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Introduction
Every engineered object (product, plant or infrastructure) needs preventive and correc-
tive maintenance. The cost of maintenance can vary from 5 to 30  % (Campbell 1995) 
of the operating budget depending on the industry sector. This implies that businesses 
need to manage maintenance effectively to ensure minimum costs. This requires proper 
data management to assist in building models for effective decision making.

In this paper we look at a real case study. It deals with the maintenance of hydraulic 
pumps used in excavators by a mining company. We look at the data that the owner 
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(mining company) had collected and carry out an analysis and build models for pump 
failures. The data given in Murthy et al. (2015) and Karim et al. (2015) consist of both 
failure and censored lifetimes of the pump. Murthy et al. (2015) and Karim et al. (2015) 
showed that the threefold Weibull mixture distribution is the best distribution for the 
data among the three competing distributions (single Weibull, twofold Weibull mix-
ture and threefold Weibull mixture). In this paper we search a suitable distribution 
for the data from a set of competitive mixture models (based on Weibull, Exponential, 
Normal and Lognormal distributions). Finally the selected distribution is used to find 
out the optimum time at which the expected cost for maintenance of the pump will be 
minimum.

The remainder of the article is organized as follows: “Hydraulic pump failure data” sec-
tion describes a set of hydraulic pump failure data which will be analyzed in this paper. 
“Mixture models for modeling failure data” section presents the mixture models for 
modeling failure data. “Parameter estimation” section presents the MLEs of the param-
eters of mixture models by applying the Expectation–Maximization (EM) algorithm. 
“Model selection” section describes about the model selection for the data through 
graphical and statistical approaches. “Optimum maintenance cost” section expresses a 
procedure in which we have tried to find out the optimum time at which the expected 
cost for maintenance of the pump will be minimum. Finally, “Conclusion” section con-
cludes the article with a discussion of the key findings.

Hydraulic pump failure data
The hydraulic pumps considered here are used in excavators by a mining company. 
In open cut mines, coal and overburden are transported using excavators and dump 
trucks. An excavator is a complex machine consisting of several systems. The hydrau-
lic system is one of the important systems comprised of several hydraulic pumps 
(for linear and rotational motions), hydraulic oil filters and several hydraulic lines. 
A pump is considered to have failed if it cannot provide the required flow rate at 
the required pressure. The data recorded by the maintenance department consist 
of the failure times (for units that have failed and required Corrective Maintenance 
action) and service times (for units that have not failed yet and were sent for Preven-
tive Maintenance action) for 102  U and presented in Table  1. The column, labeled 
“Age” means the age (in hours) of the item at the end of the data collection period and 
the column labeled “Type” indicates whether the data is a failure data (denoted by 1) 
or censored data (denoted by 0). As can be seen the data consists of 45 failures and 
57 censored ages. More detail description of the data can be found in Murthy et al. 
(2015) and Karim et al. (2015).

Mixture models for modeling failure data
A variety of statistical models have been developed and studied extensively in the anal-
ysis of product failure data (Kalbfleisch and Prentice 1980; Meeker and Escobar 1998; 
Blischke and Murthy 2000; Lawless 2003; Murthy et al. 2004). A set of mixture models 
that have been used to analyze the pump failure data, given in Table  1, are discussed 
below.
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The cumulative distribution function (cdf ) of a general n-fold mixture model involves 
n subpopulations is given by

where pi > 0 and 
∑n

i=1 pi = 1. Here Fi(t) is the cdf of the i-th sub-population and pi is 
the mixing probability of the i-th sub-population. The corresponding probability density 
function (pdf) is given by

where fi(t) is the pdf associated with Fi(t). And the reliability function is

(1)G(t) =
n∑

i=1

piFi(t), t ≥ 0

(2)g(t) =
n∑

i=1

pifi(t), t ≥ 0

(3)R(t) = 1− G(t) = 1−
n∑

i=1

piFi(t) , t ≥ 0.

Table 1  Hydraulic pump failure data

Age (h) Type Age (h) Type Age (h) Type Age (h) Type

81 0 3333 1 9334 1 12,198 0

149 1 3569 1 9368 1 12,198 0

245 1 3837 0 9729 1 12,198 0

340 1 3837 0 9751 0 12,198 0

407 1 4150 0 10,299 1 12,236 0

461 1 5123 1 10,389 0 12,236 0

629 1 5258 1 10,413 0 12,236 0

856 0 5662 0 10,557 1 12,236 0

947 0 5923 1 10,944 1 12,236 0

1460 1 6333 1 10,970 1 12,236 0

1513 1 6717 1 11,647 0 12,394 0

1670 1 7207 1 11,678 1 12,459 0

1688 0 7265 1 11,686 1 13,097 0

2093 0 7624 1 11,798 0 13,497 0

2242 0 7625 0 11,869 0 13,497 0

2242 0 7973 1 11,869 0 13,497 0

2242 0 8183 1 11,923 0 13,497 0

2242 0 8217 1 12,005 0 13,497 0

2242 0 8390 1 12,082 0 13,497 0

2607 1 8462 1 12,090 0 13,497 0

2668 1 8728 1 12,136 0 14,407 1

2806 1 8817 1 12,141 0 15,536 1

3132 0 8870 1 12,143 0 16,289 1

3132 0 8884 0 12,163 0 17,517 1

3132 0 9055 1 12,198 0

3132 0 9182 1 12,198 0
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The cumulative distribution functions, probability density functions and reliability 
functions for the various twofold and threefold mixture models can be obtained from 
Eqs. (1)–(3) by putting n = 2 and n = 3, respectively. Ruhi et al. (2015) applied a twofold 
Weibull mixture model for analyzing failure data. More literatures on the applications of 
mixture models can be found in Titterington et al. (1985), Mendenhall and Hader (1958), 
Ahmad and Abdelrahman (1994), and Murthy et al. (2004).

Parameter estimation
We estimate the parameters of different mixture models by applying the maximum like-
lihood estimation method. We apply the Expectation–Maximization (EM) algorithm to 
find the maximum likelihood estimates (MLEs) of the parameters. Details on the appli-
cation of EM algorithm for mixture models with censored data can be found in Ateya 
(2012), Bordes and Chauveau (2012) and Ruhi, et  al. (2015). Karim, et  al. (2015) have 
applied single Weibull, twofold Weibull mixture and threefold Weibull mixture models 
for this data set and suggested the threefold Weibull mixture model as the best fitted 
model on the basis of various graphical and statistical approaches. In addition to three-
fold Weibull mixture model, here we have assumed two other threefold mixture models 
(Weibull-Normal-Exponential and Normal-Lognormal-Weibull) for the data. Our aim is 
to find out whether any other threefold mixture model fits this data set better than the 
threefold Weibull mixture model or not. And if the distribution changed, what would be 
its effect on optimal maintenance policy.

The parameters of these three mixture models are estimated by applying maximum 
likelihood method via the Expectation–Maximization (EM) algorithm. R programming 
codes are written for all computations of the paper. Programming codes for analyzing 
the data with Weibull–Normal–Exponential mixture model are given in the “Appendix”. 
The given codes can be used for other two models after simple modifications, mainly 
related to the functions dweibull(), pweibull(), dnorm(), pnorm(), dexp() and pexp() and 
the parameter vector theta.

The MLEs of the parameters are displayed in Table 2. In Table 2, the parameters, p1, 
p2, and p3 represent the mixing probabilities of the 1st, 2nd and 3rd sub-populations, 
respectively.

Table 2  MLEs of the parameters of assumed models

Threefold mixture models MLEs of parameters

Weibull (β1, η1)–Weibull (β2, η2)–Weibull (β3, η3) {β1, η1,β2, η2,β3, η3, p1, p2, p3} =

{1.0191, 2364.0191, 5.5758, 9481.8351,

16.6426, 16535.5039, 0.1659, 0.3220, 0.5120}

Weibull (β, η)–Normal (μ, σ)–Exponential (δ) {β , η,µ, σ , δ, p1, p2, p3} =

{5.5391, 9527.83, 15991.11, 1073.821,

0.0004, 0.3249, 0.5076, 0.1674}

Normal (μ1, σ1)–Lognormal (μ2, σ2)–Weibull (β, η) {µ1, σ1,µ2, σ2,β , η, p1, p2, p3} =

{15992.0308, 1072.7513, 7.5063, 1.3759,

5.4782, 9497.0899, 0.4947, 0.1872, 0.3180}
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Comment

• • For Weibull (β1, η1)–Weibull (β2, η2)–Weibull (β3, η3) mixture model, the mean 
for F3(t;β3, η3)  =  16,018.005  >  mean for F2(t;β2, η2)  =  8760.457  >  mean for 
F1(t;β1, η1) = 2345.628.

• • For Weibull (β, η)–Normal (μ, σ)–Exponential (δ) mixture model, the mean 
for F2(t;µ, σ)  =  15,991.110  >  mean for F1(t;β , η)  =  8799.642  >  mean for 
F3(t; δ) = 2500.000.

• • For Normal (μ1, σ1)–Lognormal (μ2, σ2)–Weibull (β, η) mixture model, the mean 
for F1(t;µ1, σ1)  =  15,992.031  >  mean for F3(t;β , η)  =  8765.749  >  mean for 
F2(t;µ2, σ2) = 4688.418.

Model selection
This section applies the graphical and statistical approaches for selecting the best fit-
ted model for the data set among three competitive threefold mixture models listed in 
Table  2. A relatively straightforward approach to select a tentative model is to utilize 
the plotting methodology where the cdfs obtained from parametric estimates are com-
pared with the empirical distribution function. More detail about this comparison can 
be found in Blischke et al. (2011). The cdfs of threefold Weibull, Weibull–Normal–Expo-
nential and Normal–Lognormal–Weibull mixture models are compared with the empir-
ical distribution function (nonparametric estimate of cdf from Kaplan–Meier (KM) 
estimate) and the results are displayed in Fig. 1.

Figure 1 indicates that all the cdfs obtained from the three different mixture models 
give approximately same result, except at the right tail of the figure of cdfs, where the 
cdfs of Weibull–Normal–Exponential and Normal–Lognormal–Weibull mixture mod-
els belong slightly closer to the nonparametric estimate of cdf than that of the cdf of 
threefold Weibull mixture model. Hence we may consider both the Weibull–Normal–
Exponential and Normal–Lognormal–Weibull mixture models for the data set.

The statistical approaches provide a more rigorous method for model selection and 
validation. Various statistics [such as adjusted Anderson–Darling (AD*) value, Kolmo-
grov–Smirnov (KS) test statistic, Akaike Information Criterion (AIC) and root mean 
square error (RMSE)] are applied for model selection and validation. The estimates of 
AIC, AD*, KS test statistic and RMSE for the three competitive models are given in 
Table 3. 
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From Table  3, we found that the Weibull–Normal–Exponential mixture model con-
tains the smallest values of AIC and RMSE and the Normal–Lognormal–Weibull mix-
ture model contains the smallest value of AD* test statistic among all of the mixture 
models. Hence, it can be concluded that, among these mixture models, Weibull–Nor-
mal–Exponential mixture model can be selected as the best model for hydraulic pump 
failure data according to the values of AIC and RMSE.

We have also applied the Kolmogrov–Smirnov (KS) test statistic as a goodness-of-fit 
test for these threefold mixture models. At the 5 % level of significance, with n = 102, the 
critical value of the Kolmogorov–Smirnov one-sample test is 1.36/

√
102 = 0.135 (Siegel 

and Castellan 1988). Since the observed value of the KS test statistic for all the three-
fold mixture models (given in Table 3) are less than the critical value, we cannot reject 
the null hypothesis, H0, that the observed data are from a population specified by these 
threefold mixture distribution. But we may consider that among all these three mixture 
models the Weibull–Normal–Exponential mixture model gives the smallest value for 
the KS test statistic.

According to Karim et al. (2015), let us introduce the following notations:

q:	� Probability that the pump is scrapped and replaced by a new one under ser-
vice exchange

1 – q:	� Probability that the pump is not scrapped and reconditioned under service 
exchange

p:	� Probability that the item used in service exchange is installed correctly
1 – p:	� Probability that the item used in service exchange is not installed correctly
FN(t):	� Failure distribution of new item installed correctly
FR(t):	� Failure distribution of reconditioned item installed correctly
FI(t):	� Failure distribution of incorrectly installed item (new or reconditioned)

It is easily seen (using the conditional approach) that the time to failure of an item 
used in service exchange is given by a distribution function (Karim et al. 2015)

Note that the MTTF (mean time to failure) for a new item installed correctly > MTTF 
for a reconditioned item installed correctly > MTTF for an item (new or reconditioned) 
installed incorrectly. If we select the Weibull (β, η)–Normal (μ, σ)–Exponential (δ) mix-
ture model as the best model for the data, then according to the Table 4 of Karim et al. 
(2015), we can write

(4)G3(t) = (1− p)FI (t)+ (1− q)pFR(t)+ qpFN (t)

(5)p3 = (1− p), p1 = (1− q)p and p2 = qp

(6)F3(t; δ) = FI (t), F1(t;β , η) = FR(t) and F2(t;µ, σ) = FN (t)

Table 3  Estimates of AIC, AD*, KS test statistic and RMSE for the models

Threefold mixture models AIC AD* KS test RMSE

Threefold Weibull 965.5942 0.6272 0.1068 0.0247

Weibull–Normal–Exponential 963.2532 0.5278 0.0876 0.0209

Normal–Lognormal–Weibull 964.6492 0.4781 0.0877 0.0217
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Using the estimates of p1, p2 and p3 from Table 2 in Eq.  (5), we get the estimates of 
p = 0.8326 and q = 0.6096.

Optimum maintenance cost
Obtaining the solution to the problem involves building a model and deciding on the 
optimal age for PM action requires an objective function. The objective function is the 
asymptotic expected cost per unit time. Note that every time instant an exchanged pump 
is put into operation can be viewed as a renewal point for a renewal process character-
izing the replacements of pumps over time. The time between two successive renewal 
points defines a cycle. The asymptotic expected cost per unit time can be obtained as the 
ratio of the expected cycle cost (ECC) and the expected cycle length (ECL).

The time to failure for a pump, X, is a random variable with distribution function F(x). 
A PM action results if X ≥ T  in which case the cycle length is T  with probability R(T). 
A CM action results when X < T  and the cycle length is X. As a result ECL is given by

Let Cf  and Cp denote the average cost of a CM and a PM replacement respectively. We 
will discuss the derivation of this cost later in the section. As a result ECC is given by

From (7) and (8) we have the asymptotic average cost per unit time given by

T ∗, the optimal T, is the value that yields a minimum for J (T ; F(.)).
The optimal T  depends on the average cost of each CM and PM. Like Karim et  al. 

(2015), we use the following additional notations and assumptions.
Cn: Sale price for new pump ($80,000).
Cr: Cost (charged by the service agent) for reconditioning a pump under CM or PM 

action ($60,000).

(7)ECL =

t∫

0

tf (t)+ TR(T ) =

T∫

0

R(t)dt

(8)ECC = Cf F(T )+ CpR(T )

(9)J (T ; F(.)) =
Cf F(T )+ CpR(T )∫ T

0
R(t)dt

Table 4  Optimal T∗ and J(T∗) for different values of ξ

Model Optimal  
values

Additional cost

ξ = 70,000 ξ = 90,000 ξ = 110,000 ξ = 130,000

Threefold Weibull T ∗ 14,631 14,484 14,377 14,295

J(T ∗) 10.40593 11.43373 12.45314 13.46734

Weibull–Normal–Exponential T ∗ 14,468 14,361 14,286 14,230

J(T ∗) 10.33359 11.33318 12.3265 13.31607

Normal–Lognormal–Weibull T ∗ 14,476 14,368 14,291 14,234

J(T ∗) 10.32712 11.32669 12.31991 13.30929
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ξ: Additional cost (due to downtime, loss in revenue, etc.) resulting from CM action. 
We look at values of ξ = $70,000, $90,000, $110,000 and $130,000.

A maintenance action involves replacement by a new item or a reconditioned item 
with probabilities q and (1− q) respectively. As a result, the average cost of a PM action 
is Cp = qCn + (1− q)Cr and of a CM action is Cf = Cp + ξ. The optimal T ∗ is obtained 
using (9) with threefold mixture cdf F(t) = G3(t) and the optimal expected cost per unit 
time is given by J (T ∗; F(.)) i.e., J (T ∗;G3(·)).

Here we can see that, the optimal T ∗ depend on the additional cost ξ. The optimal T ∗ 
and optimal expected cost per unit time J (T ∗) on various values of ξ for the three dif-
ferent threefold mixture models has been estimated. These results are given in Table 4, 
from where it can be seen, for every model, the optimal T ∗ decrease and optimal J (T ∗) 
increasing with ξ increases, as to be expected.

Table 4 indicates that the threefold Weibull mixture model gives a bit larger optimal 
maintenance period T ∗ than other two models, however the Weibull–Normal–Expo-
nential model shows a reduction in the maintenance cost than the threefold Weibull 
mixture model for all ξ.

Conclusion
Proper data management (data collection and analysis) is very important for effective 
maintenance of any engineered object. Data is critical for building and selecting suitable 
statistical models and model provides new insights for improvements to maintenance 
operations.

This paper has dealt with a real case study to illustrate how statistical models can be 
selected and applied for estimating optimum maintenance period and cost of a hydrau-
lic pump. It is recommended that the Weibull–Normal–Exponential mixture model can 
be selected as the best model for hydraulic pump failure data among three competi-
tive models. This model suggests the optimum maintenance period for the pump that 
reduces the maintenance cost. Annotated R code is provided for analyzing hydraulic 
pump failure data with Weibull–Normal–Exponential mixture model. The code can be 
modified easily to apply other threefold mixture models.
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Appendix
R codes for analyzing pump failure data with Weibull–Normal–Exponential mixture 
model.
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