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Background
According to the ‘Global Road Safety Partnership’ site, “Every day, more than 3000 peo-
ple around the world lose their lives due to road crashes” (Savannah 2011). Many acci-
dents happen as results of driver inattention or bad weather conditions causing poor 
visibility, as well as pedestrian inattentiveness to their surroundings (Gandhi and Trivedi 
2007). So some advanced systems like collision avoidance radars have been designed to 
control the vehicle in an emergency situation (Lu et al. 2010). In this paper, a LFMCW 
detector is designed for a collision avoidance radar to estimate the distance between the 
radar and the vehicle or pedestrian.

Usually, distance between the radar and the vehicle or pedestrian can be obtained by 
estimating the time delay between the transmit signal and its echo signal. Some com-
mon time delay estimation (TDE) have been investigated to detect the distance, which 
are implemented by finding the peak of cross-correlation between the transmit signal 
and its echo (Knapp and Carter 1976) or by using adaptive filtering, Hilbert transform 
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and fractional Fourier transform (FRFT) (Grennberg and Sandell 1994; Lin and Chern 
1998; Sharma and Joshi 2007; Zhou et al. 2014). Because of the advantage of the FRFT 
in terms of processing linear frequency modulation (LFM) signals, FRFT are attracting 
more and more attention in the field of LFM signal processing. However, high computa-
tion complexity coming from the scan of the optimal FRFT order restricts its practical 
applications. Therefore, to utilize FRFT solving FM signal problems in practical appli-
cations, a novel intermediate frequency signal (IFS) based structure is designed for the 
transceiver and a related differential distance estimation (DDE) method based on FRFT 
is implemented in the signal processor. The LFMCW detector made up of this trans-
ceiver and signal processor can estimate the distance effectively.

The rest of this paper is organized as follows. System model is given in “Preliminaries” 
section. “Proposed LFMCW detector” section describes the proposed IFS based struc-
ture and DDE method based on FRFT in detail. In “Simulation and results” section, the 
simulation results are presented. Finally, the conclusion is drew in the fifth section.

Preliminaries
As shown in Fig. 1, a collision avoidance radar can estimate the distance between a vehi-
cle and itself to avoid that the two cars collide. Normally, an FM radar or a pulse radar is 
used as the collision avoidance radar. Figure 2 describes an FM radar traditional LFMCW 
detector with the traditional beat frequency signal (BFS) based structure. Usually, cor-
relation, FFT or other methods in time or frequency domain are utilized in this detector 
to estimate the distance. However, the distance estimation accuracy of these methods is 
inversely proportional to the modulation band of the FM signal. It means that better dis-
tance estimation accuracy needs wider modulation band of the FM signal. Nevertheless, 
wider modulation band will bring other problems, such as frequency modulation nonlin-
ear, which can affect the distance estimation performance. Therefore we hope a distance 
estimation method whose accuracy has nothing to do with the modulation band. Then a 
novel distance estimation method using FRFT is proposed in this paper. However, if we 
using the method in the LFMCW detector shown as Fig. 2, we have to search for the opti-
mal rotation angle and this makes the computation complexity enhanced obviously.

R
Collision avoidance 

radar

Fig. 1  System model
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For avoiding the search for the optimal rotation angle, the LFMCW detector with new 
IFS based structure is proposed in paper and it is shown in Fig. 3. Compared with the 
traditional one, the decrease of computation complexity is based on the additional hard-
ware cost. The additional hardware consists of a LPF and a mixer. Either the structure 
burden or the financial burden of the additional hardware can be ignored under the cur-
rent level of technology. However, the decrease of computation complexity is multiple, 
because each search needs carrying out once FRFT.

Fractional Fourier transform

As a generalization of conventional Fourier transform (FT), the FRFT has been shown 
to be more effective than the FT in many signal processing areas. Several signal process-
ing methods based on FRFT have been proposed and their properties also have been 
derived and discussed, such as convolution, filtering, correlation and so on (Ozaktas and 
Barshan 1994; Almeida 1994; Ozaktas et al. 2001). To make the FRFT come true, some 
fast discrete fractional Fourier transform (DFRFT) have been done (Ozaktas et al. 1996; 
Pei and Yeh 1999; Candan and Kutay 2000; Ran et al. 2001). Among them, the Ozaktas’ 
DFRFT fast algorithm is widely regarded as an efficient one (Ozaktas et al. 1996), which 
has high precision, fast speed and the computation complexity matched with FFT.

The FRFT with a rotation angle α of signal f(t), denoted as Fα(u), is defined as (Ozaktas 
et al. 2001): 
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Fig. 2  Block diagram of a traditional LFMCW detector
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Fig. 3  Block diagram of the LFMCW detector proposed in this paper
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where the transform kernel function Kα(u, t) is given as: 

in which t is time, and u is the coordinate in fractional Fourier domain (FRFD). Mean-
while j is the imaginary unit and the function exp() is the exponential function.

The parameter α is the rotation angle of FRFT. When α increases from 0 to π/2, the 
FRFT transforms a continuous signal from its time domain to the Fourier image. If α or 
α + π is multiples of 2π, the kernel Kα(u, t) is simplified as δ(t − u) or δ(t + u), respec-
tively. FRFT with rotation angle α defined in the time–frequency domain is shown in 
Fig. 4. In this figure, t is time and f is frequency. Meanwhile u is the coordinate in FRFD 
and v is the amplitude in FRFD. fif1(t) and fif2(t) are instantaneous frequency of two sig-
nals with IF1 and IF2 as their initial frequency (IF). up1 and up2 are peak positions of the 
two signals in FRFD after FRFT. It is noticed that with the change of the rotation angle 
α, the axis u will perpendicular to the instantaneous frequency fif1(t) and fif2(t) when the 
rotation angle α = β + π/2. Under this condition, the relationship between the peak 
positions in FRFD and the initial frequency of the signal can be expressed as

Ozaktas’ DFRFT can be expressed as Ozaktas’ et al. (1996)
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Fig. 4  Definition of FRFT in the time–frequency domain
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where Aα = exp (−jπsgn(sin α)/ 4+ jα/ 2)
|sin α|1/2  and γ  =  cot  α· 1

2�x is the normalized sampling 
interval in both time domain and FRFD. This DFRFT can be realized by three steps:

(1)		 Multiply a chirp signal in the time domain;
(2)		 Carry out FFT to the signal after first step.
(3)		 Multiply another chirp signal and we get the DFRFT of the original signal.

We defined that multiplication times of an algorithm is the computation complexity. 
As a result, the computation complexity of this DFRFT with N points are 2N + Nlog2 
N/2, which is not so more than FFT.

Proposed LFMCW detector
According to Figs. 2 and 3, it can be noticed that the structure of this detector is different 
from the traditional one. Traditional LFMCW detectors use the beat frequency signal 
(BFS) to gain the wanted information, whereas in the proposed detector information is 
acquired from the IFS. The mixer puts out BFS by mixing the echo signal with the trans-
mit signal. However, IFS is obtained by mixing the echo signal with the reference car-
rier signal. Compared to BFS, the frequency modulation slope of the transmit signal is 
remained in the IFS. Because of the knowledge of the frequency modulation slope, FRFT 
can be carried out without hunting for the optimal order. As a result, the computation 
complexity of the FRFT based DDE method is significantly low.

Supposed that the LFM transmitting signal s1(t) with amplitude a1, carrier frequency f1 
and the frequency modulation slope K1 is expressed as

According to Fig.  2, this signal is mixed with an echo signal s2(t) which can be 
expressed as

where τ(t) is the time delay and λ1 is the amplitude factor. Then we get the BFS sbf(t) and 
it can be formulated as

Let τ (t) = 2(R0−v0t)
c  (R0 is the initial distance and v0 is the relative speed. c is the veloc-

ity of electromagnetic wave) and the sbf(t) can be expressed as

(5)s1(t) = a1 cos 2π
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)
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where abf is the amplitude. We can find that the frequency modulation slope of sbf(t) is 
4K1v0c+2v20

c2
 and it is unknown. Consequently, we have to make search for the optimal rota-

tion angle to determine it.
On the contrary, according to Fig. 3, the echo signal is mixed with a reference carrier 

signal s0(t) = cos2π(f1t), and we obtain the IFS sif(t) which can be expressed as

where aif is the amplitude. Considering τ (t) = 2(R0−v0t)
c , the equation can be rewritten as

Because of the relationship v0  ≪  c in practice, the frequency modulation slope 
K1c

2+4K1v0c+v20
c2

 of sif(t) is approximate K1. Therefore, the frequency modulation slope of 
sif(t) is known for us and the FRFT with the optimal rotation angle can be carried out 
without scan for the optimal rotation angle.

Additionally, when the relative speed is small enough, the time delay τ(t) can be 
regarded as a constant τ for each computation. So the equation can also be formulated as

Normally, this equation is utilized for distance estimation. From this equation, we can 
also find that the frequency modulation slope of sif(t) is known for us and the FRFT with 
the optimal rotation angle can be carried out without scan for the optimal rotation angle.

Derivation of the DDE method

The principle block diagram of the FRFT based DDE method is shown in Fig. 5. Two 
IFSs are sampled by A/D and become discrete signals. Then DFRFT is carried out to 
them and locations of the two IFSs in fractional Fourier domain are estimated. By means 
of the locations, IFs of the two IFSs are obtained. Time delay is calculated through the 
difference of the two IFSs’ IFs. Finally, distance is estimated according to the time delay.

Supposed that the modulating signal of the LFM signal is a saw tooth wave, then the 
instantaneous frequency fif(t) as shown in Fig. 6 can be denoted as: 
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Fig. 5  Principle block diagram of the FRFT-based TDE method
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where f0 is the carrier frequency and T is the period of the modulated signal. K = B/T 
is the frequency modulation slope and B is the modulation bandwidth. Parameter n is 
the cycle times. So the transmit signal within a modulation period can be expressed as:

where Φn
0  = n(n + 1)KT2/2 + Φ0 (Φ0 is the initial phase), and a is the amplitude of the 

transmit signal.
Then, the reflected echo signal can be described as:

where Φτ = (Kτ2 − 2f0τ − 2nKTτ)/2 + n(n + 1)KT2/2 + Φ1, λ is the amplitude factor of 
the echo signal, and the parameter τ is the time delay.

The transmit signal and the echo signal are mixed with the reference carrier signal 
x(t) = cos 2πf0t in two separate mixers respectively, then the IFSs can be derived as:

It’s noticed that the frequency modulation slope K is remained in the IFSs mentioned 
as above. So FRFT will be carried out to the IFSs with angle α = arctan(K) + π/2, with-
out hunting for the optimal rotation angle.

Based on the Eq.  (15), the IFs fit and fir of the IFSs can be simply obtained as the 
Eq. (16).
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fit = −nKT

fir = −(nKT + Kτ ).

Fig. 6  Instantaneous frequency of the saw tooth wave
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Obviously, the time delay τ can be estimated through the difference between the fit and fir.
According to Eq. (3), while the rotation angle (α = arctan(K) + π/2) is optimal, the rela-

tionship between fir(fit) and the peak position upr(upt) in FRFD of the IFSs can be written as

With the IFs obtained through the estimation of upr(upt), the time delay estimation τ̃  is 
achieved and expressed as:

According to the Eq. (18) and τ = 2R/c (R is the distance and c is the velocity of elec-
tromagnetic wave), the distance estimation value can be formulated as:

Distance estimation precision and computation complexity

According to Eq. (19), the distance estimation precision of this method is proportional 
to the estimation accuracy of upr(upt). The estimation accuracy of upr(upt) is equal to the 
sampling interval in the fractional domain, and can be expressed as �u = 1

/√
N  after 

normalization (Ozaktas et al. 1996). According to the Ozaktas et al. (1996), the real sam-
pling interval Δur can be expressed as

where fs is the sampling frequency in time domain and N is the computation point for 
each processing. Therefore, the distance estimation precision ΔR is

For engineering applications, fs = 10B is reasonable. Meanwhile, the frequency modu-
lation slope K = B/T. Consequently, the distance estimation precision can be rewrite as 

Because parameter c and α are constants, the period of the modulated signal T and 
sampling points are the main influencing factors for the distance estimation precision. 
Improvement of the distance estimation precision depends on T and N, but not the 
modulation bandwidth. It is beneficial for engineering applications. Figure 7 shows the 
relationships between the distance estimation precision and the period of the modulated 
signal or the sampling points.

For the proposed DDE method in this paper, the multiplication times is used to meas-
ure its computation complexity. According to Fig.  4, the multiplication times mainly 
come from the DFRFT of the IFS. As a result, according to the computation complexity 
of DFRFT, the computation of this DDE method can be expressed as

(17)
fir = upr cscα

fit = upt cscα.

(18)τ̃ =
upr − upt

K sin α
.

(19)R =
c
(
upr − upt

)

2K sin α
.

(20)�ur = �u

√
fs
/
T =

fs

N
.

(21)�R =
cfs cscα

2KN
.

(22)�R =
5cT cscα

N
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On the contrary, if searching the adaptive angle of DFRFT is needed, the computation 
complexity with M times scan can be written as

Compared with Eq.  (24), the computation complexity of the proposed DDE method 
described as Eq. (23) decreases obviously.

Simulation and results
In this section, simulations are carried out to validate the performance of the detector 
proposed in this paper. The carrier frequency is 3.0 GHz, and the modulation bandwidth 
is 30 MHz. The modulation period is 3.3 × 10−6 s.

When the target is stationary relative to the LFMCW detector, the time delay between 
the transmitting signal and the echo signal is a constant. Simulations were carried out 
for this scenario, and the results are shown in Fig.  8, where data1, data2 and data3 is 
the transmitting signal, echo signal with time delay of 1e−7 s and echo signal with time 
delay of 2e−7 s respectively. It can be seen that the locations in the fractional Fourier 
domain are different for the three signals with different initial frequencies. Moreover, to 
test the performance of the proposed DDE method with noise, a Monte Carlo simula-
tion with 1000 points was also conducted. The results are shown in Fig. 9. The simula-
tion results prove that the proposed method in this paper is feasible for a fixed-distance 
measurement when the signal-to-noise ratio (SNR) is no less than 0  dB. This method 
would certainly be feasible with lower SNR values if the noise was filtered out prior to 
applying the DFRFT. 

If there is some relative velocity between the target and the LFMCW detector, the time 
delay value will vary. For example, when the target is gradually approaching the system, 
the time delay will gradually reduce. Simulations of this scenario were carried out, and 
the results of the instantaneous time delay estimation with SNR value 0 dB are shown in 
Fig. 10. This figure proves that the proposed DDE method in this paper is also feasible 
for the instantaneous distance measurements for a moving target.

(23)2N + N log2N
/
2.

(24)M(2N + N log2N
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Conclusion
In this paper, a novel FRFT based LFMCW detector is proposed to achieve distance 
measurement for a collision avoidance radar. On the one hand, an FRFT based DDE 
method is proposed for the detector to realize distance estimation. On the other hand, 
a new IFS based structure transceiver is designed for the detector to reduce computa-
tion complexity of FRFT by taking advantage of the knowledge of frequency modulation 
slope. Benefited from the FRFT based DDE method and structure, the detector can esti-
mate the distance effectively and make the FRFT feasibly applied in practice rather than 
merely researched theoretically. Besides, practical FRFT applications in LFM systems 
have important significance for improving the performance of LFM systems.
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