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Background
Over the past few decades, complex mathematical modelling with higher order is fre-
quently encountered in many engineering applications, which may cause nonlinearity 
in dynamic systems. The T–S fuzzy theory introduced in Takagi and Sugeno (1985) can 
be flexibly applied to approximate the complex nonlinear systems into a unified frame-
work (Zeng et  al. 2014; Chang et  al. 2015; Chang and Wang 2015; Balasubramaniam 
et al. 2012; Tanaka et al. 2003). Due to material transfer requirement, accumulation of 
time lags through system connections and process time, time delays commonly exist in 
dynamics systems such as chemical processes, communication networks and biological 
systems, which is considered as a source of instability. Stability analysis of time delayed 
T–S fuzzy systems has thus been paid special attention (Wu et  al. 2011; Zhang et  al. 
2015b; Zhao et al. 2009).

Stability conditions are classified into two categories delay-independent and delay-
dependent. As much of information on the delay is concerned, the delay-dependent 
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criteria is more useful to produce less conservative results (Yang et al. 2015b; Senthil-
kumar and Mahanta 2010; Lam et al. 2007). Delay partitioning technique, alternatively 
known as a delay fractionizing method, was developed in Gouaisbaut and Peaucelle 
(2006). A number of research works have been developed to prove that delay partition-
ing approach can significantly enhance the stability conditions to obtain less conserva-
tism as soon as the partitions get thinner (Yang et al. 2015a; Zhao et al. 2009; Wang et al. 
2015). In Wang et al. (2015), a secondary partitioning method was proposed to further 
divide primarily separated intervals into a series of smaller segments, which illustrates 
good stability results. Nonetheless, the research development requires too many adjust-
able parameters. It thus cost extra computation burden.

In order to further achieve less conservative results, a number of inequalities methods 
have been proposed, such as Peng–Park’s inequality, reciprocally convex combination, 
free-matrix-based inequality, etc, which are employed for the purpose of overabun-
dance reduction of the enlargement of the Lyapunov functionals derivative (Sun et  al. 
2010; Gyurkovics 2015; Park et al. 2011, 2015; Peng and Han 2011; Zeng et al. 2015a). 
By introducing both augmented state and integral of the state over the period of the 
delay, these newly developed techniques can preserve extra items when dealing with the 
enlargement in bounding the derivative of the LKF comparing to the Jensen’s inequality 
in Seuret and Gouaisbaut (2013). As a result, tighter bounding inequalities are obtained 
to reduce the conservatism.

In addition, the presence of nonlinearity can cause poor performance and even insta-
bility in engineering systems. Robust stability analysis with the effect of the nonlin-
ear perturbation has been investigated with considerable attention (Zhang et al. 2010, 
2015a; Ramakrishnan and Ray 2011). Because of process uncertainties and parameter 
variations, nonlinear perturbations commonly occur in both current and delayed states 
Ramakrishnan and Ray (2011). The previously developed techniques for such systems 
are rarely adaptive for the stability analysis with the appearance of nonlinear perturba-
tions. In this paper, T–S fuzzy systems with interval time-varying delays and nonlin-
ear perturbation are considered for stability analysis. Based on the geometric sequence 
division, some newly developed inequalities, free weight matrices techniques and the 
Finsler’s Lemma are also employed for obtaining improved stability criteria. Main con-
tributions of this work are:

1.	 Based on the recently developed geometric sequence division method on delay parti-
tioning, improved stability criteria is presented.

2.	 Extended reciprocal convex combination(ERCC) is employed for the less enlarge-
ment of bounding the derivative of the augmented LKF which is able to reduce the 
overabundance when deal with the inequalities in the derivative of the LKF.

3.	 In terms of the system equation, free weight matrices techniques are applied to 
reduce the conservatism with respect to each fuzzy rule. Numerical examples are 
conducted to show that the improved stability conditions are obtained by comparing 
with some existing results.

Notations. Rn and Rn×m denote the n-dimensional Euclidean space and the set of all 
n×m real matrices, respectively. I(0) is the identity (zero) matrix with appropriate 
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dimension; AT denotes the transpose, and He(A) = A+ AT. The symbol ∗ denotes the 
elements below the main diagonal of a symmetric block matrix. � • � is the Euclidean 
norm in Rn. C([−τb, 0],R

n
) is the family of continuous functions ϕ from the interval 

[−τb, 0] to Rn with the norm �ϕ�τ = sup−τ≤θ≤0�ϕ(θ)�. The notation A > (≥)B means 
that A− B is positive (semi-positive) definite.

Problem statements and preliminaries
Considering nonlinear perturbed T–S fuzzy systems with interval time-varying delays, 
for each l = 1, 2, . . . r (r is the number of the plant rules), the lth rule of this fuzzy model 
with r plant rules are described as follows.

Rule l: IF z1(t) is Ml1 and · · · zp(t) is Mlp THEN

where x(t) ∈ R
n is the state variable, zs(t) , Mls (s = 1, 2, . . . , p) are premise variables and 

the related fuzzy sets, respectively. Al ,Bl ,Cl ,Dl are the constant matrices with appro-
priate dimensions. τ (t) is the time-varying delay. f (x(t), t) and g(x(t − τ (t)), t) are 
unknown nonlinear perturbations with respect to the current state x(t) and the delayed 
state x(t − τ (t)). ϕ(t) ∈ C([−τb, 0],R

n
) is the initial function.

Then the fuzzy model can be inferred as:

where r is the number of fuzzy implications, hl(t) =
Wl(t)∑r
l=1 Wl(t)

, Wl(t) =
∏p

s=1Mls(zs(t)) 
with Mls(zs(t)) is the grade of membership of zs(t) in Mls. A(t) =

∑r
l=1 hl(t)Al , 

B(t) =
∑r

l=1 hl(t)Bl , C(t) =
∑r

l=1 hl(t)Cl, D(t) =
∑r

l=1 hl(t)Dl. For Wl(t) ≥ 0, 
hl(t) ≥ 0 and 

∑r
l=1 hl(t) = 1 thus holds.

The time-varying delay τ (t) is considered as the following two cases:

Case 1  τ (t) is a differentiable function satisfying

Case 2  τ (t) is a continuous function satisfying

where τa, τb, µ are constants.

Assumption 1  f (0, t) ≡ 0 , g(0, t) ≡ 0 and

(1)
ẋ(t) = Alx(t)+ Blx(t − τ (t))+ Clf (x(t), t)+ Dlg(x(t − τ (t)), t), t ≥ 0

x(t) = ϕ(t), t ∈ [−τb, 0]

(2)

ẋ(t) =

r∑

l=1

hl(t)[Alx(t)+ Blx(t − τ (t))+ Clf (x(t), t)+ Dlg(x(t − τ (t)), t)]

= A(t)x(t)+ B(t)x(t − τ (t))+ C(t)f (x(t), t)+ D(t)g(x(t − τ (t)), t), t ≥ 0

x(t) = ϕ(t), t ∈ [−τb, 0]

(3)0 ≤ τa ≤ τ (t) ≤ τb, τ̇ (t) < µ, ∀t ≥ 0,

(4)0 ≤ τa ≤ τ (t) ≤ τb, ∀t ≥ 0,

(5)

{
f Tf ≤ γ

2xT(t)FTFx(t)

gTg ≤ β
2xT(t − τ (t))GTGx(t − τ (t))
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where γ ≥ 0, β ≥ 0 are known scalars, F and G are known constant matrices, ∀x ∈ R
n, 

and f and g are the short expressions of f (x(t), t) and g(x(t − τ (t)), t), respectively.

A few lemmas are introduced for stability analysis as follows.

Lemma 1  (Han 2003, 2005) For n× n matrix Q > 0, scalar τ > 0, vector-valued func-
tion ẋ : [−τ , 0] −→ R

n such that the following integrations are well defined, it holds that

Lemma 2  (Zeng et al. 2015, Free-matrix-based integral inequality) Let x be a differenti-
able function : [a, b] → R

n, Z ∈ R
n×n and W1,W3 ∈ R

3n×3n be symmetric matrices, and 
W2 ∈ R

3n×3n, N1,N2 ∈ R
3n×n satisfying this condition

it holds:

 where̟ =
[
xT(b) xT(a)

1

b−a

∫
b

a
xT(s) ds

]T
, � = (b− a)

(
W1 +

1

3
W3

)
+He(N1�1 + N2�2),

�1 = ē1 − ē2, �2 = 2ē3 − ē1 − ē2, ē1 =
[
I 0 0

]
, ē2 =

[
0 I 0

]
, ē3 =

[
0 0 I

].

Remark 1  By introducing both augmented state and integral of the state over the 
period of the delay, the well known Wirtinger-based inequality was developed with less 
conservatism comparing to the Jensen’s inequality in Seuret and Gouaisbaut (2013) to 
reduce enlargement in bounding the derivative of the LKF inequalities. However, due to 
the unadjustable parameters, the tightest upper bound is rarely to be determined in this 
development. In fact, this Wirtinger-based inequality is the special case of free-matrix-
based integral inequality (8) by setting

Particularly, a set of slack variables inequality in this inequality can be flexibly adjusted, 
which provide remarkable extra freedom for the purpose of conservatism reduction.

Lemma 3  (Wang et  al. 2015, Extendedreciprocalconvexcombination-ERCC) For any 
vectors f1, . . . , fN with appropriate dimensions, scalars ki(t) ∈ [0, 1], 

∑N
i=1 ki(t) = 1, and 

matrices Ri > 0, there exist matrix Sij(i = 1, . . . ,N − 1, j = i + 1, . . . ,N ) satisfies

(6)−τ

∫ t

t−τ

ẋT(s)Qẋ(s) ds ≤
[
xT(t) xT(t − τ )

][−Q Q
∗ −Q

][
x(t)

x(t − τ )

]

(7)

−
τ
2

2

∫ 0

−τ

∫ t

t+θ

ẋT(s)Qẋ(s) dsdθ ≤
[
τxT(t)

∫ t
t−τ

xT(s) ds
][

−Q Q
∗ −Q

][
τx(t)∫ t

t−τ
x(s) ds

]



W1 W2 N1

∗ W3 N2

∗ ∗ Z


 ≥ 0

(8)−

∫ b

a
ẋT(s)Zẋ(s) ds ≤ ̟

T
�̟

N1 =
1

b− a

[
−Z Z 0

]
, N2 =

3

b− a

[
Z Z −2Z

]
,

W1 = N1Z
−1NT

1 , W2 = N1Z
−1NT

2 , W3 = N2Z
−1NT

2
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then the following inequality holds:

Lemma 4  (de Oliveira and Skelton 2001, Finsler’s Lemma) Let ζ ∈ R
n,� = �

T ∈ R
n×n , 

and B ∈ R
m×n with rank(B) < n. The following statements are equivalent:

(i)		  ζ
T
�ζ < 0, ∀Bζ = 0, ζ �= 0;

(ii)		 B⊥T
�B⊥

< 0;
(iii)	 ∃L ∈ R

n×m : �+He(LB) < 0;

where B⊥ ∈ R
n×(n−rank(B)) is the right orthogonal complement of B.

Main results
The stability criteria of T–S fuzzy systems in the presences of interval time-varying 
delays and nonlinear perturbations are analyzed in this section. In terms of the geomet-
ric sequence division method, a new delay partitioning technique is proposed in Fig. 1.

For any integral m = q − 1 ≥ 1, the delay interval [τa, τb] is separated into m unequal 
geometric subintervals as,

where τa = τ0, τb = τq−1, and m is the number of segments of interval [τa, τb]. It is 
expressed as [τa, τb] = [τ0, τ1]

⋃m
i=2 (τi−1, τi] � I1 ∪ I2 ∪ . . . ∪ Im. α is a real positive 

number, and δi is the length of the ith subinterval which equals to αq−i. The following 
expressions are used for notational simplification.

[
Ri Sij
∗ Rj

]
≥ 0

−

N�

i=1

1

ki(t)
f Ti Rifi ≤ −



f1
...
fN




T

R1 · · · S1,N

∗
. . .

...
∗ ∗ RN






f1
...
fN




(9)





δi = α
q−i

τi = τ0 +

i�

k=1

α
q−k , i = 1, 2, · · · , q − 1

(10)ej =

[
0, · · · , 0︸ ︷︷ ︸

j−1

, I 0, · · · , 0︸ ︷︷ ︸
3m−j+6

]T
∈ R

n×(3m+6)n, j = 1, 2, · · · , 3m+ 6

Fig. 1  Geometric sequence division based delay partitioning
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The augmented vector is defined as,

where

Next, the new delay dependent stability criteria is presented for the T–S fuzzy system 
described in (2).

Theorem  1  Given a positive integer m, and δi = α
q−i. Consider (3) with time-var-

ying delay satisfying Case 1.  The system (2) is asymptotically stable if there exist 
symmetric positive definite matrices Zi,Qi, Q̃,R2i,R3i ∈ R

n×n
(i = 1, 2, . . . ,m) , 

P =
[
Pij

]
(m+1)×(m+1)

∈ R
(m+1)n×(m+1)n, symmetric matrices W1,W3 ∈ R

3n×3n,and 
J ∈ R

n×n,matrices W2 ∈ R
3n×3n,N1,N2 ∈ R

3n×n,and Y ∈ R
(3m+6)n×n,such that the fol-

lowing LMIs hold

where

(11)ξ(t) =
[
ẋT(t), xT(t), xT(t − τ0), η

T
(t), xT(t − τ (t)), ηT1 (t), η

T
2 (t), f

T, gT
]T

η(t) =
[
xT(t − τ1), · · · , x

T
(
t − τq−1

) ]T

η1(t) =
[ ∫ t

t−τ0
xT(s)ds, · · · ,

∫ t
t−τq−2

xT(s)ds
]T

η2(t) =
[

1
δ1

∫ t−τ0

t−τ1
xT(s)ds, · · · , 1

δq−1

∫ t−τq−2

t−τq−1
xT(s)ds

]T

(12)Wi =



W1 W2 N1

∗ W3 N2

∗ ∗ Zi


 ≥ 0

(13)�k ,l +He(YŴl) < 0, l = 1, 2, . . . r

Ŵl = Ale
T
2 + Ble

T
m+4 + Cle

T
3m+5 + Dle

T
3m+6 − eT1

�k ,l = �1 +�2 +�3k +�4 +�51 +�52 +�l,6 + e1ZeT1

�1 = He








e
T
2

e
T
2m+5

.

.

.

e
T
3m+4




T

P




e
T
1

1

δ1

�
e
T
3
− e

T
4

�

.

.

.

1

δq−1

�
e
T
m+2

− e
T
m+3

�








�2 = e2
�Qe

T
2 − (1− µ)em+4

�Qe
T
m+4

+




e
T
3

e
T
4

.

.

.

e
T
m+2

e
T
m+3




T


Q1 0 · · · · · · 0

∗ Q2 − Q1 0 · · ·
.
.
.

∗ ∗
. . . 0

.

.

.

∗ ∗ ∗ Qm − Qm−1 0

∗ ∗ ∗ ∗ −Qm







eT
3

e
T
4

.

.

.

e
T
m+2

e
T
m+3



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with

Proof  For any t ≥ 0, there should exist an integer k ∈ {1, 2, . . . ,m}, such that τ (t) ∈ Ik. 
The Lyapunov–Krasovskii functional is as follows:

�3k =

q−1�

i=1,i �=k




eTi+2

eTi+3

eT
2m+4+i




T

�3




eTi+2

eTi+3

eT
2m+4+i




+




eTk+2

eTm+4

eTk+3




T


−Zk Zk − J J

∗ −2Zk + JT + J Zk − J

∗ ∗ −Zk







eTk+2

eTm+4

eTk+3




�4 =

q−1∑

i=1

[
τi−1e

T
2

e
T
m+4+i

]T[
−R2i R2i

∗ −R2i

][
τi−1e

T
2

e
T
m+4+i

]

+

q−1∑

i=1

δ
2
i

[
e
T
2

e
T
2m+4+i

]T[
−R3i R3i

∗ −R3i

][
e
T
2

e
T
2m+4+i

]

�51 = e2�1γ
2FTFeT2 − e3m+5�1Ie

T
3m+5

�52 = em+4�2β
2GTGeTm+4 − e3m+6�2Ie

T
3m+6

�l,6 =




e
T
1

e
T
2

e
T
m+4

e
T
3m+5

e
T
3m+6




T


−�N1 − �NT
1

�N1Al − �NT
2

�N1Bl
�N1Cl

�N1Dl

∗ �N2Al + A
T
l
�NT
2

�N2Bl
�N2Cl

�N2Dl

∗ ∗ 0 0 0

∗ ∗ 0 0 0

∗ ∗ 0 0 0







e
T
1

e
T
2

e
T
m+4

e
T
3m+5

e
T
3m+6




Z =

q−1∑

i=1

δiα
q−iZi +

q−1∑

i=1

1

4
τ
4
i−1R2i +

q−1∑

i=1

1

4
(τ

2
i − τ

2
i−1)

2R3i

�3 = δ
2
i

(
W1 +

1

3
W3

)
+ δiHe(N1�1 + N2�2)

(14)V (xt , k) |τ(t)∈Ik= V1(xt)+ V2(xt)+ V3(xt , k)+ V4(xt)
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where

with ǫ(t) =
[
xT(t), ηT2 (t)

]T

The derivative of the Lyapunov functional V (xt , k) |τ(t)∈Ik along the trajectory of the 
perturbed T–S fuzzy system described in (2) is given as:

where

The derivative of the second term of the V2(xt) is derived as

Thus,

V1(xt) = ǫ
T
(t)Pǫ(t)

V2(xt) =

∫ t

t−τ(t)
xT(s)Q̃x(s)ds +

q−1∑

i=1

∫ t−τi−1

t−τi

xT(t)Qix(t)ds

V3(xt , k) =

q−1∑

i=1

δi

∫ −τi−1

−τi

∫ t

t+β

ẋT(s)Ziẋ(s) ds dβ

V4(xt) =

q−1∑

i=1

τ
2
i−1

2

∫
0

−τi−1

∫
0

θ

∫ t

t+�

ẋT(s)R2iẋ(s) ds d� dθ

+

q−1∑

i=1

τ
2
i − τ

2
i−1

2

∫ −τi−1

−τi

∫
0

θ

∫ t

t+�

ẋT(s)R3iẋ(s) ds d� dθ

(15)V̇ (xt , k) |τ(t)∈Ik= V̇1(xt)+ V̇2(xt)+ V̇3(xt , k)+ V̇4(xt)

(16)V̇1(xt) = 2ǫT(t)P ǫ̇(t) = ξ
T
(t)�1ξ(t)

(17)

d

dt




q−1�

i=1

� t−τi−1

t−τi

xT(t)Qix(t)ds


 =

q−1�

i=1

�
xT(t − τi−1)Qix(t − τi−1)− xT(t − τi)Qix(t − τi)

�

= xT(t − τ0)Q1x(t − τ0)+ xT(t − τ1)(Q2 − Q1)x(t − τ1)+ xT(t − τ2)(Q3 − Q2)x(t − τ2) . . .

+ xT(t − τq−2)(Qm − Qm−1)x(t − τq−2)− xT(t − τq−1)Qmx(t − τq−1)

=




x(t − τ0)

x(t − τ1)

.

.

.

x(t − τq−2)

x(t − τq−1)




T



Q1 0 · · · · · · 0

∗ Q2 − Q1 0 · · ·
.
.
.

∗ ∗
. . . 0

.

.

.

∗ ∗ ∗ Qm − Qm−1 0

∗ ∗ ∗ ∗ −Qm







x(t − τ0)

x(t − τ1)

.

.

.

x(t − τq−2)

x(t − τq−1)




(18)

V̇2(xt) ≤xT(t)�Qx(t)− (1− µ)xT(t − τ (t))�Qx(t − τ (t))

+




x(t − τ0)

x(t − τ1)

...
x(t − τq−2)

x(t − τq−1)




T



Q1 0 · · · · · · 0

∗ Q2 − Q1 0 · · ·
...

∗ ∗
. . . 0

...
∗ ∗ ∗ Qm − Qm−1 0
∗ ∗ ∗ ∗ −Qm







x(t − τ0)

x(t − τ1)

...
x(t − τq−2)

x(t − τq−1)




=ξ
T
(t)�2ξ(t)
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The derivative of V3(xt , k) is deduced as

For the case of τ (t) ∈ Ik(1 ≤ k ≤ m), the second term in (19) is deduced as follows

Applying Lemma 2 to deal with (20), it is obtained

where ̟ 3i(t) =
[
xT(t − τi−1) xT(t − τi)

1
δi

∫ t−τi−1

t−τi
xT(s) ds

]T
.

In the case of i = k, applying Jensen’s inequality and the extended ERCC in Lemma 3, 
it is given as,

where η0(t) =
[
xT(t − τk−1) xT(t − τ (t)) xT(t − τk)

]T.
Then , it follows from (19–22) that

(19)V̇3(xt) = ẋT(t)




q−1�

i=1

δiα
q−iZi


ẋ(t)−

q−1�

i=1

δi

� t−τi−1

t−τi

ẋT(s)Ziẋ(s) ds

(20)

−

q−1∑

i=1

δi

∫ t−τi−1

t−τi

ẋT(s)Ziẋ(s) ds

= −

q−1∑

i=1,i �=k

δi

∫ t−τi−1

t−τi

ẋT(s)Ziẋ(s) ds − δk

∫ t−τk−1

t−τk

ẋT(s)Zkẋ(s) ds

(21)−

q−1∑

i=1,i �=k

δi

∫ t−τi−1

t−τi

ẋT(s)Ziẋ(s) ds ≤

q−1∑

i=1,i �=k

̟
T
3i(t)�3̟3i(t)

(22)

−
�
τk − τk−1

� � t−τk−1

t−τk

ẋ
T
(s)Zkẋ(s) ds

= −
�
τk − τk−1

�
��

t−τk−1

t−τ(t)

ẋ
T
(s)Zkẋ(s) ds +

�
t−τ(t)

t−τk

ẋ
T
(s)Zkẋ(s) ds

�

≤ −

�
τk − τk−1

�
�
τ (t)− τk−1

�
��

t−τk−1

t−τ(t)

ẋ
T
(s) ds

�
Zk

��
t−τk−1

t−τ(t)

ẋ(s) ds

�

−

�
τk − τk−1

�

(τk − τ (t))

��
t−τ(t)

t−τk

ẋ
T
(s) ds

�
Zk

��
t−τ(t)

t−τk

ẋ(s) ds

�

= −

�
τk − τk−1

�
�
τ (t)− τk−1

�
�
x(t − τk−1)

x(t − τ (t))

�T�
Zk −Zk

∗ Zk

��
x(t − τk−1)

x(t − τ (t))

�

−

�
τk − τk−1

�

(τk − τ (t))

�
x(t − τ (t))

x(t − τk)

�T�
Zk −Zk

∗ Zk

��
x(t − τ (t))

x(t − τk)

�

≤ −η
T
0 (t)



Zk −Zk + J −J

∗ 2Zk − JT − J −Zk + J

∗ ∗ Zk


η0(t)

(23)V̇3(xt , k) ≤ ẋT(t)




q−1�

i=1

δiα
q−iZi


ẋ(t)+ ξ

T
(t)�3kξ(t)
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The derivative of V4(xt) is presented as

By using Lemma 1, the last two terms of (24) are deduced as

Thus (24) implies that

Referring to (5), for any scalars �1 ≥ 0, �2 ≥ 0 , the nonlinear perturbations can be 
derived as

According to the system in (1), with N̂1 and N̂2 are defined as N̂1 =
∑r

l=1 hl(t)N̂1l and 
N̂2 =

∑r
l=1 hl(t)N̂2l, and N̂1l , N̂2l are constant matrices. Then it is given as

(24)

V̇4(xt) = ẋT(t)




q−1�

i=1

1

4
τ
4
i−1R2i +

q−1�

i=1

1

4
(τ

2
i − τ

2
i−1)

2R3i


ẋ(t)

−

q−1�

i=1

τ
2
i−1

2

� 0

−τi−1

� t

t+θ

ẋT(s)R2iẋ(s) ds dθ

−

q−1�

i=1

τ
2
i − τ

2
i−1

2

� −τi−1

−τi

� t

t+θ

ẋT(s)R3iẋ(s) ds dθ

(25)

−

q−1∑

i=1

τ
2
i−1

2

∫ 0

−τi−1

∫ t

t+θ

ẋT(s)R2iẋ(s) ds dθ

≤

q−1∑

i=1

[
τi−1x(t)∫ t
t−τi−1

x(s) ds

]T[
−R2i R2i

∗ −R2i

][
τi−1x(t)∫ t
t−τi−1

x(s) ds

]

−

q−1∑

i=1

τ
2
i − τ

2
i−1

2

∫ −τi−1

−τi

∫ t

t+θ

ẋT(s)R3iẋ(s) ds dθ

≤

q−1∑

i=1

[
(τi − τi−1)x(t)∫ t−τi−1

t−τi
x(s) ds

]T[
−R3i R3i

∗ −R3i

][
(τi − τi−1)x(t)∫ t−τi−1

t−τi
x(s) ds

]

≤

q−1∑

i=1

(τi − τi−1)
2

[
x(t)
1
δi

∫ t−τi−1

t−τi
x(s) ds

]T[
−R3i R3i

∗ −R3i

][
x(t)
1
δi

∫ t−τi−1

t−τi
x(s) ds

]

(26)V̇4(xt) ≤ ẋT(t)




q−1�

i=1

1

4
τ
4
i−1R2i +

q−1�

i=1

1

4
(τ

2
i − τ

2
i−1)

2R3i


ẋ(t)+ ξ

T
(t)�4ξ(t)

(27)

0 ≤ �1

(
γ
2xT(t)FTFx(t)− f Tf

)
= ξ

T
(t)�51ξ(t)

0 ≤ �2

(
β
2xT(t − τ (t))GTGx(t − τ (t))− gTg

)
= ξ

T
(t)�52ξ(t)

(28)

0 = 2

[
ẋT(t)N̂1 + xT(t)N̂2

]
[Alx(t)+ Blx(t − τ (t))+ Clf (x(t), t)

+Dlg(x(t − τ (t)), t)− ẋ(t)]

= ξ
T
(t)�l,6ξ(t)
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Therefore, the following inequality holds

Using the augmented vector (11) with the simplification expression (10), the T–S fuzzy 
system (2) is represented as

where Ŵl is defined in Theorem 1.
Hence, the asymptotic stability condition for the T–S fuzzy system (2) with interval 

time-varying delays and nonlinear perturbations is expressed as

Consequently, by means of the Lemma 4, there exists a matrix Y with appropriate 
dimensions such that the (31) is equivalent to

As a result, the derivatives of the newly proposed Lyapunov functionals is deduced as 
V̇ (xt , k) |τ(t)∈Ik< 0. It means V̇ (xt , k) |τ(t)∈Ik< ρ�x(t)�2 for sufficiently small ρ > 0. 
Hence the T–S fuzzy system in (2) is globally asymptotically stable. This completes the 
proof.

Remark 2  For the absence of perturbation, that is C(t) = 0,D(t) = 0 , then the T–S 
fuzzy system (2) is simplified as

This system has been widely studied Zhao et al. (2009), Wu et al. (2011), Zhang et al. 
(2015b). The stability criterion for the system is stated below.

Theorem 2  Given a positive integer m, and δi = α
q−i. Consider (3) with time-varying 

delay satisfying

Case 1 The system (33) is asymptotically stable if there exist symmetric positive 
definite matrices Zi,Qi, Q̃,R2i,R3i ∈ R

n×n
(i = 1, 2 . . . ,m), P =

[
Pij

]
(m+1)×(m+1)

(29)V̇ (xt , k) |τ(t)∈Ik≤

r∑

l=1

hl(t)ξ
T
(t)�k ,lξ(t)

(30)0 =

r∑

l=1

hl(t)Ŵlξ(t)

(31)

r∑

l=1

hl(t)ξ
T
(t)�k ,lξ(t) < 0

subject to : 0 =

r∑

i=1

hl(t)Ŵlξ(t)

(32)

r∑

l=1

hl(t)ξ
T
(t)

[
�k ,l +He(YŴl)

]
ξ(t) < 0

(33)
ẋ(t) = A(t)x(t)+ B(t)x(t − τ (t)), t ≥ 0

x(t) = ϕ(t), t ∈ [−τb, 0]
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∈ R
(m+1)n×(m+1)n, symmetric matrices W1,W3 ∈ R

3n×3n, and J ∈ R
n×n, matrices 

W2 ∈ R
3n×3n,N1,N2 ∈ R

3n×n, and Y ∈ R
(3m+4)n×n, such that the following LMIs hold

where Ŵl = Ale
T
2 + Ble

T
m+4 − eT1 , �̃k ,l = �1 +�2 +�3k +�4 + �̃l6 + e1ZeT1 , and 

�1, �2, �3k , �4, Z have been defined in Theorem 1. �̃l6 can be deduced by removing 
the perturbed elements Clf (x(t), t) and Dlg(x(t − τ (t)), t) in (28).

Proof  The same Lyapunov–Krasovskii functional candidate (14) for system (33) is 
selected for stability analysis. The augment vector (11) is modified as

where η(t), η1(t) and η2(t) are defined in Theorem 1. Then following the similar process 
of the proof of Theorem 1, the asymptotic stability condition for the T–S system (33) is 
equivalent to

This completes the proof.

Corollary 1  Given a positive integer m, and δi = α
q−i. Considering τ (t) is a con-

tinuous function in (4). Then the system (2) is asymptotically stable if there exist 
symmetric positive definite matrices Zi,Qi,R2i,R3i ∈ R

n×n
(i = 1, 2 . . . ,m), 

P =
[
Pij

]
(m+1)×(m+1)

∈ R
(m+1)n×(m+1)n, symmetric matrices W1,W3 ∈ R

3n×3n, and 
J ∈ R

n×n, matrices W2 ∈ R
3n×3n,N1,N2 ∈ R

3n×n, and Y ∈ R
(3m+6)n×n, such that the fol-

lowing LMIs hold

where �̂k ,l is deduced from �k ,l by replacing �2 as

(34)



W1 W2 N1

∗ W3 N2

∗ ∗ Zi


 ≥ 0

(35)�̃k ,l +He(YŴl) < 0, l = 1, 2, . . . , r

(36)ξ̃ (t) =
[
ẋT(t), xT(t), xT(t − τ0), η

T
(t), xT(t − τ (t)), ηT1 (t), η

T
2 (t)

]T

(37)

r∑

l=1

hl ξ̃
T
(t)

[
�̃k +He(YŴl)

]
ξ̃ (t) < 0

(38)



W1 W2 N1

∗ W3 N2

∗ ∗ �Z3


 ≥ 0

(39)�̂k ,l +He(YŴl) < 0, l = 1, 2, . . . r

�
�2 =




eT3
eT4
...

eTm+2

eTm+3




T



Q1 0 · · · · · · 0

∗ Q2 − Q1 0 · · ·
...

∗ ∗
. . . 0

...
∗ ∗ ∗ Qm − Qm−1 0
∗ ∗ ∗ ∗ −Qm







eT3
eT4
...

eTm+2

eTm+3



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Ŵl are defined in Theorem 1.

Proof  For the T–S fuzzy system (2) with interval time-varying delays, modify the Lya-
punov functionals (14) by setting Q̃ = 0, i.e., V̂2(xt) =

∑q−1
i=1

∫ t−τi−1

t−τi
xT(t)Qix(t)ds. Then 

following the similar process of the proof of Theorem 1, the asymptotic stability condi-
tion for the T–S system (2) is equivalent to

This completes the proof.

Remark 3  Both lower and upper bounds of the time-varying delay τ (t) are concerned 
in Cases 1 and 2. Actually, it is pointed out that Case 1 is a special case of Case 2, which 
means less conservative results can be obtained by using Case 1 instead of Case 2 in the 
case of a differentiable function of τ (t). Nonetheless, if τ (t) is not differentiable, Case 2 is 
able to overcome this issue Peng and Han (2011).

Remark 4  Considering a unit common ratio, i.e. α = 1 , which means the length of each 
subinterval is equivalent. Then previous developed research works using the equivalent 
partition method Hui et al. (2015), Wang and Shen (2012), Zhao et al. (2009) can be con-
sidered as a special case of this proposed approach. Therefore, the developed partition-
ing method is more generalized.

Numerical example
In this section, numerical examples are conducted to investigate the stability of the T–S 
fuzzy systems in (2) and (33).

Example 1  Consider the nominal T–S fuzzy systems (33) with the fuzzy rules described 
in Peng et al. (2011), Zeng et al. (2015b), Liu et al. (2010) as follows:

where the parameters widely discussed are given as,

In the Rules 1 and 2, the membership function are h1(z(t)) =
1

1+exp(−2z(t)), 
h2(z(t)) = 1− h1(z(t)).

Considering the lower bound of the time-varying delay τa = 0, different values of delay 
derivative rate µ are selected to obtain the upper bound of τb for comparisons in Table 1.

In Table 1, considering different values of µ, the comparisons of the maximum upper 
bounds τb are given for τa = 0. According to results in Lian et  al. (2016), it is clearly 
to show that for µ = 0, 0.1, 0.5 this proposed method can dramatically increase the 

(40)

r∑

l=1

hlξ
T
(t)

[
�̂k ,l +He(YŴl)

]
ξ(t) < 0

(41)

Rule 1 : If z1(t) is ± π/2, then ẋ(t) = A1x(t)+ B1x(t − τ (t))

Rule 2 : If z2(t) is ± 0, then ẋ(t) = A2x(t)+ B2x(t − τ (t))

A1 =

[
−2.1 0.1
−0.2 −0.9

]
,B1 =

[
−1.1 0.1
−0.2 −0.9

]
,A2 =

[
−1.9 0
−0.2 −1.1

]
,B2 =

[
−0.9 0
−1.1 −1.2

]
.
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upper bound of the time varying delay when selecting the partitioning number m = 3 . 
Figure 2 illustrates that with respect to the newly conducted maximum value of τb the 
state response still converges to zero, which means the T–S fuzzy system (41) is globally 
asymptotically stable.

Considering τ (t) to be a continuous function, as it is given in (4), i.e., µ is unknown. 
Then upper bound of the τb in this proposed work is compared with some other research 
results shown in the right column of Table 1.

Referring to the simulation results in Table  1, selecting µ = 0.1, τb = 4.06 and 
µ = 0.5, τb = 3.18 the state response of the T–S fuzzy system (41) is conducted in Fig. 2.

Considering unknown µ, Fig. 3 is shown with τb = 1.98.
In Figures 2, 3, simulation performance illustrates that under the maximum tolerant 

delay τb shown in Table 1 the T–S fuzzy system (41) is asymptotical stable.

Example 2  Consider the T–S fuzzy systems (2) in the presence of nonlinear perturba-
tions with the fuzzy rules as follows:

(42)

Rule 1 : If z1(t) is ± π/2, then

ẋ(t) = A1x(t)+ B1x(t − τ (t))+ C1f (x(t), t)+ D1g(x(t − τ (t)), t)

Rule 2 : If z2(t) is ± 0, then

ẋ(t) = A2x(t)+ B2x(t − τ (t))+ C2f (x(t), t)+ D2g(x(t − τ (t)), t)

Table 1  Upper bounds of τb for τa = 0 and different values of µ

Methods µ = 0 µ = 0.1 µ = 0.5 Unknown

Liu et al. (2010) 3.30 2.65 1.50 0.79

Zeng et al. (2015b) (m=3) 4.37 3.41 1.95 1.77

Lian et al. (2016) 4.35 3.55 2.32 –

Theorem 2 (m = 3) 4.75 4.06 3.18 1.98

0 20 40 60 80 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

x(
t)

x1(t), µ = 0.1, τb = 4.06

x2(t), µ = 0.1, τb = 4.06

x1(t), µ = 0.5, τb = 3.18

x2(t), µ = 0.5, τb = 3.18

Fig. 2  The state response of system (41)
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Referring to the Assumption1, system parameters are given as,

and γ = β = 0.1 In Rules 1 and 2, the membership function are h1(z(t)) = 1
1+exp(−2z(t)), 

h2(z(t)) = 1− h1(z(t)).
For a given lower bound of τa = 0 in Theorem 1, considering different values of µ as 

well as the unknown µ in Corollary 1, the upper bounds of τb in this proposed work are 
obtained in Table 2.

In the presence of nonlinear perturbations, under a fixed value of delay derivative and 
the unknown µ, the upper bound of delays are conducted in Table 2. It is shown that the 
proposed method works well in the perturbed T–S fuzzy system (2). By means of the 
simulation results in Table 2, selecting µ = 0.5, τb = 1.94 and unknown µ, τb = 1.72 the 
state responses of the T–S system (41) are conducted in Figs. 4, 5.

Remark 5  By comparing with the results in Lian et al. (2016), Zeng et al. (2015b), Liu 
et  al. (2010), less conservative results are obtained for the nominal T–S fuzzy system. 
Simulation results are conducted to demonstrate the remarkable improvements of the 
proposed method. The proposed geometric progression technique for delay partition 
can deal with the time-varying delayed T–S fuzzy systems with nonlinear perturbations 
with excellent stability criteria.

Remark 6  Tables 1 and 2 demonstrate that the maximum value of τb drops down when 
µ increases. In addition, the upper bound of time-varying delay τ (t) becomes bigger as 
soon as the partitioning segment gets finer. Figures 2, 3, 4 and 5 display that the conver-
gence time of the state response rises up in the case of an unknown delay derivative µ.

A1 =

[
−2.1 0.1

−0.2 −0.9

]
,B1 =

[
−1.1 0.1

−0.2 −0.9

]
,A2 =

[
−1.9 0

−0.2 −1.1

]
,B2 =

[
−0.9 0

−1.1 −1.2

]
,

C1 = C2 = D1 = D2 =

[
1 0

0 1

]
,

0 50 100 150
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−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x(
t)

x1(t), τb = 1.98

x2(t), τb = 1.98

Fig. 3  The state response of system (41) with unknown µ
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Conclusions 
In this paper, a novel delay partitioning method using the geometric sequence division 
is proposed for stability analysis of the perturbed T–S fuzzy system with interval time-
varying delays. Recently developed inequalities and new modified Lyapunov function-
als are introduced in this work. Numerical examples are given to demonstrate that less 
conservative results can be obtained in this design by comparing with some previously 
developed approaches.

Table 2  Upper bounds of τb for τa = 0 with different values of µ and unknown µ

Methods µ = 0 µ = 0.1 µ = 0.5 Unknown

Theorem 1 (m = 3) 3.41 3.29 1.77 1.33

Theorem 1 (m = 4) 4.39 4.28 1.94 1.72

0 50 100 150 200
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−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

x(
t)

x1(t), µ = 0.5, τb = 1.94

x2(t), µ = 0.5, τb = 1.94

Fig. 4  The state response of system (42)
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Fig. 5  The state response of system (42) with unknown µ
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