has a positive solution u∗ on [0,  1] with 
b ≤ �u∗� ≤ B. This completes the proof. � �

Example
To illustrate how our main result can be used in practice, we present here an example.

Let us consider the following fractional differential inclusion at resonance

where f (t,u) =
{

w(t,u)+ 1
25v : v ∈ [0, 1]

}

, w(t,u) = 1
300

(

1+ 2t − 2t2
)(

u2 − 4u+ 3
)

u.

Corresponding to BVP (1), we have that α = 1.5 and

It is easy to see that G(t, s) ≥ 0 for t, s ∈ [0, 1].
Let κ = 0.003 and B = 2. By the monotonicity of the function, for x ∈ [0, 2] and 

w ∈ f (t, x), t ∈ [0, 1], we can prove that

and

Then, we can choose c1 = 1
30, c2 =

1
17, b1 =

8
3, b2 =

1
30, b3 =

1
4. By calculation, we have

Take q(t) = 1
240

(

1+ 2t − t2
)

 and h(x) = x. We see that q ∈ L1[0, 1], q(t) ≥ 0 
and h ∈ C

(

(0, b],R+
)

, where b = 1/2 ∈ (0,B) = (0, 2). Furthermore, for 
(t,u) ∈ [0, 1] × (0, 1/2] and w ∈ f (t,u), by a simple computation, we get that

Choose ρ = 1, so we have h(u)uρ ≡ 1 which is non-increasing on (0, b]. By Choosing t0 = 0, 
δ = 0.997, with simple calculations, we can get

Therefore, (H1)–(H4) of Theorem 2 are satisfied. Then BVP (6) has a positive solution on 
[0, 1].

(6)

{

D1.5
0+

u(t) ∈ f (t,u), 0 ≤ t ≤ 1,

u′(0) = 0, u(0) = u(1),

G(t, s) =







3
2 − Ŵ(2.5)

Ŵ(3) (1− s)1.5 − 1.5t1.5

Ŵ(2.5) +
1.5Ŵ(2.5)
Ŵ(3) , 0 ≤ t < s ≤ 1,

3
2 − Ŵ(2.5)

Ŵ(3) (1− s)1.5 − 1.5t1.5

Ŵ(2.5) +
1.5Ŵ(2.5)
Ŵ(3) + 1

Ŵ(1.5)

�

t−s
1−s

�0.5
, 0 ≤ s < t ≤ 1,

−
3

1000
x ≤ w(t, x) ≤ −

1

30
x +

1

17

w(t, x) ≤ −
8

3
|w| +

1

30
x +

1

4
.

c2

c1
+

3b2c2

αb1c1
+

3b3

αb1
≈ 1.764 + 0.044 + 0.187 = 1.808 < 2 = B.

w(t,u) ≥ q(t)h(u).

h(b)

b

∫ 1

0
G(t0, s)(1− s)α−1q(s)ds ≥

1− δ

δρ
.
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Conclusions
In this paper, we have obtained the existence of positive solutions for a boundary value 
problem of fractional differential inclusions at resonance. By using the Leggett–Williams 
theorem for coincidences of multi-valued operators due to O’Regan and Zima, we have 
found the existence results. Our results are new in the context of fractional differential 
inclusions and positive solutions. As applications, an example is presented to illustrate 
the main results. In the future, we will consider the the uniqueness of positive solutions 
for the fractional differential equations at resonance.
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