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Background
The maximum capacity path (MCP) problem is to find a path between two vertices such 
that the capacity of the path is maximized, where the capacity of a path is defined as 
the minimum of the capacities of the arcs and vertices on this path. If waiting times at 
vertices are not allowable, then the capacity of a path is defined as the minimum of the 
capacities of the arcs. The MCP problem was introduced by Pollack (1960). He applied 
the cubic shortest path algorithm to solve this problem. The MCP in undirected graphs 
was surveyed by Hu (1961). He proposed an algorithm in O(n2) time by simply tak-
ing the paths in a maximum spanning tree. We encourage the reader to study Lawler 
(1976), Ichimori et  al. (1979), Hansen (1980), Gabow (1985), Berman and Handler 
(1987), Punuen (1991), Charnsethikul and Virojsailee (2000), Vassilevska et  al. (2007) 
and Martens and Skutella (2009) for algorithms, techniques and properties of MCP in 
static networks. Arenas et al. (2001) studied network transport capacity, which is known 
to be measured by the critical value of the transport capacity at the phase transmission 
from free flow to congestion. Ramasco et al. (2010) surveyed optimization of transport 
protocols with path constraints in complex network. They proposed a protocol optimi-
zation technique that is applicable to both weighted and unweighted graphs. Some effi-
cient routing strategies that can significantly enhance the transport capacity of network 
were discussed by Kawamoto and Igarashi (2012). Bisla and Singh (2013) studied max-
imum capacity path problem in mobile ad-hoc network, which include the multi hop 
transmission of path packets high dynamic topology and limited bandwidth. Gang et al. 
(2015) considered maximum transport capacity of network. They demonstrated that any 
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In this paper, the maximum capacity path problem in time-varying network is pre-
sented, where waiting times at vertices are not allowable. Moreover, the capacities are 
considered the generalized trapezoidal fuzzy number. An exact algorithm is proposed 
which can find a optimal solution of problem subject to the time of path is at most T, 
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network has a maximum transport capacity largely depending on structured properties 
of the network. The MCP within time constraint was studied by Nopparat (1997). Cai 
et  al. (2007) surveyed MCP in time-varying network, where the problem parameters 
may change overtime.

In the literature, several algorithms were described to find MCP optimal solutions. 
They considered MCP problem in static network or time-varying network with real and 
certain parameters. In the routine life applications, there always exist uncertainty about 
the parameters of network flows problem. In this paper, a new algorithm is proposed 
for solving MCP in time-varying network by assuming that waiting times at vertices are 
zero. Moreover, we consider arc capacities are trapezoidal fuzzy numbers. The following 
advantages are obtained by using the proposed algorithm for finding the fuzzy optimal 
solutions:

1.	 The proposed algorithm is straightforward to realize and apply.
2.	 The MCP proposed algorithm in fuzzy time-varying is not applied goal and paramet-

ric programming techniques.
3.	 The MCP proposed algorithm does not need to much knowledge of fuzzy logic.
4.	 The proposed approach can be easily found the optimal solutions, where these solu-

tions are trapezoidal fuzzy numbers.

We will study MCP problem, where the parameters of the network may change over 
time. Specifically, the transit b(i, j, t) to traverse an arc (i, j) and the capacity ũ(i, j, t) of 
the arc (i, j) are functions of the departure time t at the vertex i. Moreover, we will con-
sider the transit capacity ũ(i, j, t) is generalized trapezoidal fuzzy umber and waiting at 
the vertex i is not allowed. The problem is to determine the maximum capacity path 
from the source s to the pre-specified vertex, subject to the total travel time of the path is 
not greater than a given time horizon T .

The fuzzy basic definitions, the necessary arithmetic operations of fuzzy numbers and 
the time- varying network preliminaries are studied in section preliminaries. Then, two 
theorems are proved for solving the MCP problem and the algorithm is presented, which 
is worked based on theorems.

Fuzzy preliminaries
In this section, some fuzzy basic definitions and arithmetic operations and time-varying 
network flow definitions are briefly presented.

Definition 1  (Kaufmann and Gupta 1988) The characteristic function µA(x) of a crisp 
set A ⊆ X assigns a value either 0 or 1 to each member in X. This function can be gen-
eralized to a function µÃ such that the value assigned to the element of the universal set 
X fall within a specified range i.e. µÃ(x) : X → [0, 1]. The assigned value indicate the 
membership grade of the element in the set A. The function µÃ is called the membership 
function and the set Ã =

{(

x,µÃ(x)
)

; x ∈ X
}

 defined by µÃ(x) for each x ∈ X is called a 
fuzzy set.
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Definition 2  (Kaufmann and Gupta 1988) A fuzzy set Ã =
{

(a, b, c, d)
∣

∣a, b, c, d ∈ R
}

 
defined on the universal set of real numbers R, is said to be a fuzzy number if its mem-
bership function has the following characteristics:

1.	 µÃ : R → [0, 1] is continuous.
2.	 µÃ(x) = 0 for all x ∈ (−∞, a] ∪ [d,∞).
3.	 µÃ(x) is strictly increasing on [a, b] and strictly decreasing on [c, d].
4.	 µÃ(x) = 1 for all x ∈ [b, c], where a < b < c < d.

Definition 3  (Kaufmann and Gupta 1991) A fuzzy number Ã = (a, b, c, d) is said to be 
a trapezoidal fuzzy number if its membership function is given by:

Definition 4  (Chen and Chen 2007) A fuzzy set Ã =
{

(a, b, c, d;w)
∣

∣a, b, c, d ∈ R ,

w ∈ R+
}

 defined on the universal set of real numbers R, is said to be generalized fuzzy 
number if its membership function has the following characteristics:

1.	 µÃ : R → [0,w] is continuous.
2.	 µÃ(x) = 0 for all x ∈ (−∞, a] ∪ [d,∞).
3.	 µÃ(x) is strictly increasing on [a, b] and strictly decreasing on [c, d].
4.	 µÃ(x) = w for all x ∈ [b, c], where 0 < w ≤ 1.

Definition 5  (Chen and Chen 2007) A fuzzy number Ã = (a, b, c, d;w) is said to be a 
generalized trapezoidal fuzzy number if its membership function is given by:

Definition 6  (Chen and Chen 2007) Let Ã1 = (a1, b1, c1, d1;w1) and Ã2 = (a2, b2,

c2, d2;w2) be two generalized trapezoidal fuzzy umbers then arithmetic operations 
between Ã1 and Ã2 can be defined as follows:

1.	

2.	

3.	

(1)µ
Ã
(x)



























(x−a)
(b−a)

; a ≤ x < b

1; b ≤ x ≤ c

(x−d)
(c−d)

; c < x ≤ d

1; otherwise

(2)µÃ(x) =















w (x−a)
(b−a)

; a ≤ x < b

w; b ≤ x ≤ c

w (x−d)
(c−d)

; c < x ≤ d

0; otherwise

Ã1 + Ã2 =
{

a1 + a2, b1 + b2, c1 + c2, d1 + d2;min(w1,w2)
}

Ã1 − Ã2 =
{

a1 − d2, b1 − c2, c1 − b2, d1 − a2;min(w1,w2)
}

�Ã1 =

{

(�a1, �b1, �c1, �d1;w1); � > 0

(�d1, �c1, �b1, �a1;w1); � < 0
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The ranking function is applied to compare fuzzy numbers. They can be defined as 
follows:

Definition 7  (Mahapatra and Roy 2006) Let Ã1 = (a1, b1, c1, d1;w1) and Ã2 = (a2,

b2, c2, d2;w2) be two generalized trapezoidal fuzzy umbers, ℜ : F(R) → R is a ranking 
function, where F(R) is a set of fuzzy numbers defined on set of real numbers, which 
maps each fuzzy number into the real line where a natural order exists i.e.,

1.	 Ã1 > Ã2 if and only if ℜ(Ã1) > ℜ(Ã2)

2.	 Ã1 < Ã2 if and only if ℜ(Ã1) < ℜ(Ã2)

3.	 Ã1 = Ã2 if and only if ℜ(Ã1) = ℜ(Ã2)

Moreover, let w = min(w1,w2) then ranking functions ℜ(Ã1) and ℜ(Ã2) are defined 
as ℜ(Ã1) = w(a1 + b1 + c1 + d1)/4 and ℜ(Ã2) = w(a2 + b2 + c2 + d2)/4, respec-
tively. Moreover, we let 0̃ = Ã = (a1, b1, c1, d1) ⇔ a1 = 0, b1 = 0, c1 = 0, d1 = 0 and 
∞̃ = Ã ⇔ ℜ(Ã) = ∞.

Remark 1  (Kaur and Kumar 2012) Let Ãi; i = 1, 2, . . . , n be a set of generalized trap-
ezoidal fuzzy numbers. If ℜ(Ãk) ≤ ℜ(Ãi) for all i, then the generalized trapezoidal fuzzy 
number Ãk is the minimum of Ãi; i = 1, 2, . . . , n. Moreover, If ℜ(Ãk) ≥ ℜ(Ãi) for all i, 
then the generalized trapezoidal fuzzy number Ãk is the maximum of Ãi; i = 1, 2, . . . , n.

Time‑varying network flow definitions
Consider a directed time-varying network G(V ,A, b,u), where V  is the set of vertices 
and A is the set of arcs with |A| = m, |V | = n. The transit time b(i, j, t) and the fuzzy 
capacity ũ(i, j, t) are associated with each arc (i, j) ∈ A, respectively such that t is the 
departure time from vertex i on arc (i, j). Moreover, b(i, j, t) and ũ(i, j, t) are the functions 
of discrete time t = 0, 1, . . . ,T , where T  is a given positive integer. Moreover, consider 
waiting at any vertex is not allowed.

Definition 8  Suppose a time-varying path from i1 to ik is specified by 
P(i1 − i2 − · · · − ik) with zero waiting times at vertices. Consider α(il) be an arrival time 
into the vertex il on P(i1 − i2 − · · · − ik) such that α(i1) = t1 ≥ 0 and:

where τ
(

il−1

)

 is departure time from vertex il−1 for 2 ≤ l ≤ k on P(i1 − i2 − · · · − ik) 
and we have:

Meantime, we let α(s) = 0 for source vertex s.

Definition 9  Let P(i1 − i2 − · · · − ik) be a time-varying path from i1 to ik, where wait-
ing at any vertex is not allowed, then:

(3)α(il) = α(il−1)+ b(il−1, il , τ (il−1)) for 2 ≤ l ≤ k

(4)τ (il−1) = α(il−1) for 2 ≤ l ≤ k
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1.	 The time of path P(i1 − i2 − · · · − ik) is determined by α(ik)− α(i1). So, the time of 
path P(i1 = s − i2 − · · · − ik) is α(ik).

2.	 The path P(i1 − i2 − · · · − ik) has time at most t if α(ik)− α(i1) ≤ t and has time 
exactly t if α(ik)− α(i1) = t.

Definition 10  The capacity of a time-varying path with zero waiting times is defined as 
the minimum of the capacities of the arcs on this path. Let ξ(i, t) be the maximum capac-
ity of the path from source vertex s to vertex i of time exactly t subject to the waiting 
time at any vertex j on the path is not allowable. If this path does not exist, let ξ(i, t) = 0.

Definition 11  Define P(i1 − i2 − · · · − ik) as a time-varying path with maximum 
capacity from i1 to ik within time exactly t, if for each time-varying path P′ from i1 to ik 
within time t and capacity ξ(P′), we have: ξ(P) ≥ ξ(P′).

Main results
Time‑varying MCP problem with fuzzy capacities

The MCP problem is to find a path between two vertices such that the capacity of the 
path is maximized, where the capacity of a path is defined as the minimum of the capaci-
ties of the arcs on this path. In this section, the time-varying MCP problem is studied, 
where the problem parameters may change over time, where the capacity ũ(i, j, t) of the 
arc (i, j) is generalized trapezoidal fuzzy number and is function of the departure time t 
at the vertex i. Moreover, a transit time b(i, j, t) to traverse an arc (i, j) is considered posi-
tive real functions of the departure time t at the vertex i. Waiting at the vertex i is not 
allowed. The problem is to determine the maximum capacity path from the source s to 
the pre-specified vertex, such that the total travel time of the path is not greater than a 
given time horizon T .

Theorem 1  ξ(s, 0) = ∞̃ and ξ(j, 0) = 0̃ for j �= s. For t > 0, we have:

Proof  It is clear that ξ(s, 0) = ∞̃ and ξ(j, 0) = 0̃ for j �= s, since all transit times 
are positive. Now, the theorem is proved by induction on t. Consider t = 1, there-
fore the paths of time exactly one can be existed from source vertex s to neighbors of 
s. Moreover, consider (s, j) ∈ A and b(s, j, 0) = 1. In this case, the formula holds with 
Min

{

ξ(i, r), ũ(i, j, r)
}

 , where r = 0 and i = s. Assume that the theorem is correct for 
all t ′ < t. Consider a vertex j �= s. If ξ(j, t) = 0̃, there is nothing to prove. So assume 
ξ(j, t) > 0̃. First, it is shown that there exists a path from s to j of time exactly t with 
fuzzy capacity ξ(j, t). By the formula, ξ(j, t) = Min

{

ξ(i, r), ũ(i, j, r)
}

, for some i such that 
(i, j) ∈ A and some r such that r + b(i, j, r) = t. By induction, since r + b(i, j, r) = t then 
r < t and we know that there is a feasible path P′(s, i) from s to i of time exactly r and 
capacity ξ(i, r). This path can be extended to vertex j and obtained a path P such that 
the time of P is exactly t . The fuzzy capacity of P is Min

{

ξ(i, r), ũ(i, j, r)
}

= ξ(j, t). This 
proves the claim. We now prove that ξ(j, t) is the maximum fuzzy capacity path from s to 
j of time exactly t. Let P(s = i1, i2, . . . , ik = j) be a maximum capacity path from s to j of 

ξ(j, t) = Max
(i,j)∈A

Max
r+b(i,j,r)=t

{

Min
{

ξ(i, r), ũ(i, j, r)
}}
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time exactly t. Therefore, ξ(P) ≥ ξ(j, t). Let i be the predecessor node of j on this path. 
Let r be the time of the subpath P′ from s to i and let ξ(P′) be the capacity of P′. By defini-
tion, r + b(i, j, r) = t , implying that r < t since b(i, j, r) > 0. Thus, by induction, we have: 
ξ(P′) ≤ ξ(i, r). By definition, ξ(P) = min

{

ξ(P′), l(i, j, t)
}

≤ min
{

ξ(i,u), l(i, j, t)
}

≤ ξ(j, t).  
Therefore ξ(P) = ξ(j, t), since P is a maximum fuzzy capacity path of time exactly t.� □

Theorem 2  Define ξ∗(i) as the fuzzy capacity of a maximum time-varying path from 
vertex s to the vertex i of time at most T , where waiting at vertices are not allowed, then:

Proof  By definitions of ξ∗(i), the purpose is to find maximum ξ(i, t) on all of time steps 
t, such that 0 ≤ t ≤ T , therefore we have: ξ∗(i) = Max

0≤t≤T
ξ(i, t).� □

The following algorithm can find the optimal solution of problem. In the first, the val-
ues of r + b(i, j, r) for all r = 1, 2, . . . ,T  and all arcs (i, j) ∈ A, are sorted by algorithm. 
Then, the recursive relation as given in theorem  1 is applied to compute ξ(j, t) for all 
j ∈ V  and t = 1, 2, . . . ,T . The steps of the algorithm are described as below:

Results

Example 1  Consider a time-varying network G as shown in Fig. 1, where waiting times 
are assumed zero at the vertices. The problem is to find a maximum path connecting 
source node 1 and the sink node 7, such that the time of this path is at most T = 6.

Let A = {(1, 2), (1, 4), (5, 7), (6, 7)} and consider:

ξ∗(i) = Max
0≤t≤T

ξ(i, t)

for (i, j) ∈ A, t = 0, 1, . . . , 6;
(

ũ(i, j, t), b(i, j, t)
)

= ((2, 4, 5, 7; 0.8), 2)
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Another required information for time-varying network G is given in Table  1 as 
follows:

Applying described algorithm, one may obtain this results: the path 
P = (1− 4 − 5− 7) has maximum fuzzy capacity with ξ(P) = (2, 4, 5, 7, 0.6) and 
time 6. Moreover, three paths P = (1− 2− 6− 5− 7), P = (1− 3− 6− 5− 7) and 
P = (1− 4 − 6− 5− 7) are not feasible, because their time are 8 and are more than 
T = 6.

Example 2  A time-varying network G(V ,A, b,u) is called a layered network with k lay-
ers if the vertices set V  can be partitioned into k subsets l1, . . . , lk such that the following 
conditions hold:

1.	 For every i ∈ ls, s = 1, 2, . . . , k − 1: For every arc (i, j) ∈ A it holds that j ∈ ls+1.
2.	 For every i ∈ ls, s = 2, 3, . . . , k: For every arc (j, i) ∈ A it holds that j ∈ ls−1.
3.	 There are no incoming arcs for vertices in l1 and there are no outgoing arcs for verti-

ces ls

2

1 73 

4 6

5

Fig. 1  Time-varying network G

Table 1  Transit times and fuzzy capacities for network G

t ũ, b

ũ(1, 3, t) b(1, 3, t) ũ(2, 5, t) b(2, 5, t) ũ(2, 6, t) b(2, 6, t) ũ(3, 5, t) b(3, 5, t)

0 (1, 2, 3, 4; 0.5) 1 (2, 3, 4, 5; 0.4) 1 (2, 3, 4, 6; 0.3) 1 (2, 3, 5, 6; 0.6) 3

1 (2, 3, 4, 5; 0.6) 1 (2, 4, 6, 8; 0.3) 2 (1, 2, 3, 4; 0.4) 1 (1, 3, 5, 6; 0.5) 2

2 (1, 3, 5, 7; 0.5) 2 (1, 3, 4, 5; 0.3) 2 (2, 3, 5, 7; 0.4) 2 (2, 4, 5, 7; 0.7) 1

3 (2, 4, 6, 8; 0.4) 2 (2, 3, 4, 6; 0.5) 1 (1, 3, 4, 6; 0.4) 2 (2, 4, 6, 8; 0.6) 2

4 (1, 2, 3, 4; 0.5) 3 (1, 4, 5, 7; 0.6) 3 (2, 3, 5, 6; 0.3) 2 (3, 4, 5, 7; 0.6) 2

5 (1, 2, 3, 5; 0.6) 2 (2, 5, 6, 8; 0.5) 4 (3, 4, 5, 6; 0.3) 3 (2, 3, 4, 7; 0.5) 2

6 (3, 4, 5, 7; 0.5) 3 (1, 3, 5, 7; 0.4) 3 (2, 3, 5, 7; 0.5) 3 (1, 2, 3, 4; 0.6) 3

t ũ, b

ũ(3, 6, t) b(3, 6, t) ũ(4, 5, t) b(4, 5, t) ũ(4, 6, t) b(4, 6, t) ũ(6, 5, t) b(6, 5, t)

0 (2, 3, 6, 7; 0.4) 3 (3, 4, 5, 6; 0.4) 4 (1, 2, 3, 4; 0.4) 3 (1, 3, 4, 6; 0.6) 4

1 (2, 4, 5, 6; 0.5) 3 (3, 5, 6, 7; 0.4) 3 (2, 3, 4, 6; 0.4) 3 (2, 3, 4, 5; 0.6) 4

2 (2, 4, 6, 8; 0.6) 4 (2, 3, 6, 8; 0.6) 2 (2, 4, 5, 7; 0.3) 2 (1, 4, 5, 7; 0.6) 3

3 (2, 3, 4, 5; 0.6) 2 (2, 4, 6, 7; 0.6) 2 (3, 4, 5, 7; 0.6) 2 (2, 4, 5, 7; 0.7) 2

4 (1, 2, 3, 4; 0.6) 2 (3, 5, 6, 8; 0.7) 2 (3, 5, 6, 7; 0.6) 2 (1, 3, 5, 6; 0.7) 2

5 (2, 4, 6, 8; 0.4) 2 (3, 5, 7, 9; 0.7) 1 (2, 4, 6, 8; 0.4) 2 (3, 4, 6, 7; 0.6) 2

6 (1, 2, 3, 4; 0.6) 1 (1, 3, 4, 7; 0.6) 3 (3, 4, 7, 8; 0.5) 4 (2, 4, 6, 8; 0.6) 2
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In Fig. 2, a layered time-varying network is given, where waiting times are considered 
zero at vertices. Moreover, let T = 15 and:
b(i, j, t) = s for t = 0, 1, . . . , 15 and for (i, j) ∈ ls such that s = 1, 2, . . . , 5. Information 

about fuzzy capacities is given as follows:

Let: A = {(1, 2)(2, 5)(4, 7)(10, 12)(11, 12)} B = {(2, 4)(3, 6)(4, 8)(5, 7)(6, 8)}
C = {(5, 8)(5, 9)(6, 9)(8, 11)} D = {(1, 3)(3, 5)(7, 10)(8, 10)(9, 11)}

For each (i, j) ∈ A and 0 ≤ t ≤ 15 let ũ(i, j, t) := (5, 6, 7, 8; 0.5).
For each (i, j) ∈ B and 0 ≤ t ≤ 15 let ũ(i, j, t) := (2, 3, 4, 5; 0.2).
For each (i, j) ∈ C and 0 ≤ t ≤ 15 let ũ(i, j, t) := (6, 7, 8, 9; 0.6).
For each (i, j) ∈ D and 0 ≤ t ≤ 15 let ũ(i, j, t) := (1, 2, 3, 4; 0.7).
The following table shows the optimal solutions for Example 2.
By applying mentioned algorithm, the MCP P =  (1–2–5–8–11–12) from vertex 1 to 

vertex 12 is obtained by ξ(P) = (5, 6, 7, 8; 0.5) and time t = 15. The maximum capacity 
paths for other vertices were shown in Table 2.

Conclusion
In this paper, we concentrated on time-varying maximum capacity path with zero wait-
ing times. We considered the capacity of arcs are fuzzy numbers. The aim of the problem 
was to find an optimal path from source vertex to target vertex so that the capacity of 

layer 1l layer 2l layer 3l layer 4l layer 5l

74

10
2

128 51

3

96

11

Fig. 2  A layered time-varying network G for example 2

Table 2  Calculation of optimal solution for example 1

Vertex P, T , ξ Vertex P, T , ξ

Path Time ξ(P) Path Time ξ(P)

1 P(1) 0 ∞ 7 P(1–2–5–7) 6 (2, 3, 4, 5; 0.2)

2 P(1–2) 1 (5, 6, 7, 8; 0.5) 8 P(1–2) 1 (5, 6, 7, 8; 0.5)

3 P(1–3) 1 (1, 2, 3, 4; 0.2) 9 P(1–2–5–9) 6 (5, 6, 7, 8; 0.5)

4 P(1–2–4) 3 (2, 3, 4, 5; 0.2) 10 P(1–2–5–8–10) 10 (1, 2, 3, 4; 0.7)

5 P(1–2–5) 3 (5, 6, 7, 8; 0.5) 11 P(1–2–5–8–11) 1 (5, 6, 7, 8; 0.5)

6 P(1–3–6) 3 (1, 2, 3, 4; 0.2) 12 P(1–2–5–8–11–12) 15 (5, 6, 7, 8; 0.5)
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this path is maximized subject to the time of path is at most T, where T is a given integer. 
We proved two theorems, presented an algorithm for solving the problem and given two 
numerical examples.
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